AccScience Publishing / BH / Online First / DOI: 10.36922/bh.5743
CASE REPORT

Brain pathology in human tetraploidy (92, XXYY): A case report

Elvio Della Giustina1* Maria Carolina Gelli2 Tiziana Salviato1 Stefania Caramaschi3 Luca Reggiani Bonetti1
Show Less
1 Department of Maternal, Division of Pathology, Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Modena, Italy
2 Pathology Unit, Azienda Unita’ Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
3 Department of Biomedical, Metabolic, and Neurosciences, University of Modena and Reggio Emilia, Modena, Modena, Italy
Received: 1 November 2024 | Revised: 24 January 2025 | Accepted: 31 March 2025 | Published online: 30 April 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Tetraploidy is a rare chromosomal abnormality that is typically lethal in utero, with limited data on its effects on brain development. A comprehensive neuropathologic study of a tetraploid newborn (92, XXYY) at a corrected gestational age of 30 weeks is presented. Findings included hippocampal hypoplasia, partial corpus callosum agenesis, and neuronal heterotopies. In addition, the cerebral cortex showed sparse neurons across all laminae, along with molecular and meningeal glioneuronal heterotopies. The periventricular region demonstrated dispersed germline neurons, and the cerebellum exhibited matrix cell heterotopies in the dentate nuclei and numerous migrating Purkinje cells in the white matter, indicating immaturity. These brain abnormalities may explain the severe developmental delays and intellectual impairment seen in surviving patients. Unlike other severely unbalanced chromosomal aberrations that typically result in major brain malformations, tetraploidy appears to have a less severe effect on brain development. This report expands the knowledge of brain abnormalities in tetraploidy.

Keywords
Tetraploidy
Polyploidy
Brain
Neuropathology
Development
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Soler A, Badenas C, Margarit E, et al. A 92,XXXY miscarriage consecutive to a digynic triploid pregnancy. Cytogenet Genome Res. 2016;149:258-261. doi: 10.1159/000448827

 

  1. Golbus MS, Bachman R, Wiltse S, Hall BD. Tetraploidy in a liveborn infant. J Med Genet. 1976;13:329-332. doi: 10.1136/jmg.13.4.329

 

  1. Pitt D, Leversha M, Sinfield C, et al. Tetraploidy in a liveborn infant with spina bifida and other anomalies. J Med Genet. 1981;18:309-311. doi: 10.1136/jmg.18.4.309

 

  1. Stefanova I, Jenderny J, Kaminsky E, et al. Mosaic and complete tetraploidy in live-born infants: Two new patients and review of the literature. Clin Dysmorphol. 2010;19:123-112. doi: 10.1097/MCD.0b013e3283353877

 

  1. Alcamo EA, Chirivella L, Dautzenberg M, et al. Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron. 2008;57:364-377. doi: 10.1016/j.neuron.2007.12.012

 

  1. Barkovich AJ, Gressens P, Evrard P. Formation, maturation, and disorders of brain neocortex. AJNR Am J Neuroradiol. 1962;13(2):423-446.

 

  1. Rice DS, Curran T. Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci. 2001;24:1005-1039. doi: 10.1146/annurev.neuro.24.1.1005

 

  1. Caviness VS, Bhide PG, Nowakowski RS. Histogenetic processes leading to the laminated neocortex: Migration is only a part of the story. Dev Neurosci. 2008;30:82-95. doi: 10.1159/000109854

 

  1. Lakomá J, Garcia-Alonso L, Luque JM. Reelin sets the pace of neocortical neurogenesis. Development. 2011;138:5223-5234. doi: 10.1242/dev.063776

 

  1. Rakic P. A small step for the cell, a giant leap for mankind: A hypothesis of neocortical expansion during evolution. Trends Neurosci. 1995;18(9):383-388. doi: 10.1016/0166-2236(95)93934-P

 

  1. Del Bigio MR. Cell proliferation in human ganglionic eminence and suppression after prematurity-associated hemorrhage. Brain. 2011;134(Pt 5):1344-1361. doi: 10.1093/brain/awr052

 

  1. Huang H, Xue R, Zhang J, et al. Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. J Neurosci. 2009;29(13):4263-4273. doi: 10.1523/JNEUROSCI.2769-08.2009

 

  1. Kostović I, Radoš M, Kostović-Srzentić M, Krsnik Z. Fundamentals of the development of connectivity in the human fetal brain in late gestation: From 24 weeks gestational age to term. J Neuropathol Exp Neurol. 2021;80:393-414. doi: 10.1093/jnen/nlab024

 

  1. Stafstrom CE. The role of the subiculum in epilepsy and epileptogenesis. Epilepsy Curr. 2005;5(4):121-129. doi: 10.1111/j.1535-7511.2005.00049.x

 

  1. Yeo SS, Jang SH, Son SM. The different maturation of the corticospinal tract and corticoreticular pathway in normal brain development: Diffusion tensor imaging study. Front Hum Neurosci. 2014;8:573. doi:10.3389/fnhum.2014.00573

 

  1. Filippopulos FM, Brem CH, Seelos K, et al. Uncrossed corticospinal tract in health and genetic disorders: Review, case report, and clinical implications. Eur J Neurol. 2021;28:2804-2811. doi: 10.1111/ene,14897

 

Share
Back to top
Brain & Heart, Electronic ISSN: 2972-4139 Published by AccScience Publishing