AccScience Publishing / TD / Online First / DOI: 10.36922/TD025290069
REVIEW ARTICLE

Boronosteroids as potential antitumor drugs: A review

Valery M. Dembitsky1,2* Alexander O. Terent’ev2 Sergey V. Baranin2
Show Less
1 Bio-Pharm Laboratories, Lake Forest, California, United States of America
2 Department of Carbocyclic Compounds, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
Tumor Discovery, 025290069 https://doi.org/10.36922/TD025290069
Received: 11 July 2025 | Revised: 21 September 2025 | Accepted: 14 October 2025 | Published online: 3 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Boron’s unique chemical properties have long fascinated scientists, particularly its ability to form stable five- or six-membered spiroborate compounds. Among these, tetracoordinate compounds, where boron is bonded to four oxygen atoms, stand out for their versatility and significance across various fields. Over the past few decades, these compounds have demonstrated remarkable pharmacological properties and biological activity, establishing them as a cornerstone of modern boron chemistry. The reaction between boric acid and cis-1,2- and 1,3-diol groups has been known for more than a century, providing the basis for analytical chemistry and adsorption techniques. Building upon this knowledge, the interaction between boric acid and steroids opens new horizons in lipid chemistry. These boron-steroid complexes, though largely unexplored, hold great promise for future biomedical applications. The steroids that form boron complexes exhibit enhanced solubility in an aqueous solution, which in turn augments the antitumor efficacy of these steroids. The data presented show that 58% of steroids exhibit strong antineoplastic and related activities, 31% display moderate activity, and <11% show weak antineoplastic activity and varying levels of activity in other biological mechanisms.

Keywords
Antitumor activity
Boronosteroids
Bacteria
Invertebrates
Fungi
Plants
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Dembitsky VM. Biological activity and structural diversity of steroids containing aromatic rings, phosphate groups, or halogen atoms. Molecules. 2023;28(14):5549. doi: 10.3390/molecules28145549

 

  1. Dembitsky VM. Fascinating furanosteroids and their pharmacological profile. Molecules. 2023;28(15):5669. doi: 10.3390/molecules28155669

 

  1. Dembitsky VM. Naturally occurring norsteroids and their design and pharmaceutical application. Biomedicines. 2024;12(5):1021. doi: 10.3390/biomedicines12051021

 

  1. Dembitsky VM. Chemical diversity of ketosteroids as potential therapeutic agents. Microbiol Res. 2023;15(3):1516-1575. doi: 10.3390/microbiolres15030103

 

  1. Zhabinskii VN, Drasar P, Khripach VA. Structure and biological activity of ergostane-type steroids from fungi. Molecules. 2022;27(7): 2103. doi: 10.3390/molecules27072103

 

  1. Bakker J. The role of steroid hormones in the sexual differentiation of the human brain. J Neuroendocrinol. 2022;34(2):e13050. doi: 10.1111/jne.13050

 

  1. Dembitsky VM, Gloriozova TA, Poroikov VV. Antitumor profile of carbon-bridged steroids (CBS) and triterpenoids. Mar Drugs. 2021;19(6):324. doi: 10.3390/md19060324

 

  1. Dembitsky VM. Antitumor and hepatoprotective activity of natural and synthetic neo steroids. Prog Lipid Res. 2020;79:101048. doi: 10.1016/j.plipres.2020.101048

 

  1. Leeson LJ, Lowery JA, Sieger GM, Muller S. Steroid borates I. Structural considerations. J Pharm Sci. 1961;50(3):193-197. doi: 10.1002/jps.2600500303

 

  1. Leeson LJ, Lowery JA, Sieger GM, Krieger C. Steroid Borates III. Use in preparation of triamcinolone 21-hemisuccinate and other 21-monoesters. J Pharm Sci. 1961;50(10):856-858. doi: 10.1002/jps.2600501013

 

  1. Leeson LJ, Lowery JA, Sieger GM, Krieger C. Steroid borates II. Process applications. J Pharm Sci. 1961;50(7):606-608. doi: 10.1002/jps.2600500717

 

  1. Dembitsky VM, Terent’ev AO, Baranin SV, Gursky ME. Aromatic compounds and their fascinating boron complexes as potential quorum sensing molecules. Vietnam J Chem. 2025;63(2):1-29. doi: 10.1002/vjch.70013

 

  1. Scorei RI, Popa R. Sugar-borate esters-potential chemical agents in prostate cancer chemoprevention. Anti Cancer Agents Med Chem. 2013;13(6):901-909.

 

  1. Kochkodan V, Darwish NB, Hilal N. The chemistry of boron in water. In: Boron Separation Processes. Netherlands: Elsevier; 2015. p. 35-63.

 

  1. Parks JL, Edwards M. Boron in the environment. Crit Rev Environ Sci Technol. 2005;35(2):81-114. doi: 10.1080/10643380590900200

 

  1. Rowe LW. The variability of strophanthin with particular reference to ouabain. J Am Pharm Assoc. 1916;5(11):1183-1187.

 

  1. Jäger HH, Schindler O, Weiss E, Reichstein T. Die cardenolide von Strophanthus gratus (Wall. & Hook.) franch. Glykoside und aglykone, 265. Mitteilung. Helv Chim Acta. 1965;48(1):202-219.

 

  1. McConkey DJ, Lin Y, Nutt LK, Ozel HZ, Newman RA. Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinoma cells. Cancer Res. 2000;60:3807-3812.

 

  1. Houghton PJ, Skari KP. The effect on blood clotting of some West African plants used against snakebite. J Ethnopharmacol. 1994;44(2):99-108. doi: 10.1016/0378-8741(94)90075-2

 

  1. Beentje HJ. Strophanthus gratus (Wall. & Hook.) baill. In: Schmelzer GH, Gurib-Fakim A, editors. Plant Resources of Tropical Africa/Ressources Végétales de l’Afrique Tropicale. Wageningen, Netherlands: Backhuys Publishers; 2006.

 

  1. Dalziel JM. The Useful Plants of West Tropical Africa. London: The Crown Agents for the Colonies; 1937. p. 612.

 

  1. Kerharo J, Bouquet A. Plantes Médicinales et Toxiques de la Côte d’Ivoire- Haute Volta. Mission D’étude de la Pharmacopée Indigène de l’Afrique de l’Ouest. Paris: Vigot; 1950. p. 297.

 

  1. Burkill HM. The Useful Plants of West Tropical Africa. 2nd ed., Vol. 1. Families A-D. Kew, Richmond, United Kingdom: Royal Botanic Gardens; 1985. p. 960.

 

  1. Irvine FR. Woody Plants of Ghana. Amen House, London: Oxford University Press; 1961.

 

  1. Ainslie JR. A List of Plant used in Native Medicine in Nigeria. Imperial forestry Institute, Oxford, Paper 7 (Mimeographed); 1937. p. 30.

 

  1. Mathews WR, DuCharme DW, Hamlyn JM, Harris DW, Mandel F, Mass spectral characterization of an endogenous digitalislike factor from human plasma. Hypertension. 1991;17:930.

 

  1. Hamlyn JM, Blaustein MP, Bova S, et al. Identification and characterization of a ouabain-like compound from human plasma. Proc Natl Acad Sci U S A. 1991;88:6259. doi: 10.1073/pnas.88.14.6259

 

  1. Jacobs BE, Liu Y, Pulina MV, Golovina VA, Hamlyn JM. Normal pregnancy: Mechanisms underlying the paradox of an ouabain-resistant state with elevated endogenous ouabain, suppressed arterial sodium calcium exchange, and low blood pressure. Am J Physiol Heart Circ Physiol. 2012;302:H1317. doi: 10.1152/ajpheart.00532.2011

 

  1. Hamlyn JM, Linde CI, Gao J, et al. Neuroendocrine humoral and vascular components in the pressor pathway for brain angiotensin II: A new axis in long term blood pressure control. PLoS One. 2014;9:e108916. doi: 10.1371/journal.pone.0108916

 

  1. Kawamura A, Guo J, Itagaki Y, et al. On the structure of endogenous ouabain. Proc Nat Acad Sci. 1999;96:6654. doi: 10.1073/pnas.96.12.6654

 

  1. Kawamura A, Abrell LM, Maggiali F, et al. Biological implication of conformational flexibility in ouabain: Observations with two ouabain phosphate isomers. Biochemistry. 2001;40:5835. doi: 10.1021/bi0101751

 

  1. Wang L, Cai W, Han B, Zhang J, Yu B, Chen M. Ouabain exhibited strong anticancer effects in melanoma cells via induction of apoptosis, g2/m phase arrest, and migration inhibition. Onco-Targets Ther. 2021;14:1261-1273. doi: 10.2147/OTT.S283548

 

  1. Dembitsky VM, Terent’ev AO, Stolbov L, Pogodin P, Filimonov D, Poroikov VV. Salicylic acid and its boron complexes as quorum sensing molecules. Mol Pharm. 2025;22:300-313. doi: 10.1021/acs.molpharmaceut.5c00848

 

  1. Stacey SK, McEleney M. Topical corticosteroids: Choice and application. Am Fam Phys. 2021;103:337-343.

 

  1. Goodman RS, Johnson DB, Balko JM. Corticosteroids and cancer immunotherapy. Clin Cancer Res. 2023;29:2580. doi: 10.1158/1078-0432.CCR-22-3181

 

  1. Adcock IM, Mumby S. Glucocorticoids. Encyclopedia of Molecular Pharmacology. Berlin: Springer International Publishing; 2022. p. 704-714.

 

  1. Reichardt SD, Amouret A, Muzzi C, et al. The role of glucocorticoids in inflammatory diseases. Cells. 2021;10:2921. doi: 10.3390/cells10112921

 

  1. Patel PD, Kodati B, Clark AF. Role of glucocorticoids and glucocorticoid receptors in glaucoma pathogenesis. Cells. 2023;12:2452. doi: 10.3390/cells12202452

 

  1. Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD Jr. Glucocorticoids, their uses, sexual dimorphisms, and diseases: New concepts, mechanisms, and discoveries. Physiol Rev 2024;104:473. doi: 10.1152/physrev.00021.2023

 

  1. Palmer JF. Separation Characteristics of C₂₁ Vertebrate Corticosteroids. University of Hawai’i at Manoa, Hawaii. Thesis PhD; 1997.

 

  1. Palmer J, Atkinson S, Yoshida WY, Stalcup AM, Landers JP. Charged chelate-capillary electrophoresis of endogenous corticosteroids. Electrophoresis. 1998;19:3045. doi: 10.1002/elps.1150191642

 

  1. Dopeso J, Quiñoá E, Riguera R, Debitus C, Bergquist PR. Euryspongiols: Ten new highly hydroxylated 9,11-secosteroids with antihistaminic activity from the sponge Euryspongia sp. Stereochemistry and reduction. Tetrahedron. 1994;50:3813. doi: 10.1016/S0040-4020(01)90401-6

 

  1. Sica D, Musumeci D. Secosteroids of marine origin. Steroids. 2004;69:743. doi: 10.1016/j.steroids.2004.09.001

 

  1. van Altena IA, Butler AJ, Dunne SJ. A new cyclized 9, 11-secosterol enol-ether from the Australian sponge Euryspongia arenaria. J Nat Prod. 1999;62:1154. doi: 10.1021/np9805591

 

  1. Rao MR, Venkatesham U, Venkateswarlu Y. Two new 19-oxygenated polyhydroxy steroids from the soft coral Nephthea chabroli. J Nat Prod. 1999;62:1584-1585. doi: 10.1021/np990257e

 

  1. Umeyama A, Shoji N, Ozeki M, Arihara S. Sarcoaldesterols A and B, two new polyhydroxylated sterols from the soft coral Sarcophyton sp. J Nat Prod. 1996;59:894. doi: 10.1021/np960255j

 

  1. Ivanchina NV, Kicha AA, Stonik VA. Steroid glycosides from marine organisms. Steroids. 2011;76:425. doi: 10.1016/j.steroids.2010.12.011

 

  1. Iorizzi M, De Marino S, Minale L, Zollo F, Le Bert V, Roussakis C. Investigation of the polar steroids from anAntarctic starfish of the family Echinasteridae: Isolation of twenty seven polyhydroxysteroids and steroidal oligoglycosides, structures and biological activities. Tetrahedron. 1996;52:10997. doi: 10.1016/0040-4020(96)00618-7

 

  1. Wang HL, Li R, Zhao M, et al. A drimane meroterpenoid borate as a synchronous Ca+ oscillation inhibitor from the coral-associated fungus Alternaria sp. ZH-15. J Nat Prod. 2023;86:429. doi: 10.1021/acs.jnatprod.2c01028

 

  1. Ermolenko EV, Imbs AB, Gloriozova TA, Poroikov VV, Sikorskaya TV, Dembitsky VM. Chemical diversity of soft coral steroids and their pharmacological activities. Mar Drugs 2020;18:613. doi: 10.3390/md18120613

 

  1. Ngoc NT, Huong PTM, Thanh NV, Cuong NX. Steroid constituents from the soft coral Sinularia nanolobata. Chem Pharm Bull. 2016;64:1417-1419. doi: 10.1248/cpb.c16-00385

 

  1. Qia SH, Gao CH, Qian PY, Zhang S. Steroids from the South China Sea Gorgonian Subergorgia suberosa. Nat Prod Commun. 2010;5:201-204. doi: 10.1177/1934578X1000500

 

  1. Su J, Yu X, Zeng L, Mak TCW. Noval polyhydroxylated sterols from the Soft coral Sinularia numerose. J Nat Prod. 1989;52:934-940. doi: 10.1021/np50065a004

 

  1. Kobayashi M, Ishizaka T, Miura N, Mitsuhashi H. Marine terpenes and terpenoids. III. Isolation and structures of two cembrane diols from the soft coral Sinularia mayi. Chem Pharm Bull. 1987;35:2314-2318. doi: 10.1248/cpb.35.2314

 

  1. Kobayashi M, Krishna MM, Anjaneyulu V. Marine sterols. XXIV. Isolation of 24-methylenecholestane-1α, 3β, 3α, 6β, 16β-pentol from Sinularia sp. of soft coral. Chem Pharm Bull. 1992;40:2845-2846. doi: 10.1248/cpb.40.2845

 

  1. Kobayashi M, Haribabu B, Anjaneyulu V. Marine sterol. XXV. Isolation of 23-demethylgorgost-7-ene-3β, 5α,6β-triol and(24S)-ergostane-3β,5α,6β,7β,15β-pentol from soft corals of the Andaman and Nicobar Coasts. Chem Pharm Bull. 1993;41:87-89. doi: 10.1248/cpb.41.87

 

  1. Anjaneyulu ASR, Sagar KS, Venugopal MJRV. Terpenoid and steroid constituents of the Indian Ocean soft coral Sinularia maxima. Tetrahedron. 1995;51:10997-11010. doi: 10.1016/0040-4020(95)00655-R

 

  1. Kobayashi M. Marine sterols. 27. 25-hydroxy derivative of sarcosterol, a novel marine sterol with a 23-methyl and a 17(20)E-double bond, from the soft coral Sinularia mayi. Steroids. 1994;59:27-29. doi: 10.1016/0039-128X(94)90041-8

 

  1. Xu S, Guo S, Liu Y, Zeng L. Isolation and identification of two steroids from Sinularia inexplicita. Zhong Yao Cai. 2001;24:34-35.

 

  1. Tillekeratne LMV, Liyanage GK, Ratnasooriya WD, Ksebati MB, Schmitz FJ. A new spermatostatic glycoside from the soft coral Sinularia crispa. J Nat Prod. 1989;52:1143-1145. doi: 10.1021/np50065a038

 

  1. Subrahmanyam C, Kulatheeswaran R. Bioactive compounds from a new species of Sinularia soft coral. Indian J Chem. 1999;38B:1388-1390.

 

  1. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep. 2005;22:15-61. doi: 10.1039/B415080P

 

  1. Cheng SY, Dai CF, Duh CY. New 4-methylated and 19-oxygenated steroids from the Formosan soft coral Nephthea erecta. Steroids. 2007;72:653-659. doi: 10.1016/j.steroids.2007.05.001

 

  1. Wang SK, Puu SY, Duh CY. Novel steroids from the soft coral Nephthea chabrolii. Tetrahedron. 2007;63:703-707. doi: 10.1016/j.tet.2006.10.082

 

  1. Duh CY, Lo IW, Wang SK, Dai CF. New cytotoxic steroids from the soft coral Clavularia viridis. Steroids. 2007;72:573-579. doi: 10.1016/j.steroids.2007.03.010

 

  1. Cheng SY, Dai CF, Duh CY. Sesquiterpenoids and artificial 19-oxygenated steroids from the Formosan soft coral Nephthea erecta. J Nat Prod. 2007;70:1449-1453. doi: 10.1021/np070189t

 

  1. Amir F, Koay YC, Yam WS. Chemical constituents and biological properties of the marine soft coral Nephthea: A review (Part 1). Trop J Pharm Res. 2012;11:485-498.

 

  1. Cheng SY, Wen ZH, Wang SK, et al. Revision of the absolute configuration at C(23) of lanostanoids and isolation of secondary metabolites from Formosan soft coral Nephthea erecta. Chem. Biodivers. 2009;6:86-95. doi: 10.1002/cbdv.200800015

 

  1. Chang YC, Kuo LM, Hwang TL, et al. Pinnisterols A-C, new 9,11-secosterols from a Gorgonian Pinnigorgia sp. Mar Drugs. 2016;14:12. doi: 10.3390/md14010012

 

  1. Huang CY, Tseng WR, Ahmed AF, et al. Anti-inflammatory polyoxygenated steroids from the soft coral Lobophytum michaelae. Mar Drugs. 2018;16:93. doi: 10.3390/md16030093

 

  1. Kapustina II, Makarieva TN, Guzii AG, et al. Leptogorgins A-C, humulane sesquiterpenoids from the Vietnamese gorgonian Leptogorgia sp. Mar Drugs. 2020;18:310. doi: 10.3390/md18060310

 

  1. Mitome H, Shirato N, Hoshino A, et al. New polyhydroxylated sterols stylisterols A-C and a novel 5, 19-cyclosterol hatomasterol from the Okinawan marine sponge Stylissa sp. Steroids. 2005;70:63-70. doi: 10.1016/j.steroids.2004.10.003

 

  1. Iguchi K, Fujita M, Nagaoka H, Mitome H, Yamada Y. Aragusterol A: A potent antitumor marine steroid from the okinawan sponge of the genus, Xestospongia. Tetrahedron Lett. 1993;34:6277-6280. doi: 10.1016/S0040-4039(00)73731-2

 

  1. Iguchi K, Shimura H, Taira S, Yokoo C, Matsumoto K, Yamada Y. Aragusterol B and D, new 26,27-cyclosterols from the Okinawan marine sponge of the genus Xestospongia. J Org Chem. 1994;59:7499-7502. doi: 10.1021/jo00103a053

 

  1. Pailee P, Mahidol C, Ruchirawat S, Prachyawarakorn V. Sterols from Thai marine sponge Petrosia (Strongylophora) sp. and their cytotoxicity. Mar Drugs. 2017;15:54. doi: 10.3390/md15030054

 

  1. Levina EV, Kalinovsky AI, Andriyashchenko PV, Dmitrenok PS, Aminin DL, Stonik VA. Phrygiasterol, a cytotoxic cyclopropane-containing polyhydroxysteroid, and related compounds from the Pacific starfish Hippasteria phrygiana. J Nat Prod. 2005;68:1541-1544. doi: 10.1021/np049610t

 

  1. Iwashima M, Nara K, Iguchi K. New marine steroids, yonarasterols, isolated from the Okinawan soft coral, Clavularia viridis. Steroids. 2000;65:130-137. doi: 10.1016/S0039-128X(99)00095-1

 

  1. Tsai YY, Huang CY, Tseng WR, et al. Klyflaccisteroids K–M, bioactive steroidal derivatives from a soft coral Klyxum flaccidum. Bioorg Med Chem Lett. 2017;27:1220-1224. doi: 10.1016/j.bmcl.2017.01.060

 

  1. Shoji N, Umeyama A, Shin K, et al. Two unique pentacyclic steroids with cis C/D ring junction from Xestospongia bergquistia Fromont, powerful inhibitors of histamine release. J Org Chem. 1992;57:2996-2997. doi: 10.1021/jo00037a009

 

  1. Kobayashi J, Shinonaga H, Shigemori H. Xestobergsterol C, a new pentacyclic steroid from the Okinawan marine sponge Ircinia Sp. and absolute stereochemistry of xestobergsterol A. J Nat Prod. 1995;58:312-318. doi: 10.1021/np50116a029

 

  1. Akihisa T, Watanabe K, Yoneima K, Suzuki T, Kimura Y. Biotransformation of cycloartane-type triterpenes by the fungus Glomerella fusarioides. J Nat Prod. 2006;69:604-607. doi: 10.1021/np058120d

 

  1. Kuang H, Su Y, Yang B, et al. Three new cycloartenol triterpenoid saponins from the roots of Cimicifuga simplex Wormsk. Molecules. 2011;16:4348-4357. doi: 10.3390/molecules16064348

 

  1. Thongnest S, Boonsombat J, Prawat H, Mahidol C, Ruchirawat S. Ailanthusins A-G and nor-lupane triterpenoids from Ailanthus triphysa. Phytochemistry. 2017;134:98-105. doi: 10.1016/j.phytochem.2016.11.007

 

  1. Ragasa CY, Torres OB, Bernardo LO, Mandia EH, Don MJ, Shen CC. Glabretal-type triterpenoids from Dysoxylum mollissimum. Phytochemistry Lett. 2013;6:514-518. doi: 10.1016/j.phytol.2013.06.010

 

  1. Su BN, Chai H, Mi Q, et al. Activity-guided isolation of cytotoxic constituents from the bark of Aglaia crassinervia collected in Indonesia. Bioorg Med Chem. 2006;14:960-972. doi: 10.1016/j.bmc.2005.09.012

 

  1. Kashiwada Y, Fujioka T, Chang JJ, Chen IS, Mihashi K, Lee KH. Anti-tumor agents. 136. Cumingianosides A-F, potent antileukemic new triterpene glucosides, and cumindysosides A and B, trisnor- and tetranortriterpene glucosides with a 14,18-cycloapoeuphane-type skeleton from Dysoxylum cumingianum. J Org Chem. 1992; 57:6946-6953. doi: 10.1021/jo00051a050

 

  1. Fujioka T, Sakurai A, Mihashi K, Kashiwada Y, Chen IS, Lee KH. Antitumor agents. 168. Dysoxylum cumingianum. IV. The structures of cumingianosides G-O, new triterpene glucosides with a 14,18-cycloapotirucallane-type skeleton from Dysoxylum cumingianum, and their cytotoxicity against human cancer cell lines. Chem Pharm Bull (Tokyo). 1997;45:68-74. doi: 10.1248/cpb.45.68

 

  1. Mulholl DA, Nair JJ. Glabretal triterpenoids from Dysoxylum muelleri. Phytochemistry. 1996;42:1667-1671. doi: 10.1016/0031-9422(96)00170-7

 

  1. Mulholl DA, Nair JJ. Triterpenoids from Dysoxylum pettigrewianum. Phytochemistry. 1994;37:1409-1411. doi: 10.1016/S0031-9422(00)90421-7

 

  1. Addae-Mensah I, Waibel R, Asunka SA, Oppong IV, Achenbach H. The dichapetalins-A new class of triterpenoids. Phytochemistry. 1996;43:649-656. doi: 10.1016/0031-9422(96)00350-0

 

  1. Osei-Safo D, Chama MA, Addae-Mensah I, Waibel R, Asomaning WA, Oppong IV. Dichapetalin M from Dichapetalum madagascariensis. Phytochem Lett. 2008;1:147-150. doi: 10.1016/j.phytol.2008.07.005

 

  1. Kurimoto SI. Chemical studies on Meliaceous plants (Dysoxylum cumingianum, Azadirachta indica) and a Lamiaceous plant (Scutellaria coleifolia). Thesis, University of Tokushima, Japan; 2014.

 

  1. Harmatha J, Budesınsky M, Vokac K. Photochemical transformation of 20-hydroxyecdysone: Production of monomeric and dimeric ecdysteroid analogues. Steroids. 2002;67:127-135. doi: 10.1016/S0039-128X(01)00140-4

 

  1. Chen JJ, Li ZM, Gao K, Chang J, Yao XJ. Vladimuliecins A and B: Cytotoxic pentacyclic pregnanols from Vladimiria muliensis. J Nat Prod. 2009;72:1128-1132. doi: 10.1021/np900120q

 

  1. Zhang H, Cao CM, Gallagher RJ, Day VW, Kindscher K, Timmermann BN. Withanolides from Physalis coztomatl. Phytochemistry. 2015;109:147-153. doi: 10.1016/j.phytochem.2014.10.012

 

  1. Zhu XH, Ando J, Takagi M, Ikeda T, Yoshimitsu A, Nohara T. Four novel withanolide-type steroids from the leaves of Solanum cilistum. Chem Pharm Bull (Tokyo). 2001;49:1440-1443. doi: 10.1248/cpb.49.1440

 

  1. Luo J, Wang JS, Luo W, Wang XB, Kong LY. Velutabularins A-J, phragmalin-type limonoids with novel cyclic moiety from Chukrasia tabularis var. velutina. Tetrahedron. 2011;67:2942-2948. doi: 10.1016/j.tet.2011.02.049

 

  1. Fossen T, Rasoanaivo P, Manjovelo CS, et al. A new protolimonoid from Capuronianthus mahafalensis. Fitoterapia. 2012;83:901-906. doi: 10.1016/j.fitote.2012.03.023

 

  1. Achanta PS, Gattu RK, Belvotagi ARV, Akkinepally RR. New malabaricane triterpenes from the oleoresin of Ailanthus malabarica. Fitoterapia. 2015;100:166-173. doi: 10.1016/j.fitote.2014.11.022

 

  1. Hoffmann P, Kathriarachchi HS, Wurdack KJ. A phylogenetic classification of phyllanthaceae. Kew Bull. 2006;61:37-53.

 

  1. Xia Y, Luo H, Liu JP, Gluud C. Phyllanthus species versus antiviral drugs for chronic hepatitis B virus infection. Cochrane Database Syst Rev. 2013;4:CD009004.

 

  1. Fan YY, Zhang H, Zhou Y, et al. Phainanoids A-F, a new class of potent immunosuppressive triterpenoids with an unprecedented carbon skeleton from Phyllanthus hainanensis. J Am Chem. Soc. 2015;137:138-141. doi: 10.1021/ja511813g

 

  1. Fan YY, Gan LS, Liu HC, et al. Phainanolide A, highly modified and oxygenated triterpenoid from Phyllanthus hainanensis. Org Lett. 2017;19:4580-4583. doi: 10.1021/acs.orglett.7b02181

 

  1. Yee SS, Du L, Risinger AL. Taccalonolide microtubule stabilizers. Prog Chem Org Nat Prod. 2020;112:183-206. doi: 10.1007/978-3-030-52966-6_3

 

  1. Misico RI, Nicotra VE, Oberti JC, Barboza G, Gil RR, Burton G. Withanolides and related steroids. Prog Chem Org Nat Prod. 2011;94:127-229. doi: 10.1007/978-3-7091-0748-5

 

  1. Huang Y, Liu JK, Muhuhlbauer A, Henkel T. Three novel taccalonolides from the tropical plant Tacca subflaellata. Helv Chim Acta. 2002;85:2553-2558. doi: 10.1002/1522-2675(200208)85:8

 

  1. Shen J, Chen Z, Gao Y. Taccalonolides from Tacca plantaginea. Phytochemistry. 1996;42:891-899. doi: 10.1016/0031-9422(95)00972-8

 

  1. Chen ZL, Shen JH, Gao YS, Wichtl M. Five taccalonolides from Tacca plantaginea. Planta Med. 1997;63:40-46. doi: 10.1055/s-2006-957600

 

  1. Yang JY, Zhao RH, Chen CX, et al. Taccalonolides W-Y, three new pentacyclic steroids from Tacca plantaginea. Helv Chim Acta. 2008;91:1077-1081. doi: 10.1002/hlca.200890116

 

  1. Muhlbauer A, Seip S, Nowak A, Tran VS. Five novel taccalonolides from the roots of the Vietnamese plant Tacca paxiana. Helv Chim Acta. 2003;86:2065. doi: 10.1002/hlca.200390162

 

  1. Lu L, Chen J, Nian Y, Sun Y, Qiu M. Trinor-cycloartane glycosides from the rhizomes of Cimicifuga foetida. Molecules. 2009;14:1578-1584. doi: 10.3390/molecules14041578

 

  1. Dembitsky VM. Natural neo acids and neo alkanes: their analogs and derivatives. Lipids. 2006;41(4):309-340. doi: 10.1007/s11745-006-5103-9

 

  1. Kim SK. Study on Bio-organic Chemistry of Naturally Occurring Brassinosteroids, Ph.D. Thesis. The University of Tokyo, Tokyo, Japan; 1988.

 

  1. Kim SK, Akihisa T, Tamura T. Brassinosteroids in Phaseolus vulgaris. Part IV. 24-Methylene-25-methyl-cholesterol in Phaseolus vulgaris seed: Structural relation to Brassinosteroids. Phytochemistry. 1988;27:629-631. doi: 10.1016/0031-9422(88)83160-1

 

  1. Kim SK, Yokota T, Takahashi N. Brassinosteroids inPhaseolus vulgaris. Part III. 25-methyl-dolichosterone, a new brassinosteroid with a tertiary butyl group from immature seed of Phaseolus vulgaris. Agric Biol Chem. 1987;51:2303-2305. doi: 10.1271/bbb1961.51.2303

 

  1. Kim SK, Natural occurrences of brassinosteroids. In: Cutler HG, Yokota T, Adam G, editors. Brassinosteroids - Chemistry, Bioactivity and Applications. Washington, USA: American Chemical Society; 1991. p. 26-35.

 

  1. Kim SK, Yokota T, Takahashi N. 25-Methyldolichosterone, a new brassinosteroid with a tertiary butyl group from immature seeds of Phaseolus vulgaris. Agric Biol Chem. 1987;51:2703-2705. doi: 10.1080/00021369.1987.10868344

 

  1. Usmani L, Shakil A, Khan I, Alvi T, Singh S, Das D. Brassinosteroids in micronutrient homeostasis: Mechanisms and implications for plant nutrition and stress resilience. Plants. 2025;14(4):598. doi: 10.3390/plants14040598

 

  1. Chakraborty N, Ganguly R, Sarkar A, et al. Multifunctional role of brassinosteroids in plant growth, development, and defense. J Plant Growth Regul. 2025;1:1-14. doi: 10.1007/s00344-024-11593-4

 

  1. Słomnicka R, Cieplak M, Martín-Hernández AM, Bartoszewski G. Brassinosteroids in cucurbits: Modulators of plant growth architecture and stress response. Int J Mol Sci. 2025;26(15):7234. doi: 10.3390/ijms26157234

 

  1. Nikolić B, Jovanović V, Knežević B, Nikolić Z, Babović-Đorđević M. Mode of action of brassinosteroids: Seed germination and seedling growth and development-One Hypothesis. Int J Mol Sci. 2025;26(6):2559. doi: 10.3390/ijms26062559

 

  1. Warang O, Bhattacharjee P, Debbarma S, Chander S. Brassinosteroids: Unveiling their role in fruit ripening and quality. Appl Fruit Sci. 2025;67(2):82. doi: 10.1007/s10341-025-01304-y

 

  1. Shah SA, Arshad M, Aslam S. Comprehensive review on the role of exogenous phytohormones in enhancing temperature stress tolerance in plants. J Crop Health. 2025;77:136. doi: 10.1007/s10343-025-01198-6

 

  1. Mohammed EE, Türkel N, Yigit UM, Dalan AB, Sahin F. Boron derivatives inhibit the proliferation of breast cancer cells and affect tumor-specific T cell activity in vitro by distinct mechanisms. Biol Trace Elem Res. 2023;201:5692-5707. doi: 10.1007/s12011-023-03632-0

 

  1. Paties Montagner G, Dominici S, Piaggi S, Pompella A, Corti A. Redox mechanisms underlying the cytostatic effects of boric acid on cancer cells-an issue still open. Antioxidants (Basel). 2023;12(6):1302. doi: 10.3390/antiox12061302

 

  1. Kulkarni S, Bhandary D, Singh Y, Monga V, Thareja S. Boron in cancer therapeutics: An overview. Pharmacol Ther. 2023;251:108548. doi: 10.1016/j.pharmthera.2023.108548

 

  1. Dikkatli ÖI, İseri ÖD. Boron and beyond: Where do we stand in cancer treatment? J Boron. 2023;8(4):158-188. doi: 10.30728/boron.1292418

 

  1. Cebeci E, Yüksel B, Şahin F. Anti-cancer effect of boron derivatives on small-cell lung cancer. J Trace Elements Med Biol. 2022;70:126923. doi: 10.1016/j.jtemb.2022.126923
Share
Back to top
Tumor Discovery, Electronic ISSN: 2810-9775 Print ISSN: 3060-8597, Published by AccScience Publishing