AccScience Publishing / TD / Online First / DOI: 10.36922/TD025190038
REVIEW ARTICLE

Complementing a pair of distinct engineered oncolytic viruses with functionalized magneto-nanoparticles for enhanced cancer targeting therapy: A revisit

Stephene S. Meena1,2* Geofrey F. Soko1,2 Alita Mrema1 Jerry Ndumbalo1 Harrison R. Chuwa3 Caroline R. Sway1 Emmanuel Lugina1 Julius Mwaiselage1 Ramadhani Chambuso4*
Show Less
1 Department of Clinical Oncology, Directorate of Medical Services, Ocean Road Cancer Institute, Dar es Salaam, United Republic of Tanzania
2 Jiangzhong Cancer Research Center, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, China
3 Department of Oncology, Faculty of Internal Medicine, Aga Khan University & Aga Khan Health Service, Dar es Salaam, United Republic of Tanzania
4 Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
Tumor Discovery, 025190038 https://doi.org/10.36922/TD025190038
Received: 9 May 2025 | Revised: 17 August 2025 | Accepted: 20 August 2025 | Published online: 5 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Oncolytic viruses (OVs) are emerging as promising cancer immunotherapeutic agents due to their cancer-directed oncolysis and ability to induce potent and durable anticancer immune responses. They have shown encouraging results even in tumors that are resistant to conventional therapies. However, the therapeutic efficacy of OVs is hindered by antiviral immune responses that eliminate OVs before they reach their target site and the tumor stroma, limiting intratumoral virus spread in the tumor microenvironment (TME). To address these challenges, various strategies have been developed to shield OVs from immunosurveillance by loading viruses onto/into cellular carriers, extracellular vesicles, liposomes, and nanoparticles. Despite notable improvements in viral shielding and targeting strategies, inefficient intratumoral viral penetration remains a critical obstacle. In the TME, the tumor stroma accounts for 90% of the entire tumor mass, comprising non-cancerous cells and extracellular matrix. Since OVs are engineered to target only cancer cells, their cytolytic efficacy is counteracted by the tumor stroma. Therefore, innovative approaches are necessary to enhance the penetration of viruses within tumors, thereby increasing the efficacy of oncolytic virotherapy. This review aims to provide a comprehensive overview of OVs in terms of clinical applications, successes, and limitations, while also discussing future directions for enhancing the targeted delivery and intratumoral penetration of OVs.

Keywords
Virotherapy
Oncolytic viruses
Tumor microenvironment
Cancer immunotherapy
Targeted cancer therapy
Functionalized magneto-nanoparticles
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Forbes JF. Multimodality treatment of cancer. ANZ J Surg. 1982;52(4):341-346. doi: 10.1111/j.1445-2197.1982.tb06005.x

 

  1. Fan W, Yung B, Huang P, Chen X. Nanotechnology for multimodal synergistic cancer therapy. Chem Rev. 2017;117(22):13566-13638. doi: 10.1021/acs.chemrev.7b00258

 

  1. Arruebo M, Vilaboa N, Sáez-Gutierrez B, et al. Assessment of the evolution of cancer treatment therapies. Cancers. 2011;3(3):3279-330. doi: 10.3390/cancers3033279

 

  1. Longhi A, Ferrari S, Tamburini A, et al. Late effects of chemotherapy and radiotherapy in osteosarcoma and Ewing sarcoma patients. Cancer. 2012;118(20):5050-5059. doi: 10.1002/cncr.27493

 

  1. Baudino TA. Targeted cancer therapy: The next generation of cancer treatment. Curr Drug Discov Technol. 2015;12(1):3-20. doi: 10.2174/1570163812666150602144310

 

  1. Thomas S, Prendergast GC. Cancer vaccines: A brief overview. Methods Mol Biol. 2016;1403:755-61. doi: 10.1007/978-1-4939-3387-7_43

 

  1. Du W, Seah I, Bougazzoul O, et al. Stem cell-released oncolytic herpes simplex virus has therapeutic efficacy in brain metastatic melanomas. Proc Nat Acad Sci USA. 2017;114(30):E6157-E6165. doi: 10.1073/pnas.1700363114

 

  1. Russell L, Peng KW. The emerging role of oncolytic virus therapy against cancer. Chin Clin Oncol. 2018;7(2):16. doi: 10.21037/cco.2018.04.04

 

  1. Dock G. The influence of complicating diseases upon leukaemia. Am J Med Sci. 1904;127(4):563-592. doi: 10.1097/00000441-190404000-00001

 

  1. Kelly E, Russell SJ. History of oncolytic viruses: Genesis to genetic engineering. Mol Ther. 2007;15(4):651-659. doi: 10.1038/sj.mt.6300108

 

  1. Larson C, Oronsky B, Scicinski J, et al. Going viral: A review of replication-selective oncolytic adenoviruses. Oncotarget. 2015;6(24):19976-19989. doi: 10.18632/oncotarget.5116

 

  1. Buijs PR, Verhagen JH, Van Eijck CH, Van Den Hoogen BG. Oncolytic viruses: From bench to bedside with a focus on safety. Hum Vaccin Immunother. 2015;11(7):1573-1584. doi: 10.1080/21645515.2015.1037058

 

  1. Lin D, Shen Y, Liang T. Oncolytic virotherapy: Basic principles, recent advances and future directions. Signal Transduct Target Ther. 2023;8(1):156. doi: 10.1038/s41392-023-01407-6

 

  1. Oldfield LM, Grzesik P, Voorhies AA, et al. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods. Proc Nat Acad Sci USA. 2017;114(42):E8885-E8894. doi: 10.1073/pnas.1700534114

 

  1. Whitley R, Baines J. Clinical management of herpes simplex virus infections: Past, present, and future. F1000Res. 2018;7:1726. doi: 10.12688/f1000research.16157.1

 

  1. Epstein AL, Rabkin SD. Safety of non-replicative and oncolytic replication-selective HSV vectors. Trends Mol Med. 2024;30(8):781-794. doi: 10.1016/j.molmed.2024.05.014

 

  1. Zhang Z, Yang N, Lu H, et al. Improved antitumor effects elicited by an oncolytic HSV-1 expressing a novel B7H3nb/ CD3 BsAb. Cancer Lett. 2024;588:216760. doi: 10.1016/j.canlet.2024.216760

 

  1. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: A new class of immunotherapy drugs. Nat Rev Drug Discov. 2015;14(9):642-662. doi: 10.1038/nrd4663

 

  1. Jhawar SR, Thandoni A, Bommareddy PK, et al. Oncolytic viruses-natural and genetically engineered cancer immunotherapies. Front Oncol. 2017;7:00202. doi: 10.3389/fonc.2017.00202

 

  1. Harrington K, Freeman DJ, Kelly B, Harper J, Soria JC. Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov. 2019;18(9):689-706. doi: 10.1038/s41573-019-0029-0

 

  1. Raja J, Ludwig JM, Gettinger SN, Schalper KA, Kim HS. Oncolytic virus immunotherapy: Future prospects for oncology. J Immunother Cancer. 2018;6(1):140. doi: 10.1186/s40425-018-0458-z

 

  1. Zhang X, Komaki R, Wang L, Fang B, Chang JY. Treatment of radioresistant stem-like esophageal cancer cells by an apoptotic gene-armed, telomerase-specific oncolytic adenovirus. Clin Cancer Res. 2008;14(9):2813-2823. doi: 10.1158/1078-0432.Ccr-07-1528

 

  1. Fountzilas C, Patel S, Mahalingam D. Review: Oncolytic virotherapy, updates and future directions. Oncotarget. 2017;8(60):102617-102639. doi: 10.18632/oncotarget.18309

 

  1. Seymour LW, Fisher KD. Oncolytic viruses: Finally delivering. Br J Cancer. 2016;114(4):357-361. doi: 10.1038/bjc.2015.481

 

  1. Palumbo MO, Kavan P, Miller WH, et al. Systemic cancer therapy: Achievements and challenges that lie ahead. Front Pharmacol. 2013;4:00057. doi: 10.3389/fphar.2013.00057

 

  1. Deng L, Yang X, Fan J, et al. An oncolytic vaccinia virus armed with GM-CSF and IL-24 double genes for cancer targeted therapy. Onco Targets Ther. 2020;13:3535-3544. doi: 10.2147/ott.S249816

 

  1. Guse K, Sloniecka M, Diaconu I, et al. Antiangiogenic arming of an oncolytic vaccinia virus enhances antitumor efficacy in renal cell cancer models. J Virol. 2010;84(2):856-66. doi: 10.1128/jvi.00692-09

 

  1. Parviainen S, Ahonen M, Diaconu I, et al. GMCSF-armed vaccinia virus induces an antitumor immune response. Int J Cancer. 2015;136(5):1065-1072. doi: 10.1002/ijc.29068

 

  1. Lal G, Rajala MS. Recombinant viruses with other anti-cancer therapeutics: A step towards advancement of oncolytic virotherapy. Cancer Gene Ther. 2018;25(9):216-226. doi: 10.1038/s41417-018-0018-1

 

  1. Martin NT, Bell JC. Oncolytic virus combination therapy: Killing one bird with two stones. Mol Ther. 2018;26(6):1414-1422. doi: 10.1016/j.ymthe.2018.04.001

 

  1. Le Boeuf F, Diallo JS, Mccart JA, et al. Synergistic interaction between oncolytic viruses augments tumor killing. Mol Ther. 2010;18(5):888-895. doi: 10.1038/mt.2010.44

 

  1. Tysome J, Li X, Wang S, et al. A novel therapeutic regimen to eradicate established solid tumors with an effective induction of tumor-specific immunity. Clin Cancer Res. 2012;18:6679-6689. doi: 10.1158/1078-0432.CCR-12-0979

 

  1. Nistal-Villan E, Bunuales M, Poutou J, et al. Enhanced therapeutic effect using sequential administration of antigenically distinct oncolytic viruses expressing oncostatin M in a Syrian hamster orthotopic pancreatic cancer model. Mol Cancer. 2015;14:210. doi: 10.1186/s12943-015-0479-x

 

  1. Gujar S, Pol JG, Kroemer G. Heating it up: Oncolytic viruses make tumors ‘hot’ and suitable for checkpoint blockade immunotherapies. Oncoimmunology. 2018;7(8):e1442169. doi: 10.1080/2162402x.2018.1442169

 

  1. Wei C, Ma Y, Wang F, et al. Igniting hope for tumor immunotherapy: Promoting the “Hot and Cold” tumor transition. Clin Med Insights Oncol. 2022;16:11795549221120708. doi: 10.1177/11795549221120708

 

  1. Hwang JK, Hong J, Yun CO. Oncolytic viruses and immune checkpoint inhibitors: Preclinical developments to clinical trials. Int J Mol Sci. 2020;21(22):8627. doi: 10.3390/ijms21228627

 

  1. Hemminki O, Dos Santos JM, Hemminki A. Oncolytic viruses for cancer immunotherapy. J Hematol Oncol. 2020;13(1):84-84. doi: 10.1186/s13045-020-00922-1

 

  1. Wennier ST, Liu J, Mcfadden G. Bugs and drugs: Oncolytic virotherapy in combination with chemotherapy. Curr Pharm Biotechnol. 2012;13(9):1817-1833. doi: 10.2174/138920112800958850

 

  1. Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer sci. 2016;107(10):1373-1379. doi: 10.1111/cas.13027

 

  1. Eissa IR, Bustos-Villalobos I, Ichinose T, et al. The current status and future prospects of oncolytic viruses in clinical trials against melanoma, glioma, pancreatic, and breast cancers. Cancers (Basel). 2018;10(10):356. doi: 10.3390/cancers10100356

 

  1. Frampton JE. Teserpaturev/G47Δ: First approval. BioDrugs. 2022;36(5):667-672. doi: 10.1007/s40259-022-00553-7

 

  1. Zeng J, Li X, Sander M, Zhang H, Yan G, Lin Y. Oncolytic viro-immunotherapy: An emerging option in the treatment of gliomas. Front Immunol. 2021;12:721830-721830. doi: 10.3389/fimmu.2021.721830

 

  1. Heo J, Reid, T, Ruo, L, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med. 2013;19(3):329-336. doi: 10.1038/nm.3089

 

  1. Mahalingam D, Goel S, Aparo S, et al. A phase II study of pelareorep (REOLYSIN(®)) in combination with gemcitabine for patients with advanced pancreatic adenocarcinoma. Cancers (Basel). 2018;10(6):160. doi: 10.3390/cancers10060160

 

  1. Msaouel P, Opyrchal M, Dispenzieri A, et al. Clinical trials with oncolytic measles virus: Current status and future prospects. Curr Cancer Drug Targets. 2018;18(2):177-187. doi: 10.2174/1568009617666170222125035

 

  1. Geletneky K, Huesing J, Rommelaere J, et al. Phase I/IIa study of intratumoral/intracerebral or intravenous/intracerebral administration of Parvovirus H-1 (ParvOryx) in patients with progressive primary or recurrent glioblastoma multiforme: ParvOryx01 protocol. BMC Cancer. 2012;12:99. doi: 10.1186/1471-2407-12-99

 

  1. Ramesh N, Ge Y, Ennist DL, et al. CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor--armed oncolytic adenovirus for the treatment of bladder cancer. Clin Cancer Res. 2006;12(1):305-313. doi: 10.1158/1078-0432.Ccr-05-1059

 

  1. Dix BR, Edwards SJ, Braithwaite AW. Does the antitumor adenovirus ONYX-015/dl1520 selectively target cells defective in the p53 pathway? J Virol. 2001;75(12):5443-5447. doi: 10.1128/jvi.75.12.5443-5447.2001

 

  1. Liang M. Oncorine, the world first oncolytic virus medicine and its update in China. Curr Cancer Drug Targets. 2018;18(2):171-176. doi: 10.2174/1568009618666171129221503

 

  1. Martínez-Vélez N, Xipell E, Vera B, et al. The oncolytic adenovirus VCN-01 as Therapeutic approach against pediatric osteosarcoma. Clin Cancer Res. 2016;22(9):2217-25. doi: 10.1158/1078-0432.Ccr-15-1899

 

  1. Labani-Motlagh A, Naseri S, Wenthe J, Eriksson E, Loskog A. Systemic immunity upon local oncolytic virotherapy armed with immunostimulatory genes may be supported by tumor-derived exosomes. Mol Ther Oncolytics. 2021;20:508-518. doi: 10.1016/j.omto.2021.02.007

 

  1. Wenthe J, Naseri S, Hellström AC, Wiklund HJ, Eriksson E, Loskog A. Immunostimulatory oncolytic virotherapy formultiple myeloma targeting 4-1BB and/or CD40. Cancer Gene Ther. 2020;27(12):948-959. doi: 10.1038/s41417-020-0176-9

 

  1. Nokisalmi P, Pesonen S, Escutenaire S, et al. Oncolytic adenovirus ICOVIR-7 in patients with advanced and refractory solid tumors. Clin Cancer Res. 2010;16(11):3035-3043. doi: 10.1158/1078-0432.Ccr-09-3167

 

  1. Ranki T, Pesonen S, Hemminki A, et al. Phase I study with ONCOS-102 for the treatment of solid tumors - an evaluation of clinical response and exploratory analyses of immune markers. J Immunother Cancer. 2016;4:17. doi: 10.1186/s40425-016-0121-5

 

  1. Philbrick B, Adamson DC. DNX-2401: An investigational drug for the treatment of recurrent glioblastoma. Expert Opin Investig Drugs. 2019;28(12):1041-1049. doi: 10.1080/13543784.2019.1694000

 

  1. Papanastassiou V, Rampling R, Fraser M, et al. The potential for efficacy of the modified (ICP 34.5(-)) herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: A proof of principle study. Gene Ther. 2002;9(6):398-406. doi: 10.1038/sj.gt.3301664

 

  1. Kaufman HL, Maciorowski D. Advancing oncolytic virus therapy by understanding the biology. Nat Rev Clin Oncol. 2021;18(4):197-198. doi: 10.1038/s41571-021-00490-4

 

  1. Kohlhapp FJ, Kaufman HL. Molecular pathways: Mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res. 2016;22(5):1048-1054. doi: 10.1158/1078-0432.Ccr-15-2667

 

  1. Taguchi S, Fukuhara H, Todo T. Oncolytic virus therapy in Japan: Progress in clinical trials and future perspectives. Jpn J Clin Oncol. 2019;49(3):201-209. doi: 10.1093/jjco/hyy170

 

  1. Patel DM, Foreman PM, Nabors LB, Riley KO, Gillespie GY, Markert JM. Design of a phase I clinical trial to evaluate M032, a genetically engineered HSV-1 expressing IL-12, in patients with recurrent/progressive glioblastoma multiforme, anaplastic astrocytoma, or gliosarcoma. Hum Gene Ther Clin Dev. 2016;27(2):69-78. doi: 10.1089/humc.2016.031

 

  1. Cui C, Wang X, Lian B, et al. OrienX010, an oncolytic virus, in patients with unresectable stage IIIC-IV melanoma: A phase Ib study. J Immunother Cancer. 2022;10(4):e004307. doi: 10.1136/jitc-2021-004307

 

  1. Eissa IR, Mukoyama N, Abdelmoneim M, et al. Oncolytic herpes simplex virus HF10 (canerpaturev) promotes accumulation of CD8(+) PD-1(-) tumor-infiltrating T cells in PD-L1-enriched tumor microenvironment. Int J Cancer. 2021;149(1):214-227. doi: 10.1002/ijc.33550

 

  1. Beasley GM, Nair SK, Farrow NE, et al. Phase I trial of intratumoral PVSRIPO in patients with unresectable, treatment-refractory melanoma. J Immunother Cancer. 2021;9(4):e002203. doi: 10.1136/jitc-2020-002203

 

  1. Andtbacka RHI, Curti BD, Kaufman H, et al. Final data from CALM: A phase II study of coxsackievirus A21 (CVA21) oncolytic virus immunotherapy in patients with advanced melanoma. JCO. 2015;33(15 Suppl):9030-9030. doi: 10.1200/jco.2015.33.15_suppl.9030

 

  1. Doniņa S, Strēle I, Proboka G, et al. Adapted ECHO-7 virus Rigvir immunotherapy (oncolytic virotherapy) prolongs survival in melanoma patients after surgical excision of the tumour in a retrospective study. Melanoma Res. 2015;25(5):421-426. doi: 10.1097/cmr.0000000000000180

 

  1. Keshavarz MNA, Esghaei M, Bokharaei-Salim F, Dianat- Moghadam H, Keyvani H, Ghaemi A. Oncolytic newcastle disease virus reduces growth of cervical cancer cell by inducing apoptosis. Saudi J Biol Sci. 2020;27(1):47-52. doi: 10.1016/j.sjbs.2019.04.015

 

  1. Kuryk L, Møller ASW, Jaderberg M. Combination of immunogenic oncolytic adenovirus ONCOS-102 with anti-PD-1 pembrolizumab exhibits synergistic antitumor effect in humanized A2058 melanoma huNOG mouse model. OncoImmunology. 2019;8(2):e1532763. doi: 10.1080/2162402X.2018.1532763

 

  1. Pan CX, Kim DY, Nambudiri VE. Novel cancer treatment using oncolytic virus therapy. In: Rezaei N, editor. Handbook of Cancer and Immunology. London: Springer International Publishing; 2022. p. 1-43.

 

  1. Chen L, Hong W, Ren W, Xu T, Qian Z, He Z. Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduct Target Ther. 2021;6(1):225. doi: 10.1038/s41392-021-00631-2

 

  1. Parker Kerrigan BC, Shimizu Y, Andreeff M, Lang FF. Mesenchymal stromal cells for the delivery of oncolytic viruses in gliomas. Cytotherapy. 2017;19(4):445-457. doi: 10.1016/j.jcyt.2017.02.002

 

  1. Lv P, Liu X, Chen X, et al. Genetically engineered cell membrane nanovesicles for oncolytic adenovirus delivery: A versatile platform for cancer virotherapy. Nano Lett. 2019;19(5):2993-3001. doi: 10.1021/acs.nanolett.9b00145

 

  1. Roy DG, Bell JC, Bourgeois-Daigneault MC. Magnetictargeting of oncolytic VSV-based therapies improves infection of tumor cells in the presence of virus-specific neutralizing antibodies in vitro. Biochem Biophys Res Commun. 2020;526(3):641-646. doi: 10.1016/j.bbrc.2020.03.135

 

  1. Tresilwised N, Pithayanukul P, Mykhaylyk O, et al. Boosting oncolytic adenovirus potency with magnetic nanoparticles and magnetic force. Mol Pharm. 2010;7(4):1069-1089. doi: 10.1021/mp100123t

 

  1. Evgin L, Kottke T, Tonne J, et al. Oncolytic virus-mediated expansion of dual-specific CAR T cells improves efficacy against solid tumors in mice. Sci Transl Med. 2022;14(640):eabn2231. doi: 10.1126/scitranslmed.abn2231

 

  1. Willmon C, Harrington K, Kottke T, Prestwich R, Melcher A, Vile R. Cell carriers for oncolytic viruses: Fed Ex for cancer therapy. Mol Ther. 2009;17(10):1667-1676. doi: 10.1038/mt.2009.194

 

  1. Munguia A, Ota T, Miest T, Russell SJ. Cell carriers to deliver oncolytic viruses to sites of myeloma tumor growth. Gene Ther. 2008;15(10):797-806. doi: 10.1038/gt.2008.45

 

  1. Ban W, Guan J, Huang H, et al. Emerging systemic delivery strategies of oncolytic viruses: A key step toward cancer immunotherapy. Nano Res. 2022;15(5):4137-4153. doi: 10.1007/s12274-021-4031-6

 

  1. Lee Y, Kim JH. The emerging roles of extracellular vesicles as intercellular messengers in liver physiology and pathology. Clin Mol Hepatol. 2022;28(4):706-724. doi: 10.3350/cmh.2021.0390

 

  1. Zicari S, Arakelyan A, Palomino R, et al. Human cytomegalovirus-infected cells release extracellular vesicles that carry viral surface proteins. Virology. 2018;524:97-105. doi: 10.1016/j.virol.2018.08.008

 

  1. Streck NT, Zhao Y, Sundstrom JM, Buchkovich NJ. Human cytomegalovirus utilizes extracellular vesicles to enhance virus spread. J Virol. 2020;94(16):10.1128. doi: 10.1128/jvi.00609-20

 

  1. Dogrammatzis C, Waisner H, Kalamvoki M. Cloaked viruses and viral factors in cutting edge exosome-based therapies. Front Cell Dev Biol. 2020;8:376. doi: 10.3389/fcell.2020.00376

 

  1. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: Classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. doi: 10.1186/1556-276x-8-102

 

  1. Wang Y, Huang H, Zou H, et al. Liposome encapsulation of oncolytic virus M1 to reduce immunogenicity and immune clearance in vivo. Mol Pharm. 2019;16(2):779-785. doi: 10.1021/acs.molpharmaceut.8b01046

 

  1. Eguchi M, Hirata S, Ishigami I, et al. Pre-treatment of oncolytic reovirus improves tumor accumulation and intratumoral distribution of PEG-liposomes. J Control Release. 2023;354:35-44. doi: 10.1016/j.jconrel.2022.12.050

 

  1. Bahrami B, Hojjat-Farsangi M, Mohammadi H, et al. Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett. 2017;190:64-83. doi: 10.1016/j.imlet.2017.07.015

 

  1. Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res Lett. 2021;16(1):173. doi: 10.1186/s11671-021-03628-6

 

  1. Ojha A, Jaiswal S, Bharti P, Mishra SK. Nanoparticles and nanomaterials-based recent approaches in upgraded targeting and management of cancer: A review. Cancers (Basel). 2023;15(1):162. doi: 10.3390/cancers15010162

 

  1. Zou W, Sarisozen C, Torchilin VP. The reversal of multidrug resistance in ovarian carcinoma cells by co-application of tariquidar and paclitaxel in transferrin-targeted polymeric micelles. J Drug Target. 2017;25(3):225-234. doi: 10.1080/1061186x.2016.1236113

 

  1. Santi M, Maccari G, Mereghetti P, et al. Rational design of a transferrin-binding peptide sequence tailored to targeted nanoparticle internalization. Bioconjug Chem. 2017;28(2):471-480. doi: 10.1021/acs.bioconjchem.6b00611

 

  1. Confeld MI, Mamnoon B, Feng L, et al. Targeting the tumor core: Hypoxia-responsive nanoparticles for the delivery of chemotherapy to pancreatic tumors. Mol Pharm. 2020;17(8):2849-2863. doi: 10.1021/acs.molpharmaceut.0c00247

 

  1. Scarpa E, Bailey JL, Janeczek AA, et al. Quantification of intracellular payload release from polymersome nanoparticles. Sci Rep. 2016;6(1):29460. doi: 10.1038/srep29460

 

  1. Pierce KM, Miklavcic WR, Cook KP, et al. The evolution and future of targeted cancer therapy: From nanoparticles, oncolytic viruses, and oncolytic bacteria to the treatment of solid tumors. Nanomaterials (Basel). 2021;11(11):3018. doi: 10.3390/nano11113018

 

  1. Mamnoon B, Loganathan J, Confeld MI, et al. Targeted polymeric nanoparticles for drug delivery to hypoxic, triple-negative breast tumors. ACS Appl Bio Mater. 2021;4(2):1450-1460. doi: 10.1021/acsabm.0c01336

 

  1. Zuo H. iRGD: A promising peptide for cancer imaging and a potential therapeutic agent for various cancers. J Oncol. 2019;2019:9367845. doi: 10.1155/2019/9367845

 

  1. Şen Karaman D, Kettiger H. Silica-based nanoparticles as drug delivery systems: Chances and challenges. In: Grumezescu AM, editor. Inorganic Frameworks as Smart Nanomedicines. Norwich: William Andrew Publishing; 2018. p. 1-40.

 

  1. De Carlo F, Thomas L, Brooke B, et al. Microbubble-mediated delivery of human adenoviruses does not elicit innate and adaptive immunity response in an immunocompetent mouse model of prostate cancer. J Transl Med. 2019;17(1):19. doi: 10.1186/s12967-019-1771-0

 

  1. Myers R, Coviello C, Erbs P, et al. Polymeric Cups for cavitation-mediated delivery of oncolytic vaccinia virus. Mol Ther. 2016;24(9):1627-1633. doi: 10.1038/mt.2016.139

 

  1. Bazan-Peregrino M, Rifai B, Carlisle RC, et al. Cavitation-enhanced delivery of a replicating oncolytic adenovirus to tumors using focused ultrasound. J Control Release. 2013;169(1-2):40-47. doi: 10.1016/j.jconrel.2013.03.017

 

  1. Yokoda R, Nagalo BM, Vernon B, et al. Oncolytic virus delivery: From nano-pharmacodynamics to enhanced oncolytic effect. Oncolytic Virother. 2017;6:39-49. doi: 10.2147/ov.S145262

 

  1. Xia M, Luo D, Dong J, et al. Graphene oxide arms oncolytic measles virus for improved effectiveness of cancer therapy. J Exp Clin Cancer Res. 2019;38(1):408. doi: 10.1186/s13046-019-1410-x

 

  1. Cong Z, Tang S, Xie L, et al. Magnetic-powered janus cell robots loaded with oncolytic adenovirus for active and targeted virotherapy of bladder cancer. Adv Mater. 2022;34(26):e2201042. doi: 10.1002/adma.202201042

 

  1. Kuo CY, Liu TY, Chan TY, et al. Magnetically triggered nanovehicles for controlled drug release as a colorectal cancer therapy. Colloids Surf B Biointerfaces. 2016;140:567-573. doi: 10.1016/j.colsurfb.2015.11.008

 

  1. Gao Y, Chan CU, Gu Q, et al. Controlled nanoparticle release from stable magnetic microbubble oscillations. Npg Asia Mater. 2016;8(4):e260-e260. doi: 10.1038/am.2016.37

 

  1. Chyuan IT, Chu CL, Hsu PN. Targeting the tumor microenvironment for improving therapeutic effectiveness in cancer immunotherapy: Focusing on Immune checkpoint inhibitors and combination therapies. Cancers (Basel). 2021;13(6):1188. doi: 10.3390/cancers13061188

 

  1. El-Sayes N, Vito A, Mossman K. Tumor heterogeneity: A great barrier in the age of cancer immunotherapy. Cancers (Basel). 2021;13(4):806. doi: 10.3390/cancers13040806

 

  1. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575(7782):299-309. doi: 10.1038/s41586-019-1730-1

 

  1. Raju GSR, Pavitra E, Varaprasad GL, et al. Nanoparticles mediated tumor microenvironment modulation: Current advances and applications. J Nanobiotechnol. 2022;20(1):274. doi: 10.1186/s12951-022-01476-9

 

  1. Shen Y, Wu C, Uyeda TQP, et al. Elongated nanoparticle aggregates in cancer cells for mechanical destruction with low frequency rotating magnetic field. Theranostics. 2017;7(6):1735-1748. doi: 10.7150/thno.18352

 

  1. Lopez S, Hallali N, Lalatonne Y, et al. Magneto-mechanical destruction of cancer-associated fibroblasts using ultra-small iron oxide nanoparticles and low frequency rotating magnetic fields. Nanoscale Adv. 2022;4(2):421-436. doi: 10.1039/d1na00474c

 

  1. Fatima H, Charinpanitkul T, Kim KS. Fundamentals to apply magnetic nanoparticles for hyperthermia therapy. Nanomaterials. 2021;11(5):1203. doi: 10.3390/nano11051203

 

  1. Attaluri A, Kandala SK, Zhou H, Wabler M, Deweese TL, Ivkov R. Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: The role of tumor size and eddy-current heating. Int J Hyperthermia. 2020;37(3):108-119. doi: 10.1080/02656736.2020.1798514

 

  1. Simeonova S, Zahariev N, Pilicheva B. Magnetic nanoparticles for targeted drug delivery. J Phys Technol. 2019;3(2):38-43.

 

  1. Zhu L, Mao H, Yang L. Advanced iron oxide nanotheranostics for multimodal and precision treatment of pancreatic ductal adenocarcinoma. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(4):e1793. doi: 10.1002/wnan.1793

 

  1. Hill BS, Sarnella A, D’avino G, Zannetti A. Recruitment of stromal cells into tumour microenvironment promote the metastatic spread of breast cancer. Semin Cancer Biol. 2020;60:202-213. doi: 10.1016/j.semcancer.2019.07.028

 

  1. Singh PK, Doley J, Kumar GR, Sahoo AP, Tiwari AK. Oncolytic viruses and their specific targeting to tumour cells. Indian J Med Res. 2012;136(4):571-584.

 

  1. Bhatt DK, Chammas R, Daemen T. Resistance mechanisms influencing oncolytic virotherapy, a systematic analysis. Vaccines (Basel). 2021;9(10):1166. doi: 10.3390/vaccines9101166

 

  1. Valkenburg KC, De Groot AE, Pienta KJ. Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol. 2018;15(6):366-381. doi: 10.1038/s41571-018-0007-1

 

  1. Neumann CCM, Von Hörschelmann E, Reutzel-Selke A, et al. Tumor-stromal cross-talk modulating the therapeutic response in pancreatic cancer. Hepatobiliary Pancreat Dis Int. 2018;17(5):461-472. doi: 10.1016/j.hbpd.2018.09.004

 

  1. Sionov RV, Fridlender ZG, Granot Z. The multifaceted roles neutrophils play in the tumor microenvironment. Cancer Microenviron. 2015;8(3):125-158. doi: 10.1007/s12307-014-0147-5

 

  1. Hagerling C, Werb Z. Neutrophils: Critical components in experimental animal models of cancer. Semin Immunol. 2016;28(2):197-204. doi: 10.1016/j.smim.2016.02.003

 

  1. De Sostoa J, Fajardo CA, Moreno R, Ramos MD, Farrera-Sal M, Alemany R. Targeting the tumor stroma with an oncolytic adenovirus secreting a fibroblast activation protein-targeted bispecific T-cell engager. J Immunother Cancer. 2019;7(1):19. doi: 10.1186/s40425-019-0505-4

 

  1. Li M, Li G, Kiyokawa J, et al. Characterization and oncolytic virus targeting of FAP-expressing tumor-associated pericytes in glioblastoma. Acta Neuropathol Commun. 2020;8(1):221. doi: 10.1186/s40478-020-01096-0

 

  1. Breitbach CJ, De Silva NS, Falls TJ, et al. Targeting tumor vasculature with an oncolytic virus. Mol Ther. 2011;19(5):886-894. doi: 10.1038/mt.2011.26

 

  1. Everts A, Bergeman M, Mcfadden G, Kemp V. Simultaneous tumor and stroma targeting by oncolytic viruses. Biomedicines. 2020;8(11):474. doi: 10.3390/biomedicines8110474

 

  1. Tresilwised N, Pithayanukul P, Holm PS, Schillinger U, Plank C, Mykhaylyk O. Effects of nanoparticle coatings on the activity of oncolytic adenovirus-magnetic nanoparticle complexes. Biomaterials. 2012;33(1):256-269. doi: 10.1016/j.biomaterials.2011.09.028

 

  1. Wong HH, Lemoine N, Wang Y. Oncolytic viruses for cancer therapy: Overcoming the obstacles. Viruses. 2010;2(1):78-106. doi: 10.3390/v2010078

 

  1. Raykov Z, Rommelaere J. Potential of tumour cells for delivering oncolytic viruses. Gene Ther. 2008;15(10):704-710. doi: 10.1038/gt.2008.34

 

  1. Laurentt N, Sapet C, Le Gourrierec L, Bertosio E, Zelphati O. Nucleic acid delivery using magnetic nanoparticles: The Magnetofection technology. Ther Deliv. 2011;2(4):471-482. doi: 10.4155/tde.11.12

 

  1. Huang CH, Chuang TJ, Ke CJ, Yao CH. Doxorubicin-gelatin/Fe3O4-alginate dual-layer magnetic nanoparticles as targeted anticancer drug delivery vehicles. Polymers (Basel). 2020;12(8):1747. doi: 10.3390/polym12081747

 

  1. Wong J, Prout J, Seifalian A. Magnetic nanoparticles: New Perspectives in drug delivery. Curr Pharm Des. 2017;23(20):2908-2917. doi: 10.2174/1381612823666170215104659

 

  1. Revia RA, Zhang M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: Recent advances. Mater Today. 2016;19(3):157-168. doi: 10.1016/j.mattod.2015.08.022

 

  1. Khurshid H, Nemati Z, Iglesias Ó, Alonso J, Phan MH, Srikanth H. Hollow magnetic nanoparticles. In: Peddis D, Laureti S, Fiorani D, editors. New Trends in Nanoparticle Magnetism. London: Springer International Publishing; 2021. p137-158.

 

  1. Mohammadi Ziarani G, Malmir M, Lashgari N, Badiei A. The role of hollow magnetic nanoparticles in drug delivery. RSC Adv. 2019;9(43):25094-25106. doi: 10.1039/C9RA01589B

 

  1. Subramanian M, Miaskowski A, Jenkins SI, Lim J, Dobson J. Remote manipulation of magnetic nanoparticles using magnetic field gradient to promote cancer cell death. Appl Phys A. 2019;125(4):226. doi: 10.1007/s00339-019-2510-3

 

  1. Ascona García PP, Ordoñez Carpio GE, Zelada Zamora WM, Villanueva Pedraza E, Fernandez Villarroel RA. Magnetic field penetration depth in various materials and applications. Appl Sci. 2025;15(4):2225. doi: 10.3390/app15042225

 

  1. Son D, Ugurlu MC, Sitti M. Permanent magnet array-driven navigation of wireless millirobots inside soft tissues. Sci Adv. 2021;7(43):eabi8932. doi: 10.1126/sciadv.abi8932

 

  1. Chen D, Ganesh S, Wang W, Amiji M. Plasma protein adsorption and biological identity of systemically administered nanoparticles. Nanomedicine (Lond). 2017;12(17):2113-2135. doi: 10.2217/nnm-2017-0178

 

  1. Escamilla-Rivera V, Solorio-Rodríguez A, Uribe- Ramírez M, et al. Plasma protein adsorption on Fe3O4- PEG nanoparticles activates the complement system and induces an inflammatory response. Int J Nanomedicine. 2019;2019(14):2055-2067. doi: 10.2147/ijn.s192214

 

  1. Tavano R, Morillas-Becerril L, Geffner-Smith A, et al. Species differences in opsonization and phagocyte recognition of preclinical poly-2-alkyl-2-oxazoline-coated nanoparticles. Nat Commun. 2025;16(1):2642. doi: 10.1038/s41467-025-57648-2

 

  1. Portilla Y, Fernández-Afonso Y, Pérez-Yagüe S, et al. Different coatings on magnetic nanoparticles dictate their degradation kinetics in vivo for 15 months after intravenous administration in mice. J Nanobiotechnol. 2022;20(1):543. doi: 10.1186/s12951-022-01747-5

 

  1. Yaremenko AV, Zelepukin IV, Ivanov IN, et al. Influence of magnetic nanoparticle biotransformation on contrasting efficiency and iron metabolism. J Nanobiotechnol. 2022;20(1):535. doi: 10.1186/s12951-022-01742-w

 

  1. Nowak-Jary J, Machnicka B. Comprehensive analysis of the potential toxicity of magnetic iron oxide nanoparticles for medical applications: Cellular Mechanisms and systemic effects. Int J Mol Sci. 2024;25(22):12013. doi: 10.3390/ijms252212013

 

  1. Jakic KSM, Razga F, Nemethova V, et al. Long-term accumulation, biological effects and toxicity of BSA-coated gold nanoparticles in the mouse liver, spleen, and kidneys. Int J Nanomedicine. 2024;2024(19):4103-4120. doi: 10.2147/ijn.s443168

 

  1. Xiao X, Huang S, Chen S, et al. Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies. J Exp Clin Cancer Res. 2021;40(1):367. doi: 10.1186/s13046-021-02148-6

 

  1. Singh N, Heldt CL. Challenges in downstream purification of gene therapy viral vectors. Curr Opin Chem Eng. 2022;35:100780. doi: 10.1016/j.coche.2021.100780

 

  1. Srivastava A, Mallela KMG, Deorkar N, Brophy G. Manufacturing challenges and rational formulation development for AAV viral vectors. J Pharm Sci. 2021;110(7):2609-2624. doi: 10.1016/j.xphs.2021.03.024

 

  1. Das A, Sengupta P, Khanam J, et al. Magnetic nanoparticle as a new cutting-edge drug delivery and diagnostic platform: A review on its properties, synthesis, surface modification and applications. Carbohydr Polym Tech Appl. 2025;11:100905. doi: 10.1016/j.carpta.2025. 100905
Share
Back to top
Tumor Discovery, Electronic ISSN: 2810-9775 Print ISSN: 3060-8597, Published by AccScience Publishing