AccScience Publishing / BH / Volume 1 / Issue 1 / DOI: 10.36922/bh.193
Cite this article
Journal Browser
Volume | Year
News and Announcements
View All

Potential use of prophylactic intracoronary atropine in reducing reperfusion vagal reflex-related events in ST-elevation myocardial infarction

Junlong Hou1† Erqing Li2† Yichao Duan1 Jing Wang1 Bin Chen1 Chuanmin Fan1 Liming Qin1 Bo Zhang1 Lingping Xu1*
Show Less
1 Department of Cardiovascular Medicine, Xianyang Central Hospital, Xianyang, China
2 Interventional Lab, Xianyang Central Hospital, Xianyang, China
Brain & Heart 2023, 1(1), 193
Submitted: 13 September 2022 | Accepted: 12 January 2023 | Published: 15 March 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( )

In this study, we evaluated the potential use of atropine in reducing reperfusion vagal reflex-related events during emergency percutaneous coronary intervention (PCI) for acute inferior ST-elevation myocardial infarction (STEMI). Retrospectively, we included 142 patients with inferior wall STEMI, who were treated between October 2015 and October 2020, in this study. The patients were divided into an experimental group (n = 70) and a control group (n = 72) depending on whether they received prophylactic intracoronary atropine. The experimental group was then subdivided into a low-dose group (0.5 – 1 mg atropine, n = 40) and a high-dose group (2 mg atropine, n = 30). We compared the incidence of reperfusion vagal reflex-related events and the application of temporary pacemakers between these groups. The results showed that the incidence of bradycardia (24.3% vs. 45.8%, P = 0.007), hypotension (18.6% vs. 40.3%, P = 0.005), ventricular tachycardia (4.3% vs. 19.4%, P = 0.005), and ventricular fibrillation (8.6% vs. 20.8%, P = 0.040) as well as the application of temporary pacemakers (14.3% vs. 29.2%, P = 0.032) were all much lower (all P < 0.05) in the experimental group than in the control group. In addition, the incidence of bradycardia (10% vs. 35%, P = 0.016), hypotension (6.7% vs. 27.5%, P = 0.027), ventricular tachycardia (6.7% vs. 25%, P = 0.044), and ventricular fibrillation (0 vs. 15%, P = 0.034) as well as the application of temporary pacemakers (3.3% vs. 22.5%, P = 0.036) were all much lower (all P < 0.05) in the high-dose group than the low-dose group. Our findings demonstrate that atropine pretreatment could prevent reperfusion vagal reflex-related events and reduce the application of temporary pacemakers during emergency PCI for acute inferior STEMI. These effects can be significantly enhanced by high-dose (2 mg) atropine pretreatment.

ST-elevation myocardial infarction
Acute inferior myocardial infarction
Emergency percutaneous coronary intervention
Vagal reflex
Reperfusion reaction

Webb SW, Adgey AA, Pantridge JF, 1972, Autonomic disturbance at onset of acute myocardial infarction. Br Med J, 3: 89–92. 


Thames MD, Klopfenstein H, Abboud F, et al., 1978, Preferential distribution of inhibitory cardiac receptors with vagal afferents to the inferoposterior wall of the left ventricle activated during coronary occlusion in the dog. Circ Res, 43: 512–519.


Scheinman M, Thorburn D, Abbott J, 1975, Use of atropine in patients with acute myocardial infarction and sinus bradycardia. Circulation, 52: 627–633.


Miyauchi M, Kobayashi Y, Miyauchi Y, et al., 2004, Parasympathetic blockade promotes recovery from atrial electrical remodeling induced by short-term rapid atrial pacing. Pacing Clin Electrophysiol, 27: 33–37.


Wei JY, Markis JE, Malagold M, 1983, Cardiovascular reflexes stimulated by reperfusion of ischemic myocardium in acute myocardial infarction. Circulation, 67: 796–801. 


Ibanez B, James S, Agewall S, et al., 2018, 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J, 39: 119–177. 


Choi J, Chun K, Lee S, et al., 2013, Usefulness of intracoronary epinephrine in severe hypotension during percutaneous coronary interventions. Korean Circ J, 43: 739–743. 


Vavetsi S, Nikolaou N, Tsarouhas K, et al., 2008, Consecutive administration of atropine and isoproterenol for the evaluation of asymptomatic sinus bradycardia. Europace, 10: 1176–1181.


Al-Khatib S, Stevenson W, Ackerman M, et al., 2018, 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm, 15: e73–e189. 


Mark A, 1983, The Bezold-Jarisch reflex revisited: Clinical implications of inhibitory reflexes originating in the heart. J Am Coll Cardiol, 1: 90–102.


Chen YL, Hang CL, Fang HY, et al., 2011, Comparison of prognostic outcome between left circumflex artery-related and right coronary artery-related acute inferior wall myocardial infarction undergoing primary percutaneous coronary intervention. Clin Cardiol, 34: 249–253.


Robenshtok E, Luria S, Tashma Z, et al., 2002, Adverse reaction to atropine and the treatment of organophosphate intoxication. Isr Med Assoc J, 4: 535–539. 


Schittkowski MP, Sturm V, 2018, Atropine for the prevention of progression in myopia-data, side effects, practical guidelines. Klin Monbl Augenheilkd, 235: 385–391.


Longo VG, 1955, Study of the central mechanism of action of scopolamine and atropine. Rend Ist Sup Sanit, 18: 1033–1044.


Sun J, Pang Z, Qin D, et al., 2007, A dual-Ca2+-sensor model for neurotransmitter release in a central synapse. Nature, 450: 676–682. 


Luo B, Wu Y, Liu S, et al., 2020, Vagus nerve stimulation optimized cardiomyocyte phenotype, sarcomere organization and energy metabolism in infarcted heart through FoxO3A-VEGF signaling. Cell Death Dis, 11: 971. 


Moore E, Preston J, Moe G, 1965, Durations of transmembrane action potentials and functional refractory periods of canine false tendon and ventricular myocardium: Comparisons in single fibers. Circ Res, 17: 259–273.


Zhou HH, Adedoyin A, Wood AJ, 1992, Differing effect of atropine on heart rate in Chinese and white subjects. Clin Pharmacol Ther, 52: 120–124.


Massumi RA, Mason DT, Amsterdam EA, et al., 1972, Ventricular fibrillation and tachycardia after intravenous atropine for treatment of bradycardias. N Engl J Med, 287: 336–338.


Berkowitz W, Young M, Scherlage B, 1968, Rate dependency of cardiac glycoside action on atrioventricular (AV) conduction and ventricular automaticity. Clin Res, 16: 222.


Averill KH, Lamb LE, 1959, Less commonly recognized actions of atropine on cardiac rhythm. Am J Med Sci, 237: 304–318 passim.


Myers R, Scherer J, Goldstein R, et al., 1975, Effects of nitroglycerin and nitroglycerin-methoxamine during acute myocardial ischemia in dogs with pre-existing multivessel coronary occlusive disease. Circulation, 51: 632–640.

Conflict of interest
The authors declare no conflicts of interest.
Back to top
Brain & Heart, Electronic ISSN: 2972-4139 Published by AccScience Publishing