AccScience Publishing / AN / Online First / DOI: 10.36922/AN025090018
REVIEW ARTICLE

The imprisoned brain: An integrated neurobiological view of substance dependence

André Demambre Bacchi1*
Show Less
1 Department of Medicine, Faculty of Health Sciences, Federal University of Rondonópolis, Rondonópolis, Mato Grosso, Brazil
Advanced Neurology, 025090018 https://doi.org/10.36922/AN025090018
Received: 25 February 2025 | Revised: 2 May 2025 | Accepted: 9 May 2025 | Published online: 27 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Substance dependence is a complex neurobiological condition characterized by progressive dysfunction in reward processing, impulse control, and habit formation. This narrative review integrates key findings on the neural mechanisms underlying addiction, emphasizing the transition from impulsive reward-driven drug use to compulsive habitual consumption. The mesocorticolimbic dopaminergic system plays a central role in addiction, with repeated substance exposure inducing neuroadaptive changes that shift control from the nucleus accumbens to the dorsal striatum, reinforcing compulsive drug-seeking behavior. In addition, glutamatergic plasticity strengthens drug-cue associations, whereas inhibitory control deficits in the prefrontal cortex exacerbate impulsivity. Genetic and epigenetic factors modulate individual vulnerability and influence dopamine receptor expression, synaptic plasticity, and sensitivity to reinforcement. The opioid and endocannabinoid systems further contribute by disinhibiting dopamine release, amplifying craving, and increasing relapse risk. Understanding these neurobiological mechanisms highlights addiction as a condition rooted in maladaptive neural plasticity, rather than a simple failure of willpower. This perspective informs potential therapeutic strategies that target the underlying dysregulation of neurotransmitter systems and behavioral control circuits. By integrating findings from neuroimaging, molecular genetics, and behavioral neuroscience, this review provides a comprehensive framework for understanding the mechanisms sustaining addiction and the persistent challenges of relapse.

Keywords
Substance-related disorders
Dopamine
Impulsivity
Compulsive behavior
Neuroplasticity
Reward system
Funding
None.
Conflict of interest
The author declares no conflicts of interest.
References
  1. Koob GF, Kandel DB, Baler RD, Volkow ND. Neurobiology of addiction. In: Tasman A, Riba MB, Alarcón RD, et al., editors. Tasman’s Psychiatry. Berlin: Springer International Publishing; 2020. p. 1-51. doi: 10.1007/978-3-030-42825-9_29-1

 

  1. Uhl GR, Koob GF, Cable J. The neurobiology of addiction. Ann N Y Acad Sci. 2019;1451(1):5-28. doi: 10.1111/nyas.13989

 

  1. Koob GF, Volkow ND. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry. 2016; 3(8):760-773. doi: 10.1016/S2215-0366(16)00104-8

 

  1. Nestler EJ. Molecular neurobiology of addiction. Am J Addict. 2001;10(3):201-217. doi: 10.1080/105504901750532094

 

  1. Lingford-Hughes A, Nutt D. Neurobiology of addiction and implications for treatment. Br J Psychiatry. 2003;182:97-100. doi: 10.1192/bjp.182.2.97

 

  1. Koob GF. Neurobiology of addiction: Toward the development of new therapies. Ann N Y Acad Sci. 2000;909(1):170-185. doi: 10.1111/j.1749-6632.2000.tb06682.x

 

  1. Koob GF, Simon EJ. The neurobiology of addiction: Where we have been and where we are going. J Drug Issues. 2009;39(1):115-132. doi: 10.1177/002204260903900110

 

  1. Hayes A, Herlinger K, Paterson L, Lingford-Hughes A. The neurobiology of substance use and addiction: Evidence from neuroimaging and relevance to treatment. BJPsych Adv. 2020;26(6):367-378. doi: 10.1192/bja.2020.68

 

  1. Murnane KS, Edinoff AN, Cornett EM, Kaye AD. Updated perspectives on the neurobiology of substance use disorders using neuroimaging. Subst Abuse Rehabil. 2023;14:99-111. doi: 10.2147/SAR.S362861

 

  1. Kozak K, Lucatch AM, Lowe DJE, Balodis IM, MacKillop J, George TP. The neurobiology of impulsivity and substance use disorders: Implications for treatment. Ann N Y Acad Sci. 2019;1451(1):71-91. doi: 10.1111/nyas.13977

 

  1. Grant JE, Brewer JA, Potenza MN. The neurobiology of substance and behavioral addictions. CNS Spectr. 2006;11(12):924-930. doi: 10.1017/s109285290001511x

 

  1. Nock NL, Minnes S, Alberts JL. Neurobiology of substance use in adolescents and potential therapeutic effects of exercise for prevention and treatment of substance use disorders. Birth Defects Res. 2017;109(20):1711-1729. doi: 10.1002/bdr2.1182

 

  1. Sharma A, Morrow JD. Neurobiology of adolescent substance use disorders. Child Adolesc Psychiatr Clin N Am. 2016;25(3):367-375. doi: 10.1016/j.chc.2016.02.001

 

  1. Casey BJ, Jones RM. Neurobiology of the adolescent brain and behavior: Implications for substance use disorders. J Am Acad Child Adolesc Psychiatry. 2010;49(12):1189-1201. doi: 10.1016/j.jaac.2010.08.017

 

  1. Michaels TI, Stone E, Singal S, Novakovic V, Barkin RL, Barkin S. Brain reward circuitry: The overlapping neurobiology of trauma and substance use disorders. World J Psychiatry. 2021;11(6):222-231. doi: 10.5498/wjp.v11.i6.222

 

  1. Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci. 2008;363(1507):3125-3135. doi: 10.1098/rstb.2008.0089

 

  1. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F. Addiction: Beyond dopamine reward circuitry. Proc Natl Acad Sci U S A. 2011;108(37):15037-15042. doi: 10.1073/pnas.1010654108

 

  1. Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: Neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry. 2002;159(10):1642-1652. doi: 10.1176/appi.ajp.159.10.1642

 

  1. Fattore L, Melis M. Sex differences in impulsive and compulsive behaviors: A focus on drug addiction. Addict Biol. 2016;21(5):1043-1051. doi: 10.1111/adb.12381

 

  1. Izquierdo A, Jentsch JD. Reversal learning as a measure of impulsive and compulsive behavior in addictions. Psychopharmacology. 2012;219(2):607-620. doi: 10.1007/s00213-011-2579-7

 

  1. Spragg SDS. Morphine addiction in chimpanzees. Compar Psychol Monographs. 1940;7:132-132.

 

  1. Olds J, Milner P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol. 1954;47(6):419-427. doi: 10.1037/h0058775

 

  1. Koob GF, Moal ML. Addiction and the brain antireward system. Annu Rev Psychol. 2008;59:29-53. doi: 10.1146/annurev.psych.59.103006.093548

 

  1. Di Chiara G, Bassareo V. Reward system and addiction: What dopamine does and doesn’t do. Curr Opin Pharmacol. 2007;7(1):69-76. doi: 10.1016/j.coph.2006.11.003

 

  1. Koob GF. Negative reinforcement in drug addiction: The darkness within. Curr Opin Neurobiol. 2013;23(4):559-563. doi: 10.1016/j.conb.2013.03.011

 

  1. Joranby L, Pineda KF, Gold MS. Addiction to food and brain reward systems. Sex Addict Compulsivity. 2005;12(2-3):201-217. doi: 10.1080/10720160500203765

 

  1. Wise RA, Jordan CJ. Dopamine, behavior, and addiction. J Biomed Sci. 2021;28(1):83. doi: 10.1186/s12929-021-00779-7

 

  1. Solinas M, Belujon P, Fernagut PO, Jaber M, Thiriet N. Dopamine and addiction: What have we learned from 40 years of research. J Neural Transm. 2019;126(4):481-516. doi: 10.1007/s00702-018-1957-2

 

  1. Hou H, Wang C, Jia S, Hu S, Tian M. Brain dopaminergic system changes in drug addiction: A review of positron emission tomography findings. Neurosci Bull. 2014;30(5):765-776. doi: 10.1007/s12264-014-1469-5

 

  1. Corominas-Roso M, Roncero C, Bruguera E, Casas M. The dopaminergic system and addictions. Rev Neurol. 2007;44(1):23-31.

 

  1. Patriquin MA, Bauer IE, Soares JC, Graham DP, Nielsen DA. Addiction pharmacogenetics: A systematic review of the genetic variation of the dopaminergic system. Psychiatr Genet. 2015;25(5):181. doi: 10.1097/YPG.0000000000000095

 

  1. Berridge KC, Robinson TE. What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Res Rev. 1998;28(3):309-369. doi: 10.1016/S0165-0173(98)00019-8

 

  1. Arias-Carrión O, Stamelou M, Murillo-Rodríguez E, Menéndez-González M, Pöppel E. Dopaminergic reward system: A short integrative review. Int Arch Med. 2010;3(1):24. doi: 10.1186/1755-7682-3-24

 

  1. Bressan RA, Crippa JA. The role of dopamine in reward and pleasure behaviour-review of data from preclinical research. Acta Psychiatr Scand Suppl. 2005;111(s427):14-21. doi: 10.1111/j.1600-0447.2005.00540.x

 

  1. Marsden CA. Dopamine: The rewarding years. Br J Pharmacol. 2006;147(S1):S136-S144. doi: 10.1038/sj.bjp.0706473

 

  1. Dreher JC, Kohn P, Kolachana B, Weinberger DR, Berman KF. Variation in dopamine genes influences responsivity of the human reward system. Proc Natl Acad Sci U S A. 2009;106(2):617-622. doi: 10.1073/pnas.0805517106

 

  1. Volkow ND, Wise RA, Baler R. The dopamine motive system: Implications for drug and food addiction. Nat Rev Neurosci. 2017;18(12):741-752. doi: 10.1038/nrn.2017.130

 

  1. Samaha AN, Khoo SYS, Ferrario CR, Robinson TE. Dopamine “ups and downs” in addiction revisited. Trends Neurosci. 2021;44(7):516-526. doi: 10.1016/j.tins.2021.03.003

 

  1. Berke JD, Hyman SE. Addiction, dopamine, and the molecular mechanisms of memory. Neuron. 2000;25(3):515-532. doi: 10.1016/S0896-6273(00)81056-9

 

  1. Abdullah M, Huang LC, Lin SH, Yang YK. Dopaminergic and glutamatergic biomarkers disruption in addiction and regulation by exercise: A mini review. Biomarkers. 2022;27(4):306-318. doi: 10.1080/1354750X.2022.2049367

 

  1. Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci. 2010;13(5):635-641. doi: 10.1038/nn.2519

 

  1. Tomkins DM, Sellers EM. Addiction and the brain: The role of neurotransmitters in the cause and treatment of drug dependence. CMAJ. 2001;164(6):817-821.

 

  1. Ebrahimi MN, Banazadeh M, Alitaneh Z, et al. The distribution of neurotransmitters in the brain circuitry: Mesolimbic pathway and addiction. Physiol Behav. 2024;284:114639. doi: 10.1016/j.physbeh.2024.114639

 

  1. Wei ZX, Wu Q, Liu QS, Cheng Y. Neurotransmitter system aberrations in patients with drug addiction. J Neural Transm. 2020;127(12):1641-1650. doi: 10.1007/s00702-020-02242-7

 

  1. Reid A, Lingford-Hughes A. Neuropharmacology of addiction. Psychiatry. 2006;5(12):449-454. doi: 10.1053/j.mppsy.2006.09.006

 

  1. López-Moreno JA, González-Cuevas G, Moreno G, Navarro M. The pharmacology of the endocannabinoid system: Functional and structural interactions with other neurotransmitter systems and their repercussions in behavioral addiction. Addict Biol. 2008;13(2):160-187. doi: 10.1111/j.1369-1600.2008.00105.x

 

  1. Volkow ND, Muenke M. The genetics of addiction. Hum Genet. 2012;131(6):773-777. doi: 10.1007/s00439-012-1173-3

 

  1. Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci. 2011; 12(11):623-637. doi: 10.1038/nrn3111

 

  1. Pierce RC, Fant B, Swinford-Jackson SE, Heller EA, Berrettini WH, Wimmer ME. Environmental, genetic and epigenetic contributions to cocaine addiction. Neuropsychopharmacol. 2018;43(7):1471-1480. doi: 10.1038/s41386-018-0008-x

 

  1. Hamilton PJ, Nestler EJ. Epigenetics and addiction. Curr Opin Neurobiol. 2019;59:128-136. doi: 10.1016/j.conb.2019.05.005

 

  1. Walker DM, Nestler EJ. Neuroepigenetics and addiction. In: Geschwind DH, Paulson HL, Klein C, editors. Handbook of Clinical Neurology. Neurogenetics, Part II. Vol. 148., Ch. 48. Netherlands: Elsevier; 2018. p. 747-765. doi: 10.1016/B978-0-444-64076-5.00048-X

 

  1. Nestler EJ. Epigenetic mechanisms of drug addiction. Neuropharmacology. 2014;76:259-268. doi: 10.1016/j.neuropharm.2013.04.004

 

  1. Ajonijebu DC, Abboussi O, Russell VA, Mabandla MV, Daniels WMU. Epigenetics: A link between addiction and social environment. Cell Mol Life Sci. 2017;74(15):2735-2747. doi: 10.1007/s00018-017-2493-1

 

  1. Sznabowicz M, Jasiewicz A, Iskra-Trifunović J, et al. Case-control study analysis of DRD2 gene polymorphisms in drug addicted patients. Psychiatr Pol. 2018;52(6):1013-1022. doi: 10.12740/PP/85935

 

  1. Dennis BB, Bawor M, Thabane L, Sohani Z, Samaan Z. Impact of ABCB1 and CYP2B6 genetic polymorphisms on methadone metabolism, dose and treatment response in patients with opioid addiction: A systematic review and meta-analysis. PLoS One. 2014;9(1):e86114. doi: 10.1371/journal.pone.0086114

 

  1. Nestler EJ. Genes and addiction. Nat Genet. 2000;26(3):277-281. doi: 10.1038/81570

 

  1. Al-Eitan LN, Rababa’h DM, Alghamdi MA. Genetic susceptibility of opioid receptor genes polymorphism to drug addiction: A candidate-gene association study. BMC Psychiatry. 2021;21(1):5. doi: 10.1186/s12888-020-03006-z

 

  1. Gelernter J, Kranzler HR, Sherva R, et al. Genome-wide association study of alcohol dependence: Significant findings in African-and European-Americans including novel risk loci. Mol Psychiatry. 2014;19(1):41-49. doi: 10.1038/mp.2013.145

 

  1. Clarke TK, Adams MJ, Davies G, et al. Genome-wide association study of alcohol consumption and genetic overlap with other health-related traits in UK Biobank (N=112 117). Mol Psychiatry. 2017;22(10):1376-1384. doi: 10.1038/mp.2017.153

 

  1. Levran O, Yuferov V, Kreek MJ. The genetics of the opioid system and specific drug addictions. Hum Genet. 2012;131(6):823-842. doi: 10.1007/s00439-012-1172-4

 

  1. Crist RC, Reiner BC, Berrettini WH. A review of opioid addiction genetics. Curr Opin Psychol. 2019;27:31-35. doi: 10.1016/j.copsyc.2018.07.014

 

  1. Noble EP. Addiction and its reward process through polymorphisms of the D2 dopamine receptor gene: A review. Eur Psychiatry. 2000;15(2):79-89. doi: 10.1016/s0924-9338(00)00208-x

 

  1. Ishiguro H, Gong JP, Hall FS, Arinami T, Uhl GR. Association of PTPRB gene polymorphism with drug addiction. Am J Med Genet B Neuropsychiatr Genet. 2008;147B(7):1167-1172. doi: 10.1002/ajmg.b.30742

 

  1. Blum K, McLaughlin T, Bowirrat A, et al. Reward deficiency syndrome (RDS) surprisingly is evolutionary and found everywhere: Is it “blowin’ in the wind”? J Pers Med. 2022;12(2):321. doi: 10.3390/jpm12020321

 

  1. Feng J, Nestler EJ. Epigenetic mechanisms of drug addiction. Curr Opin Neurobiol. 2013;23(4):521-528. doi: 10.1016/j.conb.2013.01.001

 

  1. Renthal W, Nestler EJ. Epigenetic mechanisms in drug addiction. Trends Mol Med. 2008;14(8):341-350. doi: 10.1016/j.molmed.2008.06.004

 

  1. Browne CJ, Godino A, Salery M, Nestler EJ. Epigenetic mechanisms of opioid addiction. Biol Psychiatry. 2020;87(1):22-33. doi: 10.1016/j.biopsych.2019.06.027

 

  1. Wong CCY, Mill J, Fernandes C. Drugs and addiction: an introduction to epigenetics. Addiction. 2011;106(3):480-489. doi: 10.1111/j.1360-0443.2010.03321.x

 

  1. Pandey SC, Kyzar EJ, Zhang H. Epigenetic basis of the dark side of alcohol addiction. Neuropharmacology. 2017;122:74-84. doi: 10.1016/j.neuropharm.2017.02.002

 

  1. Maze I, Nestler EJ. The epigenetic landscape of addiction. Ann N Y Acad Sci. 2011;1216(1):99-113. doi: 10.1111/j.1749-6632.2010.05893.x

 

  1. Vink JM. Genetics of addiction: Future focus on gene×environment interaction? J Stud Alcohol Drugs. 2016;77(5):684-687. doi: 10.15288/jsad.2016.77.684

 

  1. Enoch MA. Genetic and environmental influences on the development of alcoholism. Ann N Y Acad Sci. 2006;1094(1):193-201. doi: 10.1196/annals.1376.019

 

  1. Edwards AC, Svikis DS, Pickens RW, Dick DM. Genetic influences on addiction. Primary Psychiatry. 2009;16(8):40-46.

 

  1. Agrawal A, Lynskey MT. Are there genetic influences on addiction: Evidence from family, adoption and twin studies. Addiction. 2008;103(7):1069-1081. doi: 10.1111/j.1360-0443.2008.02213.x

 

  1. Everitt BJ, Robbins TW. From the ventral to the dorsal striatum: Devolving views of their roles in drug addiction. Neurosci Biobehav Rev. 2013;37(9 Pt A):1946-1954. doi: 10.1016/j.neubiorev.2013.02.010

 

  1. Volkow ND. Stimulant medications: How to minimize their reinforcing effects? Am J Psychiatry. 2006;163(3):359-361. doi: 10.1176/appi.ajp.163.3.359

 

  1. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacol. 2010;35(1):217-238. doi: 10.1038/npp.2009.110

 

  1. Grueter BA, Rothwell PE, Malenka RC. Integrating synaptic plasticity and striatal circuit function in addiction. Curr Opin Neurobiol. 2012;22(3):545-551. doi: 10.1016/j.conb.2011.09.009

 

  1. Morein-Zamir S, Robbins TW. Fronto-striatal circuits in response-inhibition: Relevance to addiction. Brain Res. 2015;1628:117-129. doi: 10.1016/j.brainres.2014.09.012

 

  1. Yager LM, Garcia AF, Wunsch AM, Ferguson SM. The ins and outs of the striatum: Role in drug addiction. Neuroscience. 2015;301:529-541. doi: 10.1016/j.neuroscience.2015.06.033

 

  1. Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nat Rev Neurosci. 2011;12(11):652-669. doi: 10.1038/nrn3119

 

  1. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Baler R. Chapter one-neuroimaging of addiction. In: Seeman P, Madras B, editors. Imaging of the Human Brain in Health and Disease. United States: Academic Press; 2014. p. 1-26. doi: 10.1016/B978-0-12-418677-4.00001-4

 

  1. Lyoo IK, Pollack MH, Silveri MM, et al. Prefrontal and temporal gray matter density decreases in opiate dependence. Psychopharmacology. 2006;184(2):139-144. doi: 10.1007/s00213-005-0198-x

 

  1. Yuan Y, Zhu Z, Shi J, et al. Gray matter density negatively correlates with duration of heroin use in young lifetime heroin-dependent individuals. Brain Cognit. 2009;71(3):223-228. doi: 10.1016/j.bandc.2009.08.014

 

  1. Garrison KA, Potenza MN. Neuroimaging and biomarkers in addiction treatment. Curr Psychiatry Rep. 2014;16(12):513. doi: 10.1007/s11920-014-0513-5

 

  1. Parvaz MA, Alia-Klein N, Woicik PA, Volkow ND, Goldstein RZ. Neuroimaging for drug addiction and related behaviors. Rev Neurosci. 2011;22(6):609-624. doi: 10.1515/RNS.2011.055

 

  1. Ersche KD, Williams GB, Robbins TW, Bullmore ET. Meta-analysis of structural brain abnormalities associated with stimulant drug dependence and neuroimaging of addiction vulnerability and resilience. Curr Opin Neurobiol. 2013;23(4):615-624. doi: 10.1016/j.conb.2013.02.017

 

  1. Ekhtiari H, Faghiri A, Oghabian MA, Paulus MP. Functional neuroimaging for addiction medicine: From mechanisms to practical considerations. In: Ekhtiari H, Paulus MP, editors. Progress in Brain Research. Neuroscience for Addiction Medicine: From Prevention to Rehabilitation-Methods and Interventions. Vol. 224., Ch. 7. Netherlands: Elsevier; 2016. p. 129-153. doi: 10.1016/bs.pbr.2015.10.001

 

  1. Filbey FM, Claus ED, Hutchison Kent E. A Neuroimaging approach to the study of craving. In: Neuroimaging in Addiction. United States: John Wiley & Sons, Ltd; 2011. p. 131-156. doi: 10.1002/9781119998938.ch6

 

  1. Weiss F. Neurobiology of craving, conditioned reward and relapse. Curr Opin Pharmacol. 2005;5(1):9-19. doi: 10.1016/j.coph.2004.11.001

 

  1. Sinha R. The clinical neurobiology of drug craving. Curr Opin Neurobiol. 2013;23(4):649-654. doi: 10.1016/j.conb.2013.05.001

 

  1. Wiers CE, Heinz A. Neurobiology of alcohol craving and relapse prediction. In: The Wiley Handbook on the Cognitive Neuroscience of Addiction. United States: John Wiley & Sons, Ltd.; 2015. p. 219-239. doi: 10.1002/9781118472415.ch10

 

  1. Ray LA, Roche DJO. Neurobiology of craving: Current findings and new directions. Curr Addict Rep. 2018;5(2):102-109. doi: 10.1007/s40429-018-0202-2

 

  1. Heinz A, Beck A, Grüsser SM, Grace AA, Wrase J. Identifying the neural circuitry of alcohol craving and relapse vulnerability. Addict Biol. 2009;14(1):108-118. doi: 10.1111/j.1369-1600.2008.00136.x

 

  1. Lueptow LM, Shashkova EC, Miller MG, Evans CJ, Cahill CM. Insights into the neurobiology of craving in opioid use disorder. Curr Anesthesiol Rep. 2020;10(4):378-387. doi: 10.1007/s40140-020-00420-7

 

  1. Seo D, Sinha R. The neurobiology of alcohol craving and relapse. In: Sullivan EV, Pfefferbaum A, editors. Handbook of Clinical Neurology. Alcohol and the Nervous System. Vol. 125., Ch. 21. Netherlands: Elsevier; 2014. p. 355-368. doi: 10.1016/B978-0-444-62619-6.00021-5

 

  1. Wise RA. The neurobiology of craving: Implications for the understanding and treatment of addiction. J Abnorm Psychol. 1988;97(2):118-132. doi: 10.1037/0021-843X.97.2.118

 

  1. Volkow ND, Wang GJ, Tomasi D, Baler RD. Unbalanced neuronal circuits in addiction. Curr Opin Neurobiol. 2013;23(4):639-648. doi: 10.1016/j.conb.2013.01.002

 

  1. Lüscher C. The emergence of a circuit model for addiction. Annu Rev Neurosci. 2016;39:257-276. doi: 10.1146/annurev-neuro-070815-013920

 

  1. Britt JP, Bonci A. Optogenetic interrogations of the neural circuits underlying addiction. Curr Opin Neurobiol. 2013;23(4):539-545. doi: 10.1016/j.conb.2013.01.010

 

  1. Egervari G, Ciccocioppo R, Jentsch JD, Hurd YL. Shaping vulnerability to addiction-the contribution of behavior, neural circuits and molecular mechanisms. Neurosci Biobehav Rev. 2018;85:117-125. doi: 10.1016/j.neubiorev.2017.05.019

 

  1. Volkow ND, Wang GJ, Fowler JS, Telang F. Overlapping neuronal circuits in addiction and obesity: Evidence of systems pathology. Philos Trans R Soc Lond B Biol Sci. 2008;363(1507):3191-3200. doi: 10.1098/rstb.2008.0107

 

  1. Cooper S, Robison AJ, Mazei-Robison MS. Reward circuitry in addiction. Neurotherapeutics. 2017;14(3):687-697. doi: 10.1007/s13311-017-0525-z

 

  1. Picciotto MR, Corrigall WA. Neuronal systems underlying behaviors related to nicotine addiction: Neural circuits and molecular genetics. J Neurosci. 2002;22(9):3338-3341. doi: 10.1523/JNEUROSCI.22-09-03338.2002

 

  1. Kelley AE. Memory and addiction: Shared neural circuitry and molecular mechanisms. Neuron. 2004;44(1):161-179. doi: 10.1016/j.neuron.2004.09.016

 

Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing