AccScience Publishing / BH / Online First / DOI: 10.36922/bh.8345
ORIGINAL RESEARCH ARTICLE

Heart rate variability in the medium term following COVID-19: A case–control study

Rachel Anne Xuereb1,2 Stephen Fava1 Caroline Jane Magri1,2*
Show Less
1 Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
2 Department of Cardiology, Mater Dei Hospital, Msida, Malta
Received: 31 December 2024 | Revised: 2 April 2025 | Accepted: 3 April 2025 | Published online: 7 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Acute coronavirus disease-19 (COVID-19) infection is known to be associated with adverse cardiovascular complications. However, data on its longer-term cardiovascular effects remain limited. This case–control study aims to investigate potential medium-term cardiovascular sequelae of COVID-19. A random selection of patients who tested positive for COVID-19 through nasopharyngeal swabbing constituted the case group, while the control group comprised individuals who tested negative for both swab and COVID-19 immunoglobulin G antibodies. A total of 233 subjects were recruited, including 161 cases and 72 controls. The median age was 45 years (interquartile range [IQR]: 35 – 57 years). The median follow-up duration was 173.5 (IQR: 129.0 – 193.3) days. There were no significant differences between cases and controls with respect to age, sex, cardiovascular risk factors, and comorbidities. The levels of N-terminal pro-B natriuretic peptide and troponin I at follow-up did not differ significantly between the two groups. However, the root mean square of successive differences (RMSSD) of R-R intervals was significantly lower in some cases. Neither of the groups had significant arrhythmias. There were no significant differences between the two groups in both awake and asleep blood pressure levels as well as in dipping blood pressure status. In conclusion, COVID-19 infection was associated with reduced heart rate variability (HRV) as manifested by low RMSSD. Given the established link between reduced HRV and increased risks of mortality and sudden cardiac death, these findings warrant further investigation into the long-term cardiovascular impact of COVID-19.

Keywords
Heart rate variability
Coronavirus disease-19
Long-term cardiovascular complications
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Xuereb RA, Magri CJ, Fava S. Perspective chapter: The cardiovascular impact of COVID-19. In: Current Topics in Post-COVID Syndromes. London, UK: IntechOpen; 2024. doi: 10.5772/intechopen.1006541

 

  1. Woo MS, Shafiq M, Fitzek A, et al. Vagus nerve inflammation contributes to dysautonomia in COVID-19. Acta Neuropathol. 2023;146(3):387-394. doi: 10.1007/s00401-023-02612-x

 

  1. Orini M, Van Duijvenboden S, Young WJ, et al. Long-term association of ultra-short heart rate variability with cardiovascular events. Sci Rep. 2023;13(1):18966. doi: 10.1038/s41598-023-45988-2

 

  1. Dekker JM, Schouten EG, Klootwijk P, Pool J, Swenne CA, Kromhout D. Heart rate variability from short electrocardiographic recordings predicts mortality from all causes in middle-aged and elderly men. The zutphen study. Am J Epidemiol. 1997;145(10):899-908. doi: 10.1093/oxfordjournals.aje.a009049

 

  1. Gomes BFO, Benchimol-Barbosa PR, Nadal J. Predictive model of all-cause death in patients with heart failure using heart rate variability. Arq Bras Cardiol. 2023;120(11):e20220379. doi: 10.36660/abc.20220379

 

  1. Bilchick KC, Fetics B, Djoukeng R, et al. Prognostic value of heart rate variability in chronic congestive heart failure (veterans affairs’ survival trial of antiarrhythmic therapy in congestive heart failure). Am J Cardiol. 2002;90(1):24-28. doi: 10.1016/s0002-9149(02)02380-9

 

  1. Hillebrand S, Gast KB, De Mutsert R, et al. Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: Meta-analysis and dose-response meta-regression. Europace. 2013;15(5):742-749. doi: 10.1093/europace/eus341

 

  1. Kanjwal K, Jamal S, Kichloo A, Grubb BP. New-onset postural orthostatic tachycardia syndrome following coronavirus disease 2019 infection. J Innov Card Rhythm Manag. 2020;11(11):4302-4304. doi: 10.19102/icrm.2020.111102

 

  1. Johansson M, Ståhlberg M, Runold M, et al. Long-haul post- COVID-19 symptoms presenting as a variant of postural orthostatic tachycardia syndrome: The Swedish experience. JACC Case Rep. 2021;3(4):573-580. doi: 10.1016/j.jaccas.2021.01.009

 

  1. Salem AM, Yar T, Al Eid M, et al. Post-acute effect of SARS-CoV-2 infection on the cardiac autonomic function. Int J Gen Med. 2022;15:7593-7603. doi: 10.2147/IJGM.S382331

 

  1. Fedorowski A, Fanciulli A, Raj SR, Sheldon R, Shibao CA, Sutton R. Cardiovascular autonomic dysfunction in post- COVID-19 syndrome: A major health-care burden. Nat Rev Cardiol. 2024;21(6):379-395. doi: 10.1038/s41569-023-00962-3

 

  1. Miglis MG, Larsen N, Muppidi S. Inappropriate sinus tachycardia in long-COVID and other updates on recent autonomic research. Clin Auton Res. 2022;32(2):91-94. doi: 10.1007/s10286-022-00854-5

 

  1. Hira R, Baker JR, Siddiqui T, et al. Objective hemodynamic cardiovascular autonomic abnormalities in post-acute sequelae of COVID-19. Can J Cardiol. 2023;39(11):1732. doi: 10.1016/j.cjca.2023.09.005

 

  1. Rigo S, Barbic F, Khalaf K, et al. The long-COVID autonomic syndrome in hospitalized patients: A one-year prospective cohort study. Eur J Intern Med. 2024;120:38-45. doi: 10.1016/j.ejim.2023.08.018

 

  1. Larsen NW, Stiles LE, Shaik R, et al. Characterization of autonomic symptom burden in long COVID: A global survey of 2,314 adults. Front Neurol. 2022;13:1012668. doi: 10.3389/fneur.2022.1012668

 

  1. Sztajzel J. Heart rate variability: A noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med Wkly. 2004;134(35-36):514-522. doi: 10.4414/smw.2004.10321

 

  1. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93(5):1043-1065. doi: 10.1161/01.CIR.93.5.1043

 

  1. Kurtoğlu E, Afsin A, Aktaş İ, Aktürk E, Kutlusoy E, Çağaşar Ö. Altered cardiac autonomic function after recovery from COVID-19. Ann Noninvasive Electrocardiol. 2022;27(1):e12916. doi: 10.1111/anec.12916

 

  1. Santos-De-Araújo AD, Bassi-Dibai D, Marinho RS, et al. Impact of COVID-19 on heart rate variability in post-COVID individuals compared to a control group. Sci Rep. 2024;14(1):31099. doi: 10.1038/s41598-024-82411-w

 

  1. Oscoz-Ochandorena S, Legarra-Gorgoñon G, García- Alonso Y, García-Alonso N, Izquierdo M, Ramírez-Vélez R. Reduced autonomic function in patients with long- COVID-19 syndrome is mediated by cardiorespiratory fitness. Curr Probl Cardiol. 2024;49(9):102732. doi: 10.1016/j.cpcardiol.2024.102732

 

  1. Gonçalves Da Silva AL, Dos Passos Vieira L, et al. Impact of long COVID on the heart rate variability at rest and during deep breathing maneuver. Sci Rep. 2023;13(1):22695. doi: 10.1038/s41598-023-50276-0

 

  1. Stábile Da Silva F, Bonifácio LP, Bellissimo-Rodrigues F, et al. Investigating autonomic nervous system dysfunction among patients with post-COVID condition and prolonged cardiovascular symptoms. Front Med (Lausanne). 2023;10:1216452. doi: 10.3389/fmed.2023.1216452

 

  1. Gruionu G, Aktaruzzaman MD, Gupta A, Nowak TV, Ward M, Everett TH 4th. Heart rate variability parameters indicate altered autonomic tone in subjects with COVID-19. Sci Rep. 2024;14(1):30774. doi: 10.1038/s41598-024-80918-w

 

  1. Taman H, Mageed N, Elmorsy M, et al. Heart rate variability as an indicator of COVID-19 induced myocardial injury: A retrospective cohort study. BMC Anesthesiol. 2023;23(1):17. doi: 10.1186/s12871-023-01975-8

 

  1. Jarczok MN, Weimer K, Braun C, et al. Heart rate variability in the prediction of mortality: A systematic review and meta-analysis of healthy and patient populations. Neurosci Biobehav Rev. 2022;143:104907. doi: 10.1016/j.neubiorev.2022.104907

 

  1. Williams DP, Koenig J, Carnevali L, et al. Heart rate variability and inflammation: A meta-analysis of human studies. Brain Behav Immun. 2019;80:219-226. doi: 10.1016/j.bbi.2019.03.009

 

  1. Cooper TM, McKinley PS, Seeman TE, Choo TH, Lee S, Sloan RP. Heart rate variability predicts levels of inflammatory markers: Evidence for the vagal anti-inflammatory pathway. Brain Behav Immun. 2015;49:94-100. doi: 10.1016/j.bbi.2014.12.017

 

  1. Pinter A, Horvath T, Sarkozi A, Kollai M. Relationship between heart rate variability and endothelial function in healthy subjects. Auton Neurosci. 2012;169(2):107-112. doi: 10.1016/j.autneu.2012.05.005

 

  1. Gimbrone MA Jr., García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118(4):620-636. doi: 10.1161/CIRCRESAHA.115.306301

 

  1. Xuereb RA, Magri CJ, Xuereb RG. Arterial stiffness and its impact on cardiovascular health. Curr Cardiol Rep. 2023;25(10):1337-1349. doi: 10.1007/s11886-023-01951-1

 

  1. Araújo CRDS, Fernandes J, Caetano DS, et al. Endothelial function, arterial stiffness and heart rate variability of patients with cardiovascular diseases hospitalized due to COVID-19. Heart Lung. 2023;58:210-216. doi: 10.1016/j.hrtlng.2022.12.016

 

  1. Astley C, Prado DM, Sieczkowska SM, et al. Impaired cardiorespiratory fitness and endothelial function after SARS-CoV-2 infection in a sample of mainly immunocompromised youth. J Appl Physiol (1985). 2023;135(6):1323-1329. doi: 10.1152/japplphysiol.00213.2023

 

  1. Di Ciaula A, Liberale L, Portincasa P, et al. Neutrophil degranulation, endothelial and metabolic dysfunction in unvaccinated long COVID patients. Eur J Clin Invest. 2024;54:e14155. doi: 10.1111/eci.14155

 

  1. Kuchler T, Günthner R, Ribeiro A, et al. Persistent endothelial dysfunction in post-COVID-19 syndrome and its associations with symptom severity and chronic inflammation. Angiogenesis. 2023;26(4):547-563. doi: 10.1007/s10456-023-09885-6

 

  1. Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384-388. doi: 10.1038/nature01339

 

  1. Borovikova LV, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458-462. doi: 10.1038/35013070

 

  1. Hsieh DY, Lai YR, Huang CC, et al. Baroreflex sensitivity as a surrogate biomarker for concurrently assessing the severity of arterial stiffness and cardiovascular autonomic neuropathy in individuals with type 2 diabetes. J Pers Med. 2024;14(5):491. doi: 10.3390/jpm14050491

 

  1. Michas F, Manios E, Stamatelopoulos K, et al. Baroreceptor reflex sensitivity is associated with arterial stiffness in a population of normotensive and hypertensive patients. Blood Press Monit. 2012;17(4):155-159. doi: 10.1097/MBP.0b013e32835681fb

 

  1. Lal C, Kaur M, Jaryal AK, Deepak KK, Bhowmik D, Agarwal SK. Reduced baroreflex sensitivity, decreased heart rate variability with increased arterial stiffness in predialysis. Indian J Nephrol. 2017;27(6):446-451. doi: 10.4103/ijn.IJN_63_17

 

  1. Radaelli A, Castiglioni P, Balestri G, et al. Increased pulse wave velocity and not reduced ejection fraction is associated with impaired baroreflex control of heart rate in congestive heart failure. J Hypertens. 2010;28:1908-1912. doi: 10.1097/HJH.0b013e32833c2088

 

  1. Heffernan KS, Jae SY, Loprinzi PD. Association between estimated pulse wave velocity and mortality in U.S. adults. J Am Coll Cardiol. 2020;75(15):1862-1864. doi: 10.1016/j.jacc.2020.02.035

 

  1. Liu C, Pan H, Kong F, et al. Association of arterial stiffness with all-cause and cause-specific mortality in the diabetic population: A national cohort study. Front Endocrinol (Lausanne). 2023;14:1145914. doi: 10.3389/fendo.2023.1145914

 

  1. Sharif S, Visseren FL, Spiering W, et al. Arterial stiffness as a risk factor for cardiovascular events and all-cause mortality in people with type 2 diabetes. Diabet Med. 2019;36(9):1125-1132. doi: 10.1111/dme.13954

 

  1. Scandale G, Dimitrov G, Recchia M, et al. Arterial stiffness and 5-year mortality in patients with peripheral arterial disease. J Hum Hypertens. 2020;34(7):505-511. doi: 10.1038/s41371-019-0254-3

 

  1. Cecelja M, Chowienczyk P. Role of arterial stiffness in cardiovascular disease. JRSM Cardiovasc Dis. 2012;1(4): :1-10.doi: 10.1258/cvd.2012.012016

 

  1. Fakhrzadeh H, Yamini-Sharif A, Sharifi F, et al. Cardiac autonomic neuropathy measured by heart rate variability and markers of subclinical atherosclerosis in early type 2 diabetes. ISRN Endocrinol. 2012;2012:168264. doi: 10.5402/2012/168264

 

  1. Cai GJ, Miao CY, Xie HH, Lu LH, Su DF. Arterial baroreflex dysfunction promotes atherosclerosis in rats. Atherosclerosis. 2005;183(1):41-47. doi: 10.1016/j.atherosclerosis.2005.03.037

 

  1. Perkiömäki J, Ukkola O, Kiviniemi A, et al. Heart rate variability findings as a predictor of atrial fibrillation in middle-aged population. J Cardiovasc Electrophysiol. 2014;25(7):719-724. doi: 10.1111/jce.12402

 

  1. Habibi M, Chahal H, Greenland P, et al. Resting heart rate, short-term heart rate variability and incident atrial fibrillation (from the multi-ethnic study of atherosclerosis (MESA)). Am J Cardiol. 2019;124(11):1684-1689. doi: 10.1016/j.amjcard.2019.08.025

 

  1. Sluyter JD, Camargo CA Jr., Lowe A, Scragg RK. Pulse rate variability predicts atrial fibrillation and cerebrovascular events in a large, population-based cohort. Int J Cardiol. 2019;275:83-88. doi: 10.1016/j.ijcard.2018.10.026

 

  1. Geurts S, Tilly MJ, Arshi B, et al. Heart rate variability and atrial fibrillation in the general population: A longitudinal and Mendelian randomization study. Clin Res Cardiol. 2023;112(6):747-758. doi: 10.1007/s00392-022-02072-5

 

  1. Wang K, Ahmadizar F, Geurts S, et al. Heart rate variability and incident type 2 diabetes in general population. J Clin Endocrinol Metab. 2023;108(10):2510-2516. doi: 10.1210/clinem/dgad200

 

  1. Kwon CY. The impact of SARS-CoV-2 infection on heart rate variability: A systematic review of observational studies with control groups. Int J Environ Res Public Health. 2023;20(2):909. doi: 10.3390/ijerph20020909

 

Share
Back to top
Brain & Heart, Electronic ISSN: 2972-4139 Published by AccScience Publishing