Effect of electroshock treatment on microstructure evolution of Ti-6Al-4V/Cu-Cr-Zr interface fabricated by laser melting deposition
This study aims to examine the effect of electroshock treatment (EST) on Ti-6Al-4V/Cu-Cr-Zr manufactured by laser melting deposition and explore the microstructure and mechanical properties to investigate the microstructure evolution of copper-based rail composite materials under high-energy-density currents. The results indicated that EST could promote atomic diffusion, enabling rapid preferential growth of TiCu in the metallurgical bonding zone. An increase of the current density promoted the nucleation of the primary Ti2Cu phase induced by the thermal effect of EST, which led to Cu solute enrichment and composition undercooling. Moreover, EST significantly improved nucleation rate and grain boundary migration. The average β grain size of the EST-1 sample increased from 2.83 μm to 3.62 μm, approximately, while the typical basic texture of EST-1 was enhanced. In EST-1, the shear strength of Ti-6Al-4V/Cu-Cr-Zr was 132 MPa, which was 65% higher than that of the original Ti-6Al-4V/Cu-Cr-Zr composite. The improvement in shear strength can be attributed to intergranular nano-precipitation and the improved wettability of Ti-6Al-4V/Cu-Cr-Zr. This work provides valuable insights into the preparation of high-value, high-performance Cu-based composites.

- He C, Zhou J, Zhou R, et al. Nanocrystalline copper for direct copper-to-copper bonding with improved cross-interface formation at low thermal budget. Nat Commun. 2024;15(1):7095. doi: 10.1038/s41467-024-51510-7
- Du L, Liu K, Hu D, et al. Microstructural and mechanical anisotropy in pressure-assisted sintered copper nanoparticles. Acta Materialia. 2025;287:120772. doi: 10.1016/j.actamat.2025.120772
- Nordet G, Gorny C, Mayi Y, et al. Absorptivity measurements during laser powder bed fusion of pure copper with a 1 kW cw green laser. Optics Laser Technol. 2022;147:107612. doi: 10.1016/j.optlastec.2021.107612
- Liang YZ, Li L, Shen P. Pulsed current-driven wetting of 3YSZ by liquid Cu and its mechanisms. J Eur Ceram Soc. 2022;42(2):552-560. doi: 10.1016/j.jeurceramsoc.2021.10.021
- Yang K, Wang Y, Guo M, et al. Recent development of advanced precipitation-strengthened Cu alloys with high strength and conductivity: A review. Prog Mater Sci. 2023;138:101141. doi: 10.1016/j.pmatsci.2023.101141
- Imran MK, Masood SH, Brandt M, Bhattacharya S, Mazumder J. Direct metal deposition (DMD) of H13 tool steel on copper alloy substrate: Evaluation of mechanical properties. Mater Sci Eng A. 2011;528(9):3342-3349. doi: 10.1016/j.msea.2010.12.099
- Romanov DA, Pochetukha VV, Sosnin KV, et al. Increase in properties of copper electrical contacts in formation of composite coatings based on Ni–C–Ag–N system. J Mater Res Technol. 2022;19:947-966. doi: 10.1016/j.jmrt.2022.05.040
- Lu S, Wang L, Zhou J, Liang J. Microstructure and tribological properties of laser-cladded Co-Ti3SiC2 coating with Ni-based interlayer on copper alloy. Tribol Int. 2022;171:107549. doi: 10.1016/j.triboint.2022.107549
- Hu Z, Huang C, Xie L, Hua L, Yuan Y, Zhang LC. Machine learning assisted quality control in metal additive manufacturing: A review. Adv Powder Mater. 2025;4(6):100342. doi: 10.1016/j.apmate.2025.100342
- Liu Q, Chu S, Zhang X, et al. Laser shock processing of titanium alloys: A critical review on the microstructure evolution and enhanced engineering performance. J Mater Sci Technol. 2025;209:262-291. doi: 10.1016/j.jmst.2024.04.075
- Tian Y, Shen J, Hu S, Gou J, Cui Y. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys. J Mater Sci Technol. 2021;74:35-45. doi: 10.1016/j.jmst.2020.09.014
- Zhou Y, Xu X, Zhao Y, et al. Introducing Zhao Y, 0nanodomains in Ti-6Al-4V: The mechanism of accelerating α → β transformation kinetics via electropulsing. J Mater Sci Technol. 2023;162:109-117. doi: 10.1016/j.jmst.2023.04.014
- Xie S, Huang C, Ding C, et al. Microstructure and tribological properties of laser melting deposited Tiposited coating on CuoatiZr substrate. Adv Eng Mater. 2025;27:2500531. doi: 10.1002/adem.202500531
- Nai X, Chen H, Zhao S, et al. Investigation on the microstructure, mechanical and electrical properties of Ti3SiC2/Cu joint obtained by Ti25Zr25Ni25Cu25 amorphous high entropy alloy and Ag composite filler. Mater Sci Eng A. 2023;877:145190. doi: 10.1016/j.msea.2023.145190
- Liu C, Wang H, Zhou J, et al. Optimising the mechanism of electroshock treatment on the tensile behaviour of the laser melting deposited Ti55531 alloy. Virtual Phys Prototyp. 2025;20(1):2449174. doi: 10.1080/17452759.2024.2449174
- Li X, Feng Y, Wang X, et al. Microstructures and properties of AlCrFeNiMnx high-entropy alloy coatings fabricated by laser cladding on a copper substrate. J Alloys Compd. 2022;926:166778. doi: 10.1016/j.jallcom.2022.166778
- Jia H, Li X, Dong Z, Jia L, Luo H. Microstructure, wear and corrosion properties of laser melted CoCrNiFeTix high-entropy alloy coatings on copper alloys. J Alloys Compd. 2025;1021:179674. doi: 10.1016/j.jallcom.2025.179674
- Dong Q, Zheng S, An Y, Pu J. Effect of copper addition on the microstructure, wear resistance, anti-corrosion and antibacterial behavior of laser cladding CoCrW coatings in marine environment. Surf Coat Technol. 2025;502:131966. doi: 10.1016/j.surfcoat.2025.131966
- Zhou YJ, Li Y, Tan N, et al. Preparation process and mechanical properties of laser cladding gradient molybdenum coating on copper alloy. Surface Coat Technol. 2023;470:129888. doi: 10.1016/j.surfcoat.2023.129888
- Wu YY, Zhou J, Han GL, et al. In-situ SEM characterization of fracture mechanism of TiB/Ti-2Al-6Sn titanium matrix composites after electroshocking treatment. Rare Metals. 2024;43(6):2805-2818. doi: 10.1007/s12598-023-02614-4
- Bhowmik A, Tan JL, Yang Y, et al. Misorientation and dislocation evolution in rapid residual stress relaxation by electropulsing. J Mater Sci Technol. 2025;209:292-299. doi: 10.1016/j.jmst.2024.05.031
- Chen K, Zhan L, Yu W. Rapidly modifying microstructure and mechanical properties of AA7150 Al alloy processed with electropulsing treatment. J Mater Sci Technol. 2021;95:172-179. doi: 10.1016/j.jmst.2021.03.060
- Xie L, Sun H, Wen Y, Hua L, Zhang LC. Electromagnetic treatment enhancing performance of metal materials: A review. Prog Mater Sci. 2025;153:101488. doi: 10.1016/j.pmatsci.2025.101488
- Fan W, Chu Q, Yang X, Li W, Zou Y, Hao S. Microstructure and mechanical properties of probeless friction stir spot welded Al-Li alloy joints via fast electric pulse treatment: A comparative study. Mater Charact. 2023;205:113276. doi: 10.1016/j.matchar.2023.113276
- Liu X, Yang Y, Chen H, Li Y, Xu S, Zhang R. Mesoscopic defect healing and fatigue lifetime improvement of 6061-T6 aluminum alloy by electropulsing treatment. Eng Fail Anal. 2023;146:107111. doi: 10.1016/j.engfailanal.2023.107111
- Qian D, Li W, Deng J, Wang F, Wu M. Promoting the interface connection of hot-compression bonded stainless steel via introducing a novel electroshocking treatment. J Mater Res Technol. 2022;18:2140-2151. doi: 10.1016/j.jmrt.2022.03.128
- Bao J, Chen W, Bai J, Xu J, Shan D, Guo B. Local softening deformation and phase transformation induced by electric current in electrically-assisted micro-compression of Ti–6Al–4V alloy. Mater Sci Eng A. 2022;831:142262. doi: 10.1016/j.msea.2021.142262
- Wu W, Song Y, Lu J, Yu Y, Hua L. Novel strategy of electroshock treatment for improving mechanical performances of Al– Zn–Mg–Cu alloy by edge dislocation increment. Mater Sci Eng A. 2022;854:143805. doi: 10.1016/j.msea.2022.143805
- Jung J, Ju Y, Morita Y, Toku Y. Enhancement of fatigue life of aluminum alloy affected by the density of pulsed electric current. Int J Fatigue. 2017;103:419-425. doi: 10.1016/j.ijfatigue.2017.06.021
- Zhang S, Geng M, Kim MJ, Bae JH, Nam Han H, Hong ST. Prolonged fatigue life in aluminum clad steel by electropulsing treatment: Retardation of interface-microcrack formation. Int J Fatigue. 2023;167:107376. doi: 10.1016/j.ijfatigue.2022.107376
- Ren X, Wang Z, An R. A promising approach to enhance fatigue life of TC11 titanium alloy: Low dislocation density and surface grain refinement induced by electropulsing. J Mater Sci Technol. 2025;204:60-70. doi: 10.1016/j.jmst.2024.03.020
- Bo H, Duarte LI, Zhu WJ, et al. Experimental study and thermodynamic assessment of the Cu–Fe–Ti system. Calphad. 2013;40:24-33. doi: 10.1016/j.calphad.2012.12.001
- Donthula H, Vishwanadh B, Alam T, et al. Morphological evolution of transformation products and eutectoid transformation(s) in a hyper-eutectoid Ti-12 at% Cu alloy. Acta Mater. 2019;168:63-75. doi: 10.1016/j.actamat.2019.01.044
- Murray JL. The Cu−Ti (copper-titanium) system. Bull Alloy Phase Diagr. 1983;4(1):81-95. doi: 10.1007/BF02880329
- Li K, Yang J, Yi Y, et al. Enhanced strength-ductility synergy and mechanisms of heterostructured Ti6Al4V-Cu alloys produced by laser powder bed fusion. Acta Mater. 2023;256:119112. doi: 10.1016/j.actamat.2023.119112
- Yao X, Sun QY, Xiao L, Sun J. Effect of Ti2Cu precipitates on mechanical behavior of Ti–2.5Cu alloy subjected to different heat treatments. J Alloys Compds. 2009;484(1-2):196-202. doi: 10.1016/j.jallcom.2009.04.095
- Jiang Q, Wen Z. Thermodynamics of Materials. Beijing, China: Higher Education Press; 2011.
- Zhang YJ, Miyamoto G, Shinbo K, Furuhara T. Quantitative measurements of phase equilibria at migrating α/γ interface and dispersion of VC interphase precipitates: Evaluation of driving force for interphase precipitation. Acta Mater. 2017;128:166-175. doi: 10.1016/j.actamat.2017.02.020
- Zhao R, Li L, Nie Z, Ma Z, Guo Q. Effects of pre-heating induced interfacial diffusion on microstructure and related mechanical properties of direct laser metal deposited Inconel 625 superalloy on a Cu-Cr-Zr substrate. Mater Sci Eng A. 2025;920:147551. doi: 10.1016/j.msea.2024.147551
- Lin J, Zhou J, Zhang S, et al. Rapidly achieving a reliable full-ceramic interface of ZrC-SiC composite using Ti interlayer via pulsed electric current joining. J Eur Ceram Soc. 2023;43(5):1777-1789. doi: 10.1016/j.jeurceramsoc.2022.12.048
- Zou J, Chen S, Cheng P, et al. Achieving high strength and large ductility in a Cr30Co30Ni30Al5Ti5 alloy through intergranular precipitation. J Mater Sci Technol. 2025;215:167-179. doi: 10.1016/j.jmst.2024.07.029
