Neurotoxicity of lisdexamfetamine: Implications for neuronal health and central nervous system function

Lisdexamfetamine (LDX) is a d-amphetamine prodrug with a long-acting therapeutic profile. It has become well-known in recent years due to its widespread use in treating several psychological disorders, such as attention-deficit/hyperactivity disorder and binge eating disorder. However, concerns have been raised about its potential neurotoxic properties, particularly with long-term use. Although direct evidence of LDX-induced neurotoxicity is limited, insights can be drawn from studies on the harmful impacts of its parent compound and related amphetamines, such as amphetamine and methamphetamine, on the central nervous system. The potential mechanisms through which these drugs exert their neurotoxic effects include mitochondrial dysfunction, oxidative stress, neuroinflammation, synaptic failure, and excitotoxicity, all of which contribute to neuronal injury and death. Furthermore, amphetamines have been shown to disrupt the blood–brain barrier, likely triggered by the aforementioned mechanisms, with neuroinflammation being the most significant factor. In this review, we aim to synthesize the available knowledge on the potential mechanisms behind LDX-induced neurotoxicity and emphasize the need for future studies to better understand the long-term side effects of LDX.
- Goodman DW. Lisdexamfetamine dimesylate (vyvanse), a prodrug stimulant for attention-deficit/hyperactivity disorder. P T. 2010;35(5):273-287.
- Krishnan S, Zhang Y. Relative bioavailability of lisdexamfetamine 70-mg capsules in fasted and fed healthy adult volunteers and in solution: A single-dose, crossover pharmacokinetic study. J Clin Pharmacol. 2008;48(3):293-302. doi: 10.1177/0091270007310381
- Wayne P. Vyvanse [Package Insert]. Wayne, PA: Shire U000S Inc.; 2012.
- Schneider E, Higgs S, Dourish CT. Lisdexamfetamine and binge-eating disorder: A systematic review and meta-analysis of the preclinical and clinical data with a focus on mechanism of drug action in treating the disorder. Eur Neuropsychopharmacol. 2021;53:49-78. doi: 10.1016/j.euroneuro.2021.08.001
- Hutson PH, Pennick M, Secker R. Preclinical pharmacokinetics, pharmacology and toxicology of lisdexamfetamine: A novel d-amphetamine pro-drug. Neuropharmacology. 2014;87:41-50. doi: 10.1016/j.neuropharm.2014.02.014
- Coghill DR, Caballero B, Sorooshian S, Civil R. A systematic review of the safety of lisdexamfetamine dimesylate. CNS Drugs. 2014;28(6):497-511. doi: 10.1007/s40263-014-0166-2
- Krishnan S, Moncrief S. An evaluation of the cytochrome p450 inhibition potential of lisdexamfetamine in human liver microsomes. Drug Metab Dispos. 2007;35(1):180-184. doi: 10.1124/dmd.106.011973
- Ward K, Citrome L. Lisdexamfetamine: Chemistry, pharmacodynamics, pharmacokinetics, and clinical efficacy, safety, and tolerability in the treatment of binge eating disorder. Expert Opin Drug Metab Toxicol. 2018;14(2):229-238. doi: 10.1080/17425255.2018.1420163
- Yun J, Lee KW, Eom JH, et al. Potential for dependence on lisdexamfetamine - in vivo and in vitro aspects. Biomol Ther (Seoul). 2017;25(6):659-664. doi: 10.4062/biomolther.2016.080
- Jasinski DR, Krishnan S. Abuse liability and safety of oral lisdexamfetamine dimesylate in individuals with a history of stimulant abuse. J Psychopharmacol. 2009;23(4):419-427. doi: 10.1177/0269881109103113
- Biederman J, Krishnan S, Zhang Y, McGough JJ, Findling RL. Efficacy and tolerability of lisdexamfetamine dimesylate (NRP-104) in children with attention-deficit/hyperactivity disorder: A phase III, multicenter, randomized, double-blind, forced-dose, parallel-group study. Clin Ther. 2007;29(3):450-463. doi: 10.1016/s0149-2918(07)80083-x
- Wigal SB, Kollins SH, Childress AC, Squires L, 311 Study Group. A 13-hour laboratory school study of lisdexamfetamine dimesylate in school-aged children with attention-deficit/hyperactivity disorder. Child Adolesc Psychiatry Ment Health. 2009;3(1):17. doi: 10.1186/1753-2000-3-17
- Weisler R, Young J, Mattingly G, et al. Long-term safety and effectiveness of lisdexamfetamine dimesylate in adults with attention-deficit/hyperactivity disorder. CNS Spectr. 2009;14(10):573-585. doi: 10.1017/s1092852900024056
- Xu TX, Ma Q, Spealman RD, Yao WD. Amphetamine modulation of long-term potentiation in the prefrontal cortex: Dose dependency, monoaminergic contributions, and paradoxical rescue in hyperdopaminergic mutant. J Neurochem. 2010;115(6):1643-1654. doi: 10.1111/j.1471-4159.2010.07073.x
- Berman SM, Kuczenski R, McCracken JT, London ED. Potential adverse effects of amphetamine treatment on brain and behavior: A review. Mol Psychiatry. 2009;14(2):123-142. doi: 10.1038/mp.2008.90
- Pennick M. Absorption of lisdexamfetamine dimesylate and its enzymatic conversion to d-amphetamine. Neuropsychiatr Dis Treat. 2010;6:317-327. doi: 10.2147/ndt.s9749
- Pennick M. Metabolism of the prodrug lisdexamfetamine dimesylate in human red blood cells from normal and sickle cell disease donors. J Drug Assess. 2013;2(1):17-20. doi: 10.3109/21556660.2013.775132
- McElroy SL, Mitchell JE, Wilfley D, et al. Lisdexamfetamine dimesylate effects on binge eating behaviour and obsessive-compulsive and impulsive features in adults with binge eating disorder. Eur Eat Disord Rev. 2016;24(3):223-231. doi: 10.1002/erv.2418
- Brown TE, Brams M, Gao J, Gasior M, Childress A. Open-label administration of lisdexamfetamine dimesylate improves executive function impairments and symptoms of attention-deficit/hyperactivity disorder in adults. Postgrad Med. 2010;122(5):7-17. doi: 10.3810/pgm.2010.09.2196
- Solanto MV. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: A review and integration. Behav Brain Res. 1998;94(1):127-152. doi: 10.1016/s0166-4328(97)00175-7
- Quintero J, Gutiérrez-Casares JR, Álamo C. Molecular characterisation of the mechanism of action of stimulant drugs lisdexamfetamine and methylphenidate on ADHD neurobiology: A review. Neurol Ther. 2022;11(4):1489-1517. doi: 10.1007/s40120-022-00392-2
- Valvassori SS, Resende WR, Varela RB, et al. The effects of histone deacetylase inhibition on the levels of cerebral cytokines in an animal model of mania induced by dextroamphetamine. Mol Neurobiol. 2018;55(2):1430-1439. doi: 10.1007/s12035-017-0384-y
- Kam H, Jeong H. Pharmacogenomic biomarkers and their applications in psychiatry. Genes (Basel). 2020;11(12):1445. doi: 10.3390/genes11121445
- Biederman J, Boellner SW, Childress A, Lopez FA, Krishnan S, Zhang Y. Lisdexamfetamine dimesylate and mixed amphetamine salts extended-release in children with ADHD: A double-blind, placebo-controlled, crossover analog classroom study. Biol Psychiatry. 2007;62(9):970-976. doi: 10.1016/j.biopsych.2007.04.015
- Findling RL, Childress AC, Krishnan S, McGough JJ. Long-term effectiveness and safety of lisdexamfetamine dimesylate in school-aged children with attention-deficit/hyperactivity disorder. CNS Spectr. 2008;13(7):614-620. doi: 10.1017/s1092852900016898
- Moratalla R, Khairnar A, Simola N, et al. Amphetamine-related drugs neurotoxicity in humans and in experimental animals: Main mechanisms. Prog Neurobiol. 2017;155:149-170. doi: 10.1016/j.pneurobio.2015.09.011
- Brown JM, Yamamoto BK. Effects of amphetamines on mitochondrial function: Role of free radicals and oxidative stress. Pharmacol Ther. 2003;99(1):45-53. doi: 10.1016/S0163-7258(03)00052-4
- Hirata H, Ladenheim B, Carlson E, Epstein C, Cadet JL. Autoradiographic evidence for methamphetamine-induced striatal dopaminergic loss in mouse brain: Attenuation in CuZn-superoxide dismutase transgenic mice. Brain Res. 1996;714(1-2):95-103. doi: 10.1016/0006-8993(95)01502-7
- Tung CS, Chang ST, Huang CL, Huang NK. The neurotoxic mechanisms of amphetamine: Step by step for striatal dopamine depletion. Neurosci Lett. 2017;639:185-191. doi: 10.1016/j.neulet.2017.01.002
- Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59(3):527-605. doi: 10.1152/physrev.1979.59.3.527
- Sidorova-Darmos E, Fallah MS, Logan R, Lin CY, Eubanks JH. Mitochondrial brain proteome acetylation levels and behavioural responsiveness to amphetamine are altered in mice lacking sirt3. Front Physiol. 2022;13:948387. doi: 10.3389/fphys.2022.948387
- Graham DG. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol. 1978;14(4):633-643.
- Shaerzadeh F, Streit WJ, Heysieattalab S, Khoshbouei H. Methamphetamine neurotoxicity, microglia, and neuroinflammation. J Neuroinflammation. 2018;15:341. doi: 10.1186/s12974-018-1385-0
- LaVoie MJ, Card JP, Hastings TG. Microglial activation precedes dopamine terminal pathology in methamphetamine-induced neurotoxicity. Exp Neurol. 2004;187(1):47-57. doi: 10.1016/j.expneurol.2004.01.010
- Loftis JM, Janowsky A. Neuroimmune basis of methamphetamine toxicity. Int Rev Neurobiol. 2014;118:165-197. doi: 10.1016/B978-0-12-801284-0.00007-5
- Wang TY, Lu RB, Lee SY, et al. Association between inflammatory cytokines, executive function, and substance use in patients with opioid use disorder and amphetamine-type stimulants use disorder. Int J Neuropsychopharmacol. 2023;26(1):42-51. doi: 10.1093/ijnp/pyac069
- Kelly KA, Miller DB, Bowyer JF, O’Callaghan JP. Chronic exposure to corticosterone enhances the neuroinflammatory and neurotoxic responses to methamphetamine. J Neurochem. 2012;122(5):995-1009. doi: 10.1111/j.1471-4159.2012.07864.x
- Seminerio MJ, Robson MJ, McCurdy CR, Matsumoto RR. Sigma receptor antagonists attenuate acute methamphetamine-induced hyperthermia by a mechanism independent of IL-1β mRNA expression in the hypothalamus. Eur J Pharmacol. 2012;691(1-3):103-109. doi: 10.1016/j.ejphar.2012.07.029
- Nader J, Rapino C, Gennequin B, et al. Prior stimulation of the endocannabinoid system prevents methamphetamine-induced dopaminergic neurotoxicity in the striatum through activation of CB2 receptors. Neuropharmacology. 2014;87:214-221. doi: 10.1016/j.neuropharm.2014.03.014
- Frank MG, Adhikary S, Sobesky JL, Weber MD, Watkins LR, Maier SF. The danger-associated molecular pattern HMGB1 mediates the neuroinflammatory effects of methamphetamine. Brain Behav Immun. 2016;51:99-108. doi: 10.1016/j.bbi.2015.08.001
- DiCaro D, Lee HH, Belisario C, Ramos RL, Martinez LR. Combination of acute intravenous methamphetamine injection and LPS challenge facilitate leukocyte infiltration into the central nervous system of C57BL/6 mice. Int Immunopharmacol. 2019;75:105751. doi: 10.1016/j.intimp.2019.105751
- Gubert C, Fries GR, Pfaffenseller B, et al. Role of P2X7 receptor in an animal model of mania induced by D-amphetamine. Mol Neurobiol. 2016;53:611-620. doi: 10.1007/s12035-014-9031-z
- Wang B, Chen T, Xue L, et al. Methamphetamine exacerbates neuroinflammatory response to lipopolysaccharide by activating dopamine D1-like receptors. Int Immunopharmacol. 2019;73:1-9. doi: 10.1016/j.intimp.2019.04.053
- Buchanan JB, Sparkman NL, Johnson RW. A neurotoxic regimen of methamphetamine exacerbates the febrile and neuroinflammatory response to a subsequent peripheral immune stimulus. J Neuroinflammation. 2010;7:82. doi: 10.1186/1742-2094-7-82
- Gutiérrez-Casares JR, Segú-Vergés C, Sabate Chueca J, et al. In silico evaluation of the role of lisdexamfetamine on attention-deficit/hyperactivity disorder common psychiatric comorbidities: Mechanistic insights on binge eating disorder and depression. Front Neurosci. 2023;17:1118253. doi: 10.3389/fnins.2023.1118253
- Sailasuta N, Abulseoud O, Harris KC, Ross BD. Glial dysfunction in abstinent methamphetamine abusers. J Cereb Blood Flow Metab. 2010;30(5):950-960. doi: 10.1038/jcbfm.2009.261
- Mackey S, Stewart JL, Connolly CG, Tapert SF, Paulus MP. A voxel-based morphometry study of young occasional users of amphetamine-type stimulants and cocaine. Drug Alcohol Depend. 2014;135:104-111. doi: 10.1016/j.drugalcdep.2013.11.018
- Carias E, Hamilton J, Robison LS, et al. Chronic oral methylphenidate treatment increases microglial activation in rats. J Neural Transm (Vienna). 2018;125(12):1867-1875. doi: 10.1007/s00702-018-1931-z
- Dong XX, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin. 2009;30(4):379-387. doi: 10.1038/aps.2009.24
- Chiu VM, Schenk JO. Mechanism of action of methamphetamine within the catecholamine and serotonin areas of the central nervous system. Curr Drug Abuse Rev. 2012;5(3):227-242. doi: 10.2174/1874473711205030227
- Shin EJ, Dang DK, Tran TV, et al. Current understanding of methamphetamine-associated dopaminergic neurodegeneration and psychotoxic behaviors. Arch Pharm Res. 2017;40(4):403-428. doi: 10.1007/s12272-017-0897-y
- Yang X, Wang Y, Li Q, et al. The main molecular mechanisms underlying methamphetamine- induced neurotoxicity and implications for pharmacological treatment. Front Mol Neurosci. 2018;11:186. doi: 10.3389/fnmol.2018.00186
- Substance Abuse and Mental Health Services Administration. Results from the 2013 National Survey on Drug Use and Health: Mental Health Findings, NSDUH Series H-49, HHS Publication No. (SMA) 14-4887. Rockville, MD: Substance Abuse and Mental Health Services Administration.
- Boileau I, McCluskey T, Tong J, Furukawa Y, Houle S, Kish SJ. Rapid recovery of vesicular dopamine levels in methamphetamine users in early abstinence. Neuropsychopharmacology. 2016;41(4):1179-1187. doi: 10.1038/npp.2015.267
- Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37(1):13-25. doi: 10.1016/j.nbd.2009.07.030
- Kousik SM, Napier TC, Carvey PM. The effects of psychostimulant drugs on blood brain barrier function and neuroinflammation. Front Pharmacol. 2012;3:121. doi: 10.3389/fphar.2012.00121
- Bowyer JF, Hanig JP. Amphetamine- and methamphetamine-induced hyperthermia: Implications of the effects produced in brain vasculature and peripheral organs to forebrain neurotoxicity. Temperature (Austin). 2014;1(3):172-182. doi: 10.4161/23328940.2014.982049
- Mahajan SD, Aalinkeel R, Sykes DE, et al. Methamphetamine alters blood brain barrier permeability via the modulation of tight junction expression: Implication for HIV-1 neuropathogenesis in the context of drug abuse. Brain Res. 2008;1203:133-148. doi: 10.1016/j.brainres.2008.01.093
- Ramirez SH, Potula R, Fan S, et al. Methamphetamine disrupts blood-brain barrier function by induction of oxidative stress in brain endothelial cells. J Cereb Blood Flow Metab. 2009;29(12):1933-1945. doi: 10.1038/jcbfm.2009.112
- Banerjee A, Zhang X, Manda KR, Banks WA, Ercal N. HIV proteins (gp120 and Tat) and methamphetamine in oxidative stress-induced damage in the brain: Potential role of the thiol antioxidant N-acetylcysteine amide. Free Radic Biol Med. 2010;48(10):1388-1398. doi: 10.1016/j.freeradbiomed.2010.02.023
- Abdul Muneer PM, Alikunju S, Szlachetka AM, Murrin LC, Haorah J. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction. Mol Neurodegener. 2011;6:23. doi: 10.1186/1750-1326-6-23
- Martins T, Baptista S, Gonçalves J, et al. Methamphetamine transiently increases the blood–brain barrier permeability in the hippocampus: Role of tight junction proteins and matrix metalloproteinase-9. Brain Res. 2011;1411:28-40. doi: 10.1016/j.brainres.2011.07.013
- Stutzman DL, Dopheide JA. Practice pearls for stimulant treatment of attention-deficit/hyperactivity disorder in youth. J Pediatr Pharmacol Ther. 2024;29(3):215-231. doi: 10.5863/1551-6776-29.3.215
- SAMHSA/CSAT Treatment Improvement Protocols. Treatment for Stimulant Use Disorders: Updated 2021. Rockville, MD: Substance Abuse and Mental Health Services Administration, US; 1999.
- Kita T, Wagner GC, Nakashima T. Current research on methamphetamine-induced neurotoxicity: Animal models of monoamine disruption. J Pharmacol Sci. 2003;92(3):178-195. doi: 10.1254/jphs.92.178
- Elia J, Borcherding BG, Potter WZ, Mefford IN, Rapoport JL, Keysor CS. Stimulant drug treatment of hyperactivity: Biochemical correlates. Clin Pharmacol Ther. 1990;48(1):57-66. doi: 10.1038/clpt.1990.118
- Ermer JC, Pennick M, Frick G. Lisdexamfetamine dimesylate: Prodrug delivery, amphetamine exposure and duration of efficacy. Clin Drug Investig. 2016;36(5):341-356. doi: 10.1007/s40261-015-0354-y
- Picca A, Calvani R, Coelho-Junior HJ, Landi F, Bernabei R, Marzetti E. Mitochondrial dysfunction, oxidative stress, and neuroinflammation: Intertwined roads to neurodegeneration. Antioxidants (Basel). 2020;9(8):647. doi: 10.3390/antiox9080647
- Coghill DR, Banaschewski T, Nagy P, et al. Long-term safety and efficacy of lisdexamfetamine dimesylate in children and adolescents with ADHD: A phase IV, 2-year, open-label study in Europe. CNS Drugs. 2017;31(7):625-638. doi: 10.1007/s40263-017-0443-y
- Ezard N, Clifford B, Dunlop A, et al. Safety and tolerability of oral lisdexamfetamine in adults with methamphetamine dependence: A phase-2 dose-escalation study. BMJ Open. 2021;11(5):e044696. doi: 10.1136/bmjopen-2020-044696
- Mechler K, Banaschewski T, Hohmann S, Häge A. Evidence-based pharmacological treatment options for ADHD in children and adolescents. Pharmacol Ther. 2022;230:107940. doi: 10.1016/j.pharmthera.2021.107940
- López FA, Leroux JR. Long-acting stimulants for treatment of attention-deficit/hyperactivity disorder: A focus on extended-release formulations and the prodrug lisdexamfetamine dimesylate to address continuing clinical challenges. Atten Defic Hyperact Disord. 2013;5(3):249-265. doi: 10.1007/s12402-013-0106-x