Neuroprotective and neuroregenerative effects of Sambucus nigra: Mechanisms and therapeutic potential

An essential indicator of neurodegenerative diseases is progressive neuronal degradation, often leading to cognitive and motor deficits. Recent studies have highlighted the Sambucus genus, particularly Sambucus nigra (elderberry [EB]), commonly known as a black elder, as a promising source of bioactive compounds with potential neuroregenerative effects. This review evaluates the potential of EB in mitigating inflammation, oxidative stress, and neurodegenerative processes. EB’s rich polyphenolic profile – including terpenoids, flavanols, and anthocyanins – has been shown to enhance antioxidant defenses, protect neurons from oxidative damage, and stimulate neurogenesis. Furthermore, bioactive compounds in EB have been found to promote the release of neurotrophic factors, which play a crucial role in neuronal survival and repair. However, challenges such as low bioavailability, limited blood–brain barrier permeability, and the lack of standardized dosing guidelines for EB must be addressed in the future studies. In this review, relevant articles were identified through keyword searches in PubMed and Web of Science, supplemented with reference mining and citation tracking. As this is not a systematic review, only those citations pertinent to the specific requirements of the review were included. Particular attention is given to the mechanisms by which EB-derived compounds may support autophagy and modulate the mammalian target of rapamycin complex 1 signaling pathway, two critical defense strategies against neurodegeneration. These findings provide a foundation for future investigations into the therapeutic potential of EB in managing neurodegenerative disorders.
- Ofek I, Goldhar J, Zafriri D, Lis H, Adar R, Sharon N. Anti- Escherichia coli adhesin activity of cranberry and blueberry juices. N Engl J Med. 1991;324:1599. doi: 10.1056/NEJM199105303242214
- Colic M, Pavelic K. Molecular mechanisms of anticancer activity of natural dietetic products. J Mol Med. 2000;78:333-336. doi: 10.1007/s001090000121
- Cao G, Prior RL. Anthocyanins are detected in human plasma after oral administration of an elderberry extract. Clin Chem. 1999;45(4):574-576. doi: 10.1093/clinchem/45.4.574
- Galligioni E, Ferro A. Angiogenesis and antiangiogenic agents in non-small cell lung cancer. Lung Cancer. 2001;34:3-7. doi: 10.1016/s0169-5002(01)00386-5
- Fotsis T, Pepper MS, Aktas E, et al. Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Res. 1997;57(14):2916-2921.
- Fotsis T, Pepper MS, Montesano R, et al. 7Phytoestrogens and inhibition of angiogenesis. Baillieres Clin Endocrinol Metab. 1998;12(4):649-666. doi: 10.1016/S0950-351X(98)80009-8
- Miraj S. Chemical composition and pharmacological effects of Sambucus nigra. Der Pharma Chem. 2016;8(13):231-234.
- Jabbari M, Hashempur MH, Razavi SZ, Shahraki HR, Kamalinejad M, Emtiazy M. Efficacy and short-term safety of topical Dwarf Elder (Sambucus ebulus L.) versus diclofenac for knee osteoarthritis: A randomized, double-blind, active-controlled trial. J Ethnopharmacol. 2016;188:80-86. doi: 10.1016/j.jep.2016.04.035
- Waswa EN, Li J, Mkala EM, et al. Ethnobotany, phytochemistry, pharmacology, and toxicology of the genus Sambucus L. (Viburnaceae). J Ethnopharmacol. 2022;292:115102. doi: 10.1016/j.jep.2022.115102
- Benevides Bahiense J, Marques FM, Figueira MM, et al. Potential anti-inflammatory, antioxidant and antimicrobial activities of Sambucus australis. Pharm Biol. 2017; 55(1):991-997. doi: 10.1080/13880209.2017.1285324
- Corrado G, Basile B, Mataffo A, et al. Cultivation, phytochemistry, health claims, and genetic diversity of Sambucus nigra, a versatile plant with many beneficial properties. Horticulturae. 2023;9(4):488. doi: 10.3390/horticulturae9040488
- Ağalar H, Demirci B, Demirci F, Kirimer N. The volatile compounds of the elderflowers extract and the essential oil. Rec Nat Prod. 2017;11(5):491-496. doi: 10.25135/rnp.63.16.08.058
- Liu D, He XQ, Wu DT, et al. Elderberry (Sambucus nigra L.): Bioactive compounds, health functions, and applications. J Agric Food Chem. 2022;70(14):4202-4220. doi: 10.1021/acs.jafc.2c00010
- Kumar GP, Khanum F. Neuroprotective potential of phytochemicals. Pharmacogn Rev. 2012;6(12):81. doi: 10.4103/0973-7847.99898
- Hou Y, Dan X, Babbar M, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019; 15(10):565-581. doi: 10.1038/s41582-019-0244-7
- Elufioye TO, Berida TI, Habtemariam S. Plants‐derived neuroprotective agents: cutting the cycle of cell death through multiple mechanisms. Evid Based Complement Altern Med. 2017;2017(1):3574012. doi: 10.1155/2017/3574012
- Shen S, Yu S, Binek J, et al. Distinct signaling pathways for induction of type II NOS by IFNγ and LPS in BV-2 microglial cells. Neurochem Int. 2005;47(4):298-307. doi: 10.1016/j.neuint.2005.03.007
- Chuang DY, Chan MH, Zong Y, et al. Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells. J Neuroinflammation. 2013;10:15. doi: 10.1186/1742-2094-10-15
- Kang CH, Jayasooriya RG, Choi YH, Moon SK, Kim WJ, Kim GY. β-Ionone attenuates LPS-induced pro-inflammatory mediators such as NO, PGE2 and TNF-α in BV2 microglial cells via suppression of the NF-κB and MAPK pathway. Toxicol In Vitro. 2013;27(2):782-787. doi: 10.1016/j.tiv.2012.12.012
- Vlachojannis JE, Cameron M, Chrubasik S. A systematic review on the sambuci fructus effect and efficacy profiles. Phytother Res. 2010;24(1):1-8. doi: 10.1002/ptr.2729
- Frøkiær H, Henningsen L, Metzdorff SB, et al. Astragalus root and elderberry fruit extracts enhance the IFN-β stimulatory effects of Lactobacillus acidophilus in murine-derived dendritic cells. PLoS One. 2012;7(10):e47878. doi: 10.1371/journal.pone.0047878
- Jiang JM, Zong Y, Chuang DY, et al. Effects of elderberry juice from different genotypes on oxidative and inflammatory responses in microglial cells. Acta Hortic. 2013;1061:281-288. doi: 10.17660/ActaHortic.2015.1061.31
- Lin P, Hwang E, Ngo HT, Seo SA, Yi TH. Sambucus nigra L. ameliorates UVB-induced photoaging and inflammatory response in human skin keratinocytes. Cytotechnology. 2019;71:1003-1017. doi: 10.1007/s10616-019-00342-1
- Olejnik A, Kowalska K, Olkowicz M, et al. Anti-inflammatory effects of gastrointestinal digested Sambucus nigra L. fruit extract analysed in co-cultured intestinal epithelial cells and lipopolysaccharide-stimulated macrophages. J Funct Foods. 2015;19:649-660. doi: 10.1016/j.jff.2015.09.064
- Simonyi A, Chen Z, Jiang J, et al. Inhibition of microglial activation by elderberry extracts and its phenolic components. Life Sci. 2015;128:30-38. doi: 10.1016/j.lfs.2015.01.037
- Sul OJ, Ra SW. Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-kB in lung epithelial cells. Molecules. 2021;26(22):6949. doi: 10.3390/molecules26226949
- Van Eldik LJ, Thompson WL, Ranaivo HR, Behanna HA, Watterson DM. Glia proinflammatory cytokine upregulation as a therapeutic target for neurodegenerative diseases: Function‐based and target‐based discovery approaches. Int Rev Neurobiol. 2007;82:277-296. doi: 10.1016/S0074-7742(07)82015-0
- Idova G, Alperina E, Zhanaeva SY. Neuroinflammation and immune dysfunction in the mechanisms of development of Parkinson’s disease. Neurosci Behav Physiol. 2023; 53(9):1534-1550. doi: 10.1007/s11055-023-01549-8
- Ferreira SS, Martins-Gomes C, Nunes FM, Silva AM. Elderberry (Sambucus nigra L.) extracts promote anti-inflammatory and cellular antioxidant activity. Food Chem X. 2022;15:100437. doi: 10.1016/j.fochx.2022.100437
- Rathod NB, Elabed N, Punia S, Ozogul F, Kim SK, Rocha JM. Recent developments in polyphenol applications on human health: A review with current knowledge. Plants. 2023;12(6):1217. doi: 10.3390/plants12061217
- Domínguez R, Zhang L, Rocchetti G, et al. Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. Food Chem. 2020;330:127266. doi: 10.1016/j.foodchem.2020.127266
- Palomino O, García-Aguilar A, González A, Guillén C, Benito M, Goya L. Biological actions and molecular mechanisms of Sambucus nigra L. in neurodegeneration: A cell culture approach. Molecules. 2021;26(16):4829. doi: 10.3390/molecules26164829
- Franzoni F, Scarfò G, Guidotti S, Fusi J, Asomov M, Pruneti C. Oxidative stress and cognitive decline: The neuroprotective role of natural antioxidants. Front Neurosci. 2021;15:729757. doi: 10.3389/fnins.2021.729757
- Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther. 2017;360(1):201-205. doi: 10.1124/jpet.116.237503
- Patel M. Targeting oxidative stress in central nervous system disorders. Trends Pharmacol Sci. 2016;37(9):768-778. doi: 10.1016/j.tips.2016.06.007
- Behl C, Moosmann B. Antioxidant neuroprotection in Alzheimer’s disease as preventive and therapeutic approach. Free Radic Biol Med. 2002;33(2):182-191. doi: 10.1016/S0891-5849(02)00883-3
- De Rus Jacquet A, Timmers M, Ma SY, et al. Lumbee traditional medicine: Neuroprotective activities of medicinal plants used to treat Parkinson’s disease-related symptoms. J Ethnopharmacol. 2017;206:408-425. doi: 10.1016/j.jep.2017.02.021
- Merecz-Sadowska A, Sitarek P, Zajdel K, Sztandera W, Zajdel R. Genus Sambucus: Exploring its potential as a functional food ingredient with neuroprotective properties mediated by antioxidant and anti-inflammatory mechanisms. Int J Mol Sci. 2024;25(14):7843. doi: 10.3390/ijms25147843
- Padwal R, Straus SE, McAlister FA. Cardiovascular risk factors and their effects on the decision to treat hypertension: Evidence based review. BMJ. 2001;322(7292):977-980. doi: 10.1136/bmj.322.7292.977
- Reed J. Cranberry flavonoids, atherosclerosis and cardiovascular health. Crit Rev Food Sci Nutr. 2002; 42(S3):301-316. doi: 10.1080/10408390209351919
- Ming GL, Song H. Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron. 2011;70(4):687-702. doi: 10.1016/j.neuron.2011.05.001
- Tyler SE, Tyler LD. Pathways to healing: Plants with therapeutic potential for neurodegenerative diseases. IBRO Neurosci Rep. 2023;14:210-234. doi: 10.1016/j.ibneur.2023.01.006
- Liu SP, Hsu CY, Fu RH, et al. Sambucus williamsii induced embryonic stem cells differentiated into neurons. Biomedicine. 2015;5(1):3. doi: 10.7603/s40681-015-0003-z
- Suh WS, Kim CS, Subedi L, Kim SY, Choi SU, Lee KR. Iridoid glycosides from the twigs of Sambucus williamsii var. coreana and their biological activities. J Nat Prod. 2017;80(9):2502-2508. doi: 10.1021/acs.jnatprod.7b00410
- Haratizadeh S, Ebrahimzadeh MA. Effect of Sambucus ebulus extract on neural stem cell prolifration under oxidative stress condition. Sci J Kurdistan Univ Med Sci. 2018;23(3):26-35.
- Yamakawa MY, Uchino K, Watanabe Y, et al. Anthocyanin suppresses the toxicity of Aβ deposits through diversion of molecular forms in in vitro and in vivo models of Alzheimer’s disease. Nutr Neurosci. 2016;19(1):32-42. doi: 10.1179/1476830515Y.0000000042
- Vepsäläinen S, Koivisto H, Pekkarinen E, et al. Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer’s disease. J Nutr Biochem. 2013;24(1):360-370. doi: 10.1016/j.jnutbio.2012.07.006
- Belkacemi A, Ramassamy C. Innovative anthocyanin/ anthocyanidin formulation protects SK-N-SH cells against the amyloid-β peptide-induced toxicity: Relevance to Alzheimer’s disease. Cent Nerv Syst Agents Med Chem. 2016;16(1):37-
- doi: 10.2174/1871524915666150730125532 49. Fernando W, Somaratne G, Goozee KG, Williams S, Singh H, Martins RN. Diabetes and Alzheimer’s disease: Can tea phytochemicals play a role in prevention? J Alzheimers Dis. 2017;59(2):481-501. doi: 10.3233/JAD-161200
- Badshah H, Kim TH, Kim MO. Protective effects of anthocyanins against amyloid beta-induced neurotoxicity in vivo and in vitro. Neurochem Int. 2015;80:51-59. doi: 10.1016/j.neuint.2014.10.009
- Wu Y, Chen M, Jiang J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion. 2019;49:35-45. doi: 10.1016/j.mito.2019.07.003
- Gutierres JM, Carvalho FB, Schetinger MR, et al. Anthocyanins restore behavioral and biochemical changes caused by streptozotocin-induced sporadic dementia of Alzheimer’s type. Life Sci. 2014;96(1-2):7-17. doi: 10.1016/j.lfs.2013.11.014
- Pacheco SM , Pereira Soares MS, Gutierres GM , Gerzson MF, Carvalho FB, Azambuja JH, et al. Anthocyanins as a potential pharmacological agent to manage memory deficit, oxidative stress and alterations in ion pump activity induced by experimental sporadic dementia of Alzheimer’s type. J Nutr Biochem. 2018;56:193-204 doi: 10.1016/j.jnutbio.2018.02.014
- Meng L, Xin G, Li B, et al. Anthocyanins extracted from Aronia melanocarpa protect SH-SY5Y cells against amyloid-beta (1–42)-induced apoptosis by regulating Ca2+ homeostasis and inhibiting mitochondrial dysfunction. J Agric Food Chem. 2018;66(49):12967-12977. doi: 10.1021/acs.jafc.8b05404
- Shih PH, Wu CH, Yeh CT, Yen GC. Protective effects of anthocyanins against amyloid β-peptide-induced damage in neuro-2A cells. J Agric Food Chem. 2011;59(5):1683-1689. doi: 10.1021/jf103822h
- Li M, Zhao L, Liu J, et al. Multi-mechanisms are involved in reactive oxygen species regulation of mTORC1 signaling. Cell Signal. 2010;22(10):1469-1476. doi: 10.1016/j.cellsig.2010.05.015
- Maiese K, Chong ZZ, Wang S, Shang YC. Oxidant stress and signal transduction in the nervous system with the PI 3-K, Akt, and mTOR cascade. Int J Mol Sci. 2012;13(11):13830- 13866. doi: 10.3390/ijms131113830
- Filip GA, Florea A, Olteanu D, et al. Biosynthesis of silver nanoparticles using Sambucus nigra L. fruit extract for targeting cell death in oral dysplastic cells. Mater Sci Eng C. 2021;123:111974. doi: 10.1016/j.msec.2021.111974
- Takahashi R, Ono K, Takamura Y, et al. Phenolic compounds prevent the oligomerization of y‐synuclein and reduce synaptic toxicity. J Neurochem. 2015;134(5):943-955. doi: 10.1111/jnc.13180
- Pedroso JL, Vale TC, Braga-Neto P, et al. Acute cerebellar ataxia: Differential diagnosis and clinical approach. Arq Neuropsiquiatr. 2019;77:184-193. doi: 10.1590/0004-282X20190020
- Hadjivassiliou M. Immune-mediated acquired ataxias. Handb Clin Neurol. 2012;103:189-199. doi: 10.1016/B978-0-444-51892-7.00011-5
- Cornelius N, Wardman JH, Hargreaves IP, et al. Evidence of oxidative stress and mitochondrial dysfunction in spinocerebellar ataxia type 2 (SCA2) patient fibroblasts: Effect of coenzyme Q10 supplementation on these parameters. Mitochondrion. 2017;34:103-114. doi: 10.1016/j.mito.2017.03.001
- Ajayi A, Yu X, Lindberg S, Langel Ü, Ström AL. Expanded ataxin-7 cause toxicity by inducing ROS production from NADPH oxidase complexes in a stable inducible Spinocerebellar ataxia type 7 (SCA7) model. BMC Neurosci. 2012;13:1-14. doi: 10.1186/1471-2202-13-86