Tumor-informed minimal residual disease testing in select solid tumors and hematologic malignancies: A narrative review
Tumor-informed circulating tumor DNA assays detect patient-specific cancer mutations in plasma and hold promise for detecting minimal residual disease (MRD) after or during definitive therapy. Recent large studies across solid tumors and hematologic malignancies suggest that tumor-informed MRD (TI-MRD) is strongly prognostic for relapse and survival. We reviewed disease evidence for these claims, as well as the potential utility in guiding therapeutic decisions. TI-MRD assays consistently achieved high analytical sensitivity. In solid tumors (colorectal cancer [CRC], non-small-cell lung cancer, breast cancer, and bladder cancer), multiple studies demonstrated that post-treatment MRD positivity conferred markedly worse recurrence-free and overall survival. TI-MRD positivity also often preceded clinical or radiological signs of relapse. Studies on hematologic malignancies, such as acute myelocytic leukemia (AML), diffuse large B-cell lymphoma, chronic lymphocytic leukemia (CLL), and multiple myeloma, also demonstrated prognostic power; however, TI-MRD also demonstrated effectiveness in guiding therapy escalation and de-escalation in AML and CLL studies. Ongoing trials in both solid tumors and hematologic malignancies are focused on further evaluating the utility of TI-MRD in guiding therapeutic decisions and enhancing patient survival. TI-MRD testing has matured into a broadly validated prognostic biomarker across multiple cancers supported by large prospective cohorts. Pending results of ongoing randomized trials will clarify its clinical utility in guiding adjuvant therapy. Key challenges remain, including low tumor shedding, assay cost, and standardization. We recommend cautious use of TI-MRD in practice where evidence is strongest (CRC and hematologic malignancies) while awaiting prospective validation in other settings.
- Peng Y, Mei W, Ma K, Zeng C. Circulating tumor DNA and minimal residual disease (MRD) in solid tumors: Current horizons and future perspectives. Front Oncol. 2021;11:763790. doi: 10.3389/fonc.2021.763790
- Coombes RC, Page K, Salari R, et al. Personalized detection of circulating tumor DNA antedates breast cancer metastatic recurrence. Clin Cancer Res. 2019;25(14):4255-4263. doi: 10.1158/1078-0432.CCR-18-3663
- Chidharla A, Rapoport E, Agarwal K, et al. Circulating tumor DNA as a minimal residual disease assessment and recurrence risk in patients undergoing curative-intent resection with or without adjuvant chemotherapy in colorectal cancer: A systematic review and meta-analysis. Int J Mol Sci. 2023;24(12):10230. doi: 10.3390/ijms241210230
- Chan HT, Nagayama S, Otaki M, et al. Tumor-informed or tumor-agnostic circulating tumor DNA as a biomarker for risk of recurrence in resected colorectal cancer patients. Front Oncol. 2023;12:1055968. doi: 10.3389/fonc.2022.1055968
- Cho MS, Park CH, Lee S, Park HS. Clinicopathological parameters for circulating tumor DNA shedding in surgically resected non-small cell lung cancer with EGFR or KRAS mutation. PLoS One. 2020;15(3):e0230622. doi: 10.1371/journal.pone.0230622
- Avanzini S, Kurtz DM, Chabon JJ, et al. A mathematical model of ctDNA shedding predicts tumor detection size. Sci Adv. 2020;6(50):eabc4308. doi: 10.1126/sciadv.abc4308
- Stetson D, Labrousse P, Russell H, et al. Next-generation molecular residual disease assays: Do we have the tools to evaluate them properly? J Clin Oncol. 2024;42(23): 2736-2740. doi: 10.1200/JCO.23.02301
- Tie J, Cohen JD, Wang Y, et al. Circulating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancer. JAMA Oncol. 2019;5(12):1710-1717. doi: 10.1001/jamaoncol.2019.3616
- Nakamura Y, Watanabe J, Akazawa N, et al. ctDNA-based molecular residual disease and survival in resectable colorectal cancer. Nat Med. 2024;30(11):3272-3283. doi: 10.1038/s41591-024-03254-6
- Jamal-Hanjani M, Wilson GA, McGranahan N, et al. Tracking the evolution of non-small-cell lung cancer. N Engl J Med. 2017;376(22):2109-2121. doi: 10.1056/NEJMoa1616288
- Abbosh C, Birkbak NJ, Wilson GA, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545(7655):446-451. doi: 10.1038/nature22364
- Dhakal B, Sharma S, Balcioglu M, et al. Assessment of molecular residual disease using circulating tumor DNA to identify multiple myeloma patients at high risk of relapse. Front Oncol. 2022;12:786451. doi: 10.3389/fonc.2022.786451
- Roschewski M, Kurtz DM, Westin JR, et al. Remission assessment by circulating tumor DNA in large B-cell lymphoma. J Clin Oncol. 2025:JCO2501534. doi: 10.1200/JCO-25-01534
- Fürstenau M, Weiss J, Giza A, et al. Circulating tumor DNA-based MRD assessment in patients with CLL treated with obinutuzumab, acalabrutinib, and venetoclax. Clin Cancer Res. 2022;28(19):4203-4211. doi: 10.1158/1078-0432.CCR-22-0433
- Jongen-Lavrencic M, Grob T, Hanekamp D, et al. Molecular minimal residual disease in acute myeloid leukemia. N Engl J Med. 2018;378(13):1189-1199. doi: 10.1056/NEJMoa1716863
- IJzerman MJ, De Boer J, Azad A, et al. Towards routine implementation of liquid biopsies in cancer management: It is always too early, until suddenly it is too late. Diagnostics (Basel). 2021;11(1):103. doi: 10.3390/diagnostics11010103
- Chen K, Shields MD, Chauhan PS, et al. Commercial ctDNA assays for minimal residual disease detection of solid tumors. Mol Diagn Ther. 2021;25(6):757-774. doi: 10.1007/s40291-021-00559-x
- Sethi H, Salari R, Navarro S, et al. Abstract 4542: Analytical validation of the SignateraTM RUO assay, a highly sensitive patient-specific multiplex PCR NGS-based noninvasive cancer recurrence detection and therapy monitoring assay. Cancer Res. 2018;78(13_Supplement):4542. doi: 10.1158/1538-7445.AM2018-4542
- Marsico G, Sharma G, Perry M, et al. Abstract 3097: Analytical development of the RaDaRTM assay, a highly sensitive and specific assay for the monitoring of minimal residual disease. Cancer Res. 2020;80(16_Supplement):3097. doi: 10.1158/1538-7445.AM2020-3097
- Peng J, Li Y, Mo S, et al. Prognostic value of circulating tumor DNA (ctDNA) detection during adjuvant chemotherapy in patients with stage III colorectal cancer: The interim report of a prospective, observational study. J Clin Oncol. 2020;38(4_suppl):29. doi: 10.1200/JCO.2020.38.4_suppl.29
- Newman AM, Bratman SV, To J, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20(5):548-554. doi: 10.1038/nm.3519
- Newman CE, Austin CC. Sequence capture and next‐generation sequencing of ultraconserved elements in a large‐genome salamander. Mol Ecol. 2016;25(24):6162-6174. doi: 10.1111/mec.13909
- Northcott J, Bartha G, Harris J, et al. Analytical validation of NeXT Personal®, an ultra-sensitive personalized circulating tumor DNA assay. Oncotarget. 2024;15(1):200-218. doi: 10.18632/oncotarget.28565
- Gale D, Heider K, Ruiz-Valdepenas A, et al. Residual ctDNA after treatment predicts early relapse in patients with early-stage non-small cell lung cancer. Ann Oncol. 2022;33(5): 500-510. doi: 10.1016/j.annonc.2022.02.007
- Kurtz DM, Soo J, Co Ting Keh L, et al. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nat Biotechnol. 2021;39(12):1537-1547. doi: 10.1038/s41587-021-00981-w
- Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA. Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci USA. 2012;109(36): 14508-14513. doi: 10.1073/pnas.1208715109
- Salk JJ, Schmitt MW, Loeb LA. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat Rev Genet. 2018;19(5):269-285. doi: 10.1038/nrg.2017.117
- Honoré N, Van Marcke C, Galot R, et al. Tumor-agnostic plasma assay for circulating tumor DNA detects minimal residual disease and predicts outcome in locally advanced squamous cell carcinoma of the head and neck. Ann Oncol. 2023;34(12):1175-1186. doi: 10.1016/j.annonc.2023.09.3102
- Aronson J, Bhatta M, Carey LA, Jobanputra K, Gupta GP, Abdou Y. Bridging the gap: ctDNA, genomics, and equity in breast cancer care. NPJ Breast Cancer. 2025;11(1):92. doi: 10.1038/s41523-025-00811-1
- Emiloju OE, Storandt M, Zemla T, et al. Tumor-informed circulating tumor DNA for minimal residual disease detection in the management of colorectal cancer. JCO Precis Oncol. 2024;8:e2300127. doi: 10.1200/PO.23.00127
- Nguyen HT, Nguyen Hoang VA, Nguyen TV, et al. Clinical trial and real-world evidence of circulating tumor DNA monitoring to predict recurrence in patients with resected colorectal cancer. ESMO Real World Data Digit Oncol. 2024;6:100076. doi: 10.1016/j.esmorw.2024.100076
- Kim JY, Lee E, Park K, et al. Clinical implications of genomic profiles in metastatic breast cancer with a focus on TP53 and PIK3CA, the most frequently mutated genes. Oncotarget. 2017;8(17):27997-28007. doi: 10.18632/oncotarget.15881
- Cai X, Sheng J, Tang C, et al. Frequent mutations in EGFR, KRAS and TP53 genes in human lung cancer tumors detected by ion torrent DNA sequencing. PLoS One. 2014;9(4):e95228. doi: 10.1371/journal.pone.0095228
- Neuzillet Y, Paoletti X, Ouerhani S, et al. A meta-analysis of the relationship between FGFR3 and TP53 mutations in bladder cancer. PLoS One. 2012;7(12):e48993. doi: 10.1371/journal.pone.0048993
- Shin SY, Lee ST, Kim HJ, et al. Mutation profiling of 19 candidate genes in acute myeloid leukemia suggests significance of DNMT3A mutations. Oncotarget. 2016;7(34):54825-54837. doi: 10.18632/oncotarget.10240
- Yao Y, Zhou Y, Zhuo N, et al. Co-mutation landscape and its prognostic impact on newly diagnosed adult patients with NPM1-mutated de novo acute myeloid leukemia. Blood Cancer J. 2024;14(1):118. doi: 10.1038/s41408-024-01103-w
- Roschewski M, Phelan JD, Wilson WH. Molecular classification and treatment of diffuse large B-cell lymphoma and primary mediastinal B-cell lymphoma. Cancer J. 2020;26(3):195-205. doi: 10.1097/PPO.0000000000000450
- Campo E, Cymbalista F, Ghia P, et al. TP53 aberrations in chronic lymphocytic leukemia: An overview of the clinical implications of improved diagnostics. Haematologica. 2018;103(12):1956-1968. doi: 10.3324/haematol.2018.187583
- Ruiz-Heredia Y, Sánchez-Vega B, Onecha E, et al. Mutational screening of newly diagnosed multiple myeloma patients by deep targeted sequencing. Haematologica. 2018;103(11):e544-e548. doi: 10.3324/haematol.2018.188839
- Shergill A, Parikh A. Investigating the use of circulating tumor DNA in early-stage colon cancer. Oncology. 2022;36:620-626. doi: 10.46883/2022.25920977
- Reinert T, Henriksen TV, Christensen E, et al. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancer. JAMA Oncol. 2019;5(8):1124-1131. doi: 10.1001/jamaoncol.2019.0528
- Taniguchi H, Nakamura Y, Kotani D, et al. CIRCULATE‐Japan: Circulating tumor DNA–guided adaptive platform trials to refine adjuvant therapy for colorectal cancer. Cancer Sci. 2021;112(7):2915-2920. doi: 10.1111/cas.14926
- Watanabe J, Oki E, Kotani D, et al. Postoperative circulating tumor DNA-based molecular residual disease in patients with BRAF V600E and MSI-H colorectal cancer: Updated results from GALAXY study in the CIRCULATE-Japan. JCO Global Oncol. 2023;9(Supplement_1):32. doi: 10.1200/GO.2023.9.Supplement_1.32
- André T, Boni C, Navarro M, et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol. 2009;27(19):3109-3116. doi: 10.1200/JCO.2008.20.6771
- Henriksen TV, Tarazona N, Frydendahl A, et al. Circulating tumor DNA in stage III colorectal cancer, beyond minimal residual disease detection, toward assessment of adjuvant therapy efficacy and clinical behavior of recurrences. Clin Cancer Res. 2022;28(3):507-517. doi: 10.1158/1078-0432.CCR-21-2404
- Verschoor N, Bos MK, Oomen-de Hoop E, et al. A review of trials investigating ctDNA-guided adjuvant treatment of solid tumors: The importance of trial design. Eur J Cancer. 2024;207:114159. doi: 10.1016/j.ejca.2024.114159
- Tie J, Wang Y, Lo SN, et al. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer: 5-year outcomes of the randomized DYNAMIC trial. Nat Med. 2025;31(5):1509-1518. doi: 10.1038/s41591-025-03579-w
- Tasios A, Amstutz U, Seiler R, et al. In patients with muscle-invasive bladder cancer undergoing radical cystectomy, dynamics of circulating tumor DNA following cystectomy: Association with patient outcomes. Eur Urol Focus. 2025. doi: 10.1016/j.euf.2025.06.018
- Saylor B. NIAGARA: ctDNA Analysis Highlights Durvalumab’s Impact in MIBC; 2025. p. 53. Available from: https://www.urologytimes.com/view/niagara-ctdna-analysis-highlights-durvalumab-s-impact-in-mibc [Last accessed on 2025 Aug 24].
- Powles T, Assaf ZJ, Degaonkar V, et al. Updated overall survival by circulating tumor DNA status from the phase 3 IMvigor010 trial: Adjuvant atezolizumab versus observation in muscle-invasive urothelial carcinoma. Eur Urol. 2024;85(2):114-122. doi: 10.1016/j.eururo.2023.06.007
- Jackson-Spence F, Toms C, O’Mahony LF, et al. IMvigor011: A study of adjuvant atezolizumab in patients with high-risk MIBC who are ctDNA+ post-surgery. Future Oncol. 2023;19(7):509-515. doi: 10.2217/fon-2022-0868
- Clarke H. IMvigor011: ctDNA Test can Predict Adjuvant Immunotherapy Benefit in MIBC. Urology Times; 2025. Available from: https://www.urologytimes.com/ view/imvigor011-ctdna-test-can-predict-adjuvant-immunotherapy-benefit-in-mibc [Last accessed on 2025 Aug 24].
- Black JRM, Bartha G, Abbott CW, et al. Ultrasensitive ctDNA detection for preoperative disease stratification in early-stage lung adenocarcinoma. Nat Med. 2025;31(1):70-76. doi: 10.1038/s41591-024-03216-y
- Boukouris AE, Michaelidou K, Joosse SA, et al. A comprehensive overview of minimal residual disease in the management of early-stage and locally advanced non-small cell lung cancer. NPJ Precis Oncol. 2025;9(1):178. doi: 10.1038/s41698-025-00984-9
- Horndalsveen H, Haakensen VD, Madebo T, et al. ctDNA-based MRD detection in unresectable NSCLC undergoing curatively intended chemoradiotherapy and durvalumab. J Clin Oncol. 2025;43(16_suppl):8011. doi: 10.1200/JCO.2025.43.16_suppl.8011
- Jin J, Burns TF. The landscape of perioperative immunotherapy in non-small cell lung cancer: What have we learned from the AEGEAN trial? Chin Clin Oncol. 2024;13(4):61. doi: 10.21037/cco-24-29
- Serna-Blasco R, Nadal E, Gonzalez-Larriba JL, et al. 210P: Prognostic Value of minimal residual disease in the NADIM II trial. J Thorac Oncol. 2025;20(3):S138-S139. doi: 10.1016/S1556-0864(25)00404-6
- Li S, Yuan T, Yuan J, Zhu B, Chen D. Opportunities and challenges of using circulating tumor DNA to predict lung cancer immunotherapy efficacy. J Cancer Res Clin Oncol. 2024;150(11):1-14. doi: 10.1007/s00432-024-06030-8
- Magbanua MJM, Brown Swigart L, Ahmed Z, et al. Clinical significance and biology of circulating tumor DNA in high-risk early-stage HER2-negative breast cancer receiving neoadjuvant chemotherapy. Cancer Cell. 2023;41(6):1091- 1102.e4. doi: 10.1016/j.ccell.2023.04.008
- De Placido P, Parsons HA. Circulating tumor DNA in early-stage triple-negative breast cancer: Clinical landscape and key open challenges. Curr Opin Oncol. 2025;37:534-45. doi: 10.1097/CCO.0000000000001180
- Elliott MJ, Howarth K, Main S, et al. Ultrasensitive detection and monitoring of circulating tumor DNA using structural variants in early-stage breast cancer. Clin Cancer Res. 2025;31(8):1520-1532. doi: 10.1158/1078-0432.CCR-24-3472
- Turner NC, Swift C, Jenkins B, et al. Results of the c-TRAK TN trial: A clinical trial utilising ctDNA mutation tracking to detect molecular residual disease and trigger intervention in patients with moderate- and high-risk early-stage triple-negative breast cancer. Ann Oncol. 2023;34(2):200-211. doi: 10.1016/j.annonc.2022.11.005
- Wang S, Nijland M, Strobbe L, et al. Prospective validation of end of treatment ctDNA-MRD by PhasED-Seq in DLBCL patients from a national trial. J Clin Oncol. 2025;43(16_ suppl):7000. doi: 10.1200/JCO.2025.43.16_suppl.7000
- Cherng HJJ, Meek S, Leu CS, et al. Sequencing-guided chemotherapy optimization using real-time evaluation in newly diagnosed DLBCL with circulating tumor DNA: SHORTEN-ctDNA (NCT06693830). J Clin Oncol. 2025;43(16_suppl):101-105. doi: 10.1200/JCO.2025.43.16_suppl.TPS7095
- Westin J, Simmons G, Bartlett NL, et al. ALPHA3: A pivotal phase 2 study of first-line (1L) consolidation with cemacabtagene ansegedleucel (cema-cel) in patients (pts) with large B-cell lymphoma (LBCL) and minimal residual disease (MRD) after response to standard therapy. J Clin Oncol. 2025;43(16_suppl). doi: 10.1200/JCO.2025.43.16_suppl.TPS7085
- Shankar A, Hayward J, Kirkwood A, et al. Treatment outcome in children and adolescents with relapsed Hodgkin lymphoma - results of the UK HD3 relapse treatment strategy. Br J Haematol. 2014;165(4):534-544. doi: 10.1111/bjh.12768
- Alig SK, Shahrokh Esfahani M, Garofalo A, et al. Distinct Hodgkin lymphoma subtypes defined by noninvasive genomic profiling. Nature. 2024;625(7996):778-787. doi: 10.1038/s41586-023-06903-x
- Boegeholz J, Rossi C, Goldstein JS, et al. Ultrasensitive circulating tumor DNA MRD status predicts treatment failure & complements PET/CT throughout treatment for early and advanced stage classic hodgkin lymphoma. Blood. 2024;144(Supplement 1):565. doi: 10.1182/blood-2024-201877
- Roschewski M, Lindenberg L, Mena E, et al. End-of-treatment response assessment after frontline therapy for aggressive B-cell lymphoma: Landmark comparison of a singular PET/CT scan versus ultrasensitive circulating tumor DNA. Blood. 2023;142(Supplement 1):192. doi: 10.1182/blood-2023-180007
- Lynch RC, Alig SK, Ujjani CS, et al. High rates of undetectable MRD by phased-seq on interim and end of treatment timepoints in untreated advanced stage Chl treated with pembrolizumab + AVD. Blood. 2024;144(Supplement 1):3051. doi: 10.1182/blood-2024-206512
- Butler JT, Yashar WM, Swords R. Breaking the bone marrow barrier: Peripheral blood as a gateway to measurable residual disease detection in acute myelogenous leukemia. Am J Hematol. 2025;100(4):638-651. doi: 10.1002/ajh.27586
- Short NJ, Patel KP, Albitar M, et al. Targeted next-generation sequencing of circulating cell-free DNA vs bone marrow in patients with acute myeloid leukemia. Blood Adv. 2020;4(8):1670-1677. doi: 10.1182/bloodadvances.2019001156
- Dillon LW, Gui G, Page KM, et al. DNA sequencing to detect residual disease in adults with acute myeloid leukemia prior to hematopoietic cell transplant. JAMA. 2023;329(9):745. doi: 10.1001/jama.2023.1363
- Hirsch P, Lambert J, Bucci M, et al. Multi-target measurable residual disease assessed by error-corrected sequencing in patients with acute myeloid leukemia: An ALFA study. Blood Cancer J. 2024;14(1):97. doi: 10.1038/s41408-024-01078-8
- Othman J, Tiong IS, O’Nions J, et al. Molecular MRD is strongly prognostic in patients with NPM1 -mutated AML receiving venetoclax-based nonintensive therapy. Blood. 2024;143(4):336-341. doi: 10.1182/blood.2023021579
- Platzbecker U, Middeke JM, Sockel K, et al. Measurable residual disease-guided treatment with azacitidine to prevent haematological relapse in patients with myelodysplastic syndrome and acute myeloid leukaemia (RELAZA2): An open-label, multicentre, phase 2 trial. Lancet Oncol. 2018;19(12):1668-1679. doi: 10.1016/S1470-2045(18)30580-1
- Venditti A, Piciocchi A, Candoni A, et al. GIMEMA AML1310 trial of risk-adapted, MRD-directed therapy for young adults with newly diagnosed acute myeloid leukemia. Blood. 2019;134(12):935-945. doi: 10.1182/blood.2018886960
- Lauer EM, Mutter J, Scherer F. Circulating tumor DNA in B-cell lymphoma: Technical advances, clinical applications, and perspectives for translational research. Leukemia. 2022;36(9):2151-2164. doi: 10.1038/s41375-022-01618-w
- Narkhede M, Tomassetti S, Iqbal M, et al. Tumor-informed ctDNA assessment as a valuable prognostic and predictive biomarker in diffuse large B-cell lymphoma. Front Oncol. 2024;14:1407003. doi: 10.3389/fonc.2024.1407003
- Seymour JF, Kipps TJ, Eichhorst BF, et al. Enduring undetectable MRD and updated outcomes in relapsed/ refractory CLL after fixed-duration venetoclax-rituximab. Blood. 2022;140(8):839-850. doi: 10.1182/blood.2021015014
- Al-Sawaf O, Robrecht S, Zhang C, et al. Venetoclax-obinutuzumab for previously untreated chronic lymphocytic leukemia: 6-year results of the randomized phase 3 CLL14 study. Blood. 2024;144(18):1924-1935. doi: 10.1182/blood.2024024631
- Wierda WG, Allan JN, Siddiqi T, et al. Ibrutinib plus venetoclax for first-line treatment of chronic lymphocytic leukemia: Primary analysis results from the minimal residual disease cohort of the randomized phase II CAPTIVATE study. J Clin Oncol. 2021;39(34):3853-3865. doi: 10.1200/JCO.21.00807
- Niemann CU, Dubois J, Nasserinejad K, et al. Long-term follow-up of MRD-guided ibrutinib plus venetoclax in relapsed CLL: Phase 2 VISION/HO141 trial. Blood Adv. 2025;9(15):3665-3675. doi: 10.1182/bloodadvances.2024015180
- Kater AP, Levin MD, Dubois J, et al. Minimal residual disease-guided stop and start of venetoclax plus ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia (HOVON141/VISION): Primary analysis of an open-label, randomised, phase 2 trial. Lancet Oncol. 2022;23(6):818-828. doi: 10.1016/S1470-2045(22)00220-0
- Ryan CE, Davids MS, Hermann R, et al. MAJIC: A phase III trial of acalabrutinib + venetoclax versus venetoclax + obinutuzumab in previously untreated chronic lymphocytic leukemia or small lymphocytic lymphoma. Future Oncol. 2022;18(33):3689-3699. doi: 10.2217/fon-2022-0456
- Timofeeva N, Jain N, Gandhi V. Ibrutinib and venetoclax in combination for chronic lymphocytic leukemia: Synergy in practice. Blood Neoplasia. 2024;1(3):100034. doi: 10.1016/j.bneo.2024.100034
- Mithraprabhu S, Reynolds J, Quach H, et al. Circulating tumor DNA and bone marrow minimal residual disease negativity confers superior outcome for multiple myeloma patients. Haematologica. 2023;109(3):974-978. doi: 10.3324/haematol.2023.283831
- Costa LJ, Chhabra S, Medvedova E, et al. Minimal residual disease response-adapted therapy in newly diagnosed multiple myeloma (MASTER): final report of the multicentre, single-arm, phase 2 trial. Lancet Haematol. 2023;10(11):e890-e901. doi: 10.1016/S2352-3026(23)00236-3
- Gay F, Musto P, Rota-Scalabrini D, et al. Carfilzomib with cyclophosphamide and dexamethasone or lenalidomide and dexamethasone plus autologous transplantation or carfilzomib plus lenalidomide and dexamethasone, followed by maintenance with carfilzomib plus lenalidomide or lenalidomide alone for patients with newly diagnosed multiple myeloma (FORTE): A randomised, open-label, phase 2 trial. Lancet Oncol. 2021;22(12):1705-1720. doi: 10.1016/S1470-2045(21)00535-0
- Corre J, Vincent L, Moreau P, et al. Daratumumab-bortezomib-thalidomide-dexamethasone for newly diagnosed myeloma: CASSIOPEIA minimal residual disease results. Blood. 2025;146(6):679-692. doi: 10.1182/blood.2024027620
- Shao Y, Chen T, Zheng X, et al. Colorectal cancer-derived small extracellular vesicles establish an inflammatory premetastatic niche in liver metastasis. Carcinogenesis. 2018;39(11):1368-1379. doi: 10.1093/carcin/bgy115
- Razavi P, Li BT, Brown DN, et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat Med. 2019;25(12):1928-1937. doi: 10.1038/s41591-019-0652-7
- Chen G, Peng J, Xiao Q, et al. Postoperative circulating tumor DNA as markers of recurrence risk in stages II to III colorectal cancer. J Hematol Oncol. 2021;14(1):80. doi: 10.1186/s13045-021-01089-z
- Risberg B, Tsui DWY, Biggs H, et al. Effects of collection and processing procedures on plasma circulating cell-free DNA from cancer patients. J Mol Diagn. 2018;20(6):883-892. doi: 10.1016/j.jmoldx.2018.07.005
- Parpart-Li S, Bartlett B, Popoli M, et al. The effect of preservative and temperature on the analysis of circulating tumor DNA. Clin Cancer Res. 2017;23(10):2471-2477. doi: 10.1158/1078-0432.CCR-16-1691
- Song M, Pan W, Yu X, et al. Minimal residual disease detection: implications for clinical diagnosis and cancer patient treatment. MedComm (2020). 2025;6(6):e70193. doi: 10.1002/mco2.70193
- Sheriff S, Saba M, Patel R, et al. A scoping review of factors influencing the implementation of liquid biopsy for cancer care. J Exp Clin Cancer Res. 2025;44(1):50. doi: 10.1186/s13046-025-03322-w
- Bartolomucci A, Nobrega M, Ferrier T, et al. Circulating tumor DNA to monitor treatment response in solid tumors and advance precision oncology. NPJ Precis Onc. 2025;9(1):84. doi: 10.1038/s41698-025-00876-y
- Boyiadzis M, Wei AH, Paiva B, et al. Measurable residual disease (MRD) as a surrogate end point for clinical drug approval in acute myeloid leukemia (AML): Perspectives from the MRD Partnership and Alliance in AML Clinical Treatment Consortium. Cancer. 2025;131(13):e35960. doi: 10.1002/cncr.3596
