Overdiagnosis of low-risk thyroid cancer: Autopsy insights and guideline-driven management
The global rise in thyroid cancer incidence over recent decades is largely attributed to increased detection of papillary thyroid microcarcinomas (PTMCs; ≤1 cm) from widespread ultrasonography and ultrasonography-guided fine-needle aspiration. Meanwhile, the associated mortality has remained stable or declined, suggesting significant overdiagnosis. Autopsy studies consistently report incidental differentiated thyroid cancer in 4–36% of individuals, with prevalence up to 36% in thorough whole-gland examinations, indicating that many small papillary carcinomas are indolent and clinically insignificant during a patient’s lifetime. This review synthesizes evidence from autopsy findings, epidemiological trends, and long-term observational studies to evaluate how screening and diagnostic intensity contribute to rising thyroid cancer diagnoses. We compare recommendations from the 2015 and 2025 American Thyroid Association guidelines, the 2022 National Health Commission of the People’s Republic of China guidelines, and the Bethesda System for Reporting Thyroid Cytopathology, with attention to active surveillance, de-escalated surgery, reduced radioactive iodine use, and minimally invasive techniques (e.g., radiofrequency ablation) for appropriately selected low-risk PTMCs. Remaining areas of debate, including the management of lymph node metastases, the interpretation of recurrence risk, the utility and limitations of thyroglobulin monitoring in conservative management settings, and the enhanced accuracy of molecular testing, were also discussed. The analysis supports the value of refined risk stratification and patient-centered decision-making to reduce overtreatment and its associated morbidity while maintaining vigilance for the minority of cases with more aggressive behavior.
- Roman BR, Morris LG, Davies L. The thyroid cancer epidemic, 2017 perspective. Curr Opin Endocrinol Diabetes Obes. 2017;24(5):332-336. doi: 10.1097/MED.0000000000000359
- Szász EA, Nechifor-Boilă AC, Zahan AE, Voidăzan TS, Borda A. Risk stratification of papillary thyroid microcarcinomas via an easy-to-use system based on tumor size and location: clinical and pathological correlations. Rom J Morphol Embryol. 2020;61(4):1153-1162. doi: 10.47162/RJME.61.4.17
- Li M, Zheng R, Dal Maso L, Zhang S, Wei W, Vaccarella S. Mapping overdiagnosis of thyroid cancer in China. Lancet Diabetes Endocrinol. 2021;9(6):330-332. doi: 10.1016/S2213-8587(21)00083-8
- Park S, Oh CM, Cho H, et al. Association between screening and the thyroid cancer “epidemic” in South Korea: Evidence from a nationwide study. BMJ. 2016;355:i5745. doi: 10.1136/bmj.i5745
- Welch HG. Cancer screening, overdiagnosis, and regulatory capture. JAMA Intern Med. 2017;177(7):915-916. doi: 10.1001/jamainternmed.2017.1198
- Harach HR, Franssila KO, Wasenius VM. Occult papillary carcinoma of the thyroid. A “normal” finding in Finland. A systematic autopsy study. Cancer. 1985;56(3):531-538. doi: 10.1002/1097-0142(19850801)56:3<531::aid-cncr28205 60321>3.0.co;2-3
- Furuya-Kanamori L, Bell KJL, Clark J, Glasziou P, Doi SAR. Prevalence of differentiated thyroid cancer in autopsy studies over six decades: A meta-analysis. J Clin Oncol. 2016;34(30):3672-3679. doi: 10.1200/JCO.2016.67.7419
- Goldfarb M. Prevalence of thyroid cancer found in autopsy studies has not increased since 1970. Clin Thyroidol Public. 2016;9(12):10.
- Li G, Li R, Zhong J, et al. A multicenter cohort study of thyroidectomy-related decision regret in patients with low-risk papillary thyroid microcarcinoma. Nat Commun. 2025;16(1):2317. doi: 10.1038/s41467-025-57627-7
- Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1-133. doi: 10.1089/thy.2015.0020
- Ringel MD, Sosa JA, Baloch Z, et al. 2025 American thyroid association management guidelines for adult patients with differentiated thyroid cancer. Thyroid. 2025;35(8):841-985. doi: 10.1177/10507256251363120
- Health Commission of the People’s Republic of China N. National guidelines for diagnosis and treatment of thyroid cancer 2022 in China (English version). Chin J Cancer Res. 2022;34(3):131-150. doi: 10.21147/j.issn.1000-9604.2022.03.01
- Ali SZ, Cibas ES. The Bethesda System for Reporting Thyroid Cytopathology Definitions, Criteria, and Explanatory Notes. 2nd ed. Berlin: Springer. 2018. Available from: https://link. springer.com/book/10.1007/978-3-319-60570-8 [Last accessed on 2025 Sep 10].
- Stanicić J, Prpić M, Jukić T, Borić M, Kusić Z. Thyroid nodularity--true epidemic or improved diagnostics. Acta Clin Croat. 2009;48(4):413-418.
- Lee YS, Lim H, Chang HS, Park CS. Papillary thyroid microcarcinomas are different from latent papillary thyroid carcinomas at autopsy. J Korean Med Sci. 2014;29(5):676-679. doi: 10.3346/jkms.2014.29.5.676
- Martinez-Tello FJ, Martinez-Cabruja R, Fernandez- Martin J, Lasso-Oria C, Ballestin-Carcavilla C. Occult carcinoma of the thyroid. A systematic autopsy study from Spain of two series performed with two different methods. Cancer. 1993;71(12):4022-4029. doi: 10.1002/1097-0142(19930615)71:12<4022::aid-cncr282 011236>3.0.co;2-o
- Knobel M, Medeiros-Neto G. Relevance of iodine intake as a reputed predisposing factor for thyroid cancer. Arq Bras Endocrinol Metabol. 2007;51(5):701-712. doi: 10.1590/s0004-27302007000500007
- Nyström HF, Brantsæter AL, Erlund I, et al. Iodine status in the Nordic countries - past and present. Food Nutr Res. 2016;60:31969. doi: 10.3402/fnr.v60.31969
- Robenshtok E, Neeman B, Reches L, et al. Adverse histological features of differentiated thyroid cancer are commonly found in autopsy studies: Implications for treatment guidelines. Thyroid. 2022;32(1):37-45. doi: 10.1089/thy.2021.0268
- Arroyo N, Bell KJL, Hsiao V, et al. Prevalence of subclinical papillary thyroid cancer by age: Meta-analysis of autopsy studies. J Clin Endocrinol Metab. 2022;107(10):2945-2952. doi: 10.1210/clinem/dgac468
- Lang W, Borrusch H, Bauer L. Occult carcinomas of the thyroid. Evaluation of 1,020 sequential autopsies. Am J Clin Pathol. 1988;90(1):72-76. doi: 10.1093/ajcp/90.1.72
- Wang P, Dong Z, Zhao S, et al. Trends of the prevalence rate of central lymph node metastasis and multifocality in patients with low-risk papillary thyroid carcinoma after delayed thyroid surgery. Front Endocrinol (Lausanne). 2024;15:1349272. doi: 10.3389/fendo.2024.1349272
- Zhang L, Jiang L, Xu R, Zhang X, Zhang B, Yue R. Epidemiological study of thyroid cancer at global, regional, and national levels from 1990 to 2021: An analysis derived from the Global Burden of Disease Study 2021. Front Endocrinol (Lausanne). 2025;16:1644270. doi: 10.3389/fendo.2025.1644270
- Zhou T, Wang X, Zhang J, et al. Global burden of thyroid cancer from 1990 to 2021: A systematic analysis from the Global Burden of Disease Study 2021. J Hematol Oncol. 2024;17(1):74. doi: 10.1186/s13045-024-01593-y
- Murray CJL. The global burden of disease study at 30 years. Nat Med. 2022;28(10):2019-2026. doi: 10.1038/s41591-022-01990-1
- Jin Q, Wu J, Huang C, et al. Global landscape of early-onset thyroid cancer: Current burden, temporal trend and future projections on the basis of GLOBOCAN 2022. J Glob Health. 2025;15:04113. doi: 10.7189/jogh.15.04113
- Dal Maso L, Panato C, Franceschi S, et al. The impact of overdiagnosis on thyroid cancer epidemic in Italy, 1998- 2012. Eur J Cancer. 2018;94:6-15. doi: 10.1016/j.ejca.2018.01.083
- Pizzato M, Li M, Vignat J, et al. The epidemiological landscape of thyroid cancer worldwide: GLOBOCAN estimates for incidence and mortality rates in 2020. Lancet Diabetes Endocrinol. 2022;10(4):264-272. doi: 10.1016/S2213-8587(22)00035-3
- Miranda-Filho A, Lortet-Tieulent J, Bray F, et al. Thyroid cancer incidence trends by histology in 25 countries: Apopulation-based study. Lancet Diabetes Endocrinol. 2021;9(4):225-234. doi: 10.1016/S2213-8587(21)00027-9
- Li M, Brito JP, Vaccarella S. Long-term declines of thyroid cancer mortality: An international age-period-cohort analysis. Thyroid. 2020;30(6):838-846. doi: 10.1089/thy.2019.0684
- Megwalu UC, Moon PK. Thyroid cancer incidence and mortality trends in the United States: 2000-2018. Thyroid. 2022;32(5):560-570. doi: 10.1089/thy.2021.0662
- US Preventive Services Task Force. Screening for thyroid cancer: US preventive services task force recommendation statement. JAMA. 2017;317(18):1882-1887. doi: 10.1001/jama.2017.4011
- Kim NE, Raghunathan RS, Hughes EG, et al. Bethesda III and IV thyroid nodules managed nonoperatively after molecular testing with afirma GSC or thyroseq v3. J Clin Endocrinol Metab. 2023;108(9):e698-e703. doi: 10.1210/clinem/dgad181
- Lee E, Terhaar S, McDaniel L, et al. Diagnostic performance of the second-generation molecular tests in the assessment of indeterminate thyroid nodules: A systematic review and meta-analysis. Am J Otolaryngol. 2022;43(3):103394. doi: 10.1016/j.amjoto.2022.103394
- Silaghi CA, Lozovanu V, Georgescu CE, et al. Thyroseq v3, Afirma GSC, and microRNA panels versus previous molecular tests in the preoperative diagnosis of indeterminate thyroid nodules: A systematic review and meta-analysis. Front Endocrinol (Lausanne). 2021;12:649522. doi: 10.3389/fendo.2021.649522
- Raghunathan R, Longstaff XR, Hughes EG, et al. Diagnostic performance of molecular testing in indeterminate (Bethesda III and IV) thyroid nodules with Hürthle cell cytology. Surgery. 2024;175(1):221-227. doi: 10.1016/j.surg.2023.05.046
- American Thyroid Association. (2018). Microcarcinomas of the Thyroid Gland [Brochure]. Available from: https:// www.thyroid.org/wp-content/uploads/patients/brochures/ microcarcinomas_thyroid_gland.pdf [Last accessed on 2025 Sep 10].
- Esfandiari NH, Hughes DT, Reyes-Gastelum D, Ward KC, Hamilton AS, Haymart MR. Factors associated with diagnosis and treatment of thyroid microcarcinomas. J Clin Endocrinol Metab. 2019;104(12):6060-6068. doi: 10.1210/jc.2019-01219
- Burch HB, Burman KD, Cooper DS, Hennessey JV, Vietor NO. A 2015 survey of clinical practice patterns in the management of thyroid nodules. J Clin Endocrinol Metab. 2016;101(7):2853-2862. doi: 10.1210/jc.2016-1155
- Disibio G, French SW. Metastatic patterns of cancers: Results from a large autopsy study. Arch Pathol Lab Med. 2008;132(6):931-939. doi: 10.5858/2008-132-931-MPOCRF
- Vita O, Dema A, Barna R, et al. Primary thyroid lymphoma: A retrospective-observational study in a single institutional center. Medicina (Kaunas). 2024;60(3):476. doi: 10.3390/medicina60030476
- Nikiforov YE, Seethala RR, Tallini G, et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: A paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2016;2(8):1023-1029. doi: 10.1001/jamaoncol.2016.0386
- Rosai J, LiVolsi VA, Sobrinho-Simoes M, Williams ED. Renaming papillary microcarcinoma of the thyroid gland: the Porto proposal. Int J Surg Pathol. 2003;11(4):249-251. doi: 10.1177/106689690301100401
- Aliyev E, Ladra-González MJ, Sánchez-Ares M, et al. Thyroid papillary microtumor: Validation of the (updated) porto proposal assessing sex hormone receptor expression and mutational BRAF gene status. Am J Surg Pathol. 2020;44(9):1161-1172. doi: 10.1097/PAS.0000000000001522
- Saez de Gordoa K, Tasso E, Rei A, et al. Validation of the updated porto proposal in papillary thyroid microtumors: Analysis of cases at a university hospital in Catalonia, Spain. Cancers (Basel). 2025;17(12):2021. doi: 10.3390/cancers17122021
- Nikiforov YE, Carty SE, Chiosea SI, et al. Impact of the multi-gene thyroseq next-generation sequencing assay on cancer diagnosis in thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance cytology. Thyroid. 2015;25(11):1217-1223. doi: 10.1089/thy.2015.0305
- Alexander EK, Kennedy GC, Baloch ZW, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367(8):705-715. doi: 10.1056/NEJMoa1203208
- Kloos RT. Molecular profiling of thyroid nodules: Current role for the afirma gene expression classifier on clinical decision making. Mol Imaging Radionucl Ther. 2017;26(Suppl 1):36-49. doi: 10.4274/2017.26.suppl.05
- Kloos RT, Monroe RJ, Traweek ST, Lanman RB, Kennedy GC. A genomic alternative to identify medullary thyroid cancer preoperatively in thyroid nodules with indeterminate cytology. Thyroid. 2016;26(6):785-793. doi: 10.1089/thy.2016.0001
- Ali SZ, VanderLaan PA. The Bethesda System for Reporting Thyroid Cytopathology. Definitions, Criteria, and Explanatory Notes. 3rd ed. Switzerland: Springer Cham; 2023.
- Ali SZ, Baloch ZW, Cochand-Priollet B, Schmitt FC, Vielh P, VanderLaan PA. The 2023 Bethesda system for reporting thyroid cytopathology. Thyroid. 2023;33(9):1039-1044. doi: 10.1089/thy.2023.0141
- Bychkov A, Jung CK. What’s new in thyroid pathology 2024: Updates from the new WHO classification and Bethesda system. J Pathol Transl Med. 2024;58(2):98-101. doi: 10.4132/jptm.2024.03.06
- Han M, Fan F. Bethesda system for reporting thyroid cytopathology-an updated review. J Clin Transl Pathol. 2023;3(2):84-98. doi: 10.14218/JCTP.2023.00005
- WHO Classification of Tumours Editorial Board. Endocrine and Neuroendocrine Tumours. (WHO Classification of Tumours Series). 5th ed., Vol. 10. Lyon, France: International Agency for Research on Cancer; 2025.
- Hernandez-Prera JC, Riddle N, Gonzalez RS, Asa SL. Endocrine and neuroendocrine tumors. Arch Pathol Lab Med. 2025;149:1114-1135. doi: 10.5858/arpa.2024-0315-RA
- Rai K, Park J, Gokhale S, Irshaidat F, Singh G. Diagnostic accuracy of the bethesda system for reporting thyroid cytopathology (TBSRTC): An institution experience. Int J Endocrinol. 2023;2023:9615294. doi: 10.1155/2023/9615294
- Cho SJ, Suh CH, Baek JH, et al. Active surveillance for small papillary thyroid cancer: A systematic review and meta-analysis. Thyroid. 2019;29(10):1399-1408. doi: 10.1089/thy.2019.0159
- Lohia S, Hanson M, Tuttle RM, Morris LGT. Active surveillance for patients with very low-risk thyroid cancer. Laryngoscope Investig Otolaryngol. 2020;5(1):175-182. doi: 10.1002/lio2.356
- Zhang L, Wang P, Li K, Xue S. A novel nomogram for identifying high-risk patients among active surveillance candidates with papillary thyroid microcarcinoma. Front Endocrinol (Lausanne). 2023;14:1185327. doi: 10.3389/fendo.2023.1185327
- Bortz MD, Kuchta K, Winchester DJ, Prinz RA, Moo- Young TA. Extrathyroidal extension predicts negative clinical outcomes in papillary thyroid cancer. Surgery. 2021;169(1):2-6. doi: 10.1016/j.surg.2020.04.003
- Ito Y, Miyauchi A, Kihara M, Higashiyama T, Kobayashi K, Miya A. Patient age is significantly related to the progression of papillary microcarcinoma of the thyroid under observation. Thyroid. 2014;24(1):27-34. doi: 10.1089/thy.2013.0367
- Kamran SC, Marqusee E, Kim MI, et al. Thyroid nodule size and prediction of cancer. J Clin Endocrinol Metab. 2013;98(2):564-570. doi: 10.1210/jc.2012-2968
- Megwalu UC. Risk of malignancy in thyroid nodules 4 cm or larger. Endocrinol Metab (Seoul). 2017;32(1):77-82. doi: 10.3803/EnM.2017.32.1.77
- Huan L, Wu Z, Li W, et al. The real world and thinking of thyroid cancer in China. Int J Surg Oncol. 2019;4(7):e81. doi: 10.1097/IJ9.0000000000000081
- Bouhabel S, Payne RJ, Mlynarek A, Hier M, Caglar D, Tamilia M. Are solitary thyroid nodules more likely to be malignant? J Otolaryngol Head Neck Surg. 2012;41(2):119-123.
- Tourani SS, Fleming B, Gundara J. Value of thyroglobulin post hemithyroidectomy for cancer: A literature review. ANZ J Surg. 2021;91(4):724-729. doi: 10.1111/ans.16459
- Gao X, Yang Y, Wang Y, Huang Y. Efficacy and safety of ultrasound-guided radiofrequency, microwave and laser ablation for the treatment of T1N0M0 papillary thyroid carcinoma on a large scale: A systematic review and meta-analysis. Int J Hyperthermia. 2023;40(1):2244713. doi: 10.1080/02656736.2023.2244713
- Jeong SY, Baek SM, Shin S, Son JM, Kim H, Baek JH. Radiofrequency ablation of low-risk papillary thyroid microcarcinoma: A retrospective cohort study including patients with more than 10 years of follow-up. Thyroid. 2025;35(2):143-152. doi: 10.1089/thy.2024.0535
- Liu LS, Liang J, Li JH, et al. The incidence and risk factors for central lymph node metastasis in cN0 papillary thyroid microcarcinoma: A meta-analysis. Eur Arch Otorhinolaryngol. 2017;274(3):1327-1338. doi: 10.1007/s00405-016-4302-0
- Dolidze DD, Shabunin AV, Mumladze RB, et al. A narrative review of preventive central lymph node dissection in patients with papillary thyroid cancer - a necessity or an excess. Front Oncol. 2022;12:906695. doi: 10.3389/fonc.2022.906695
- Huang J, Song M, Shi H, et al. Predictive factor of large-volume central lymph node metastasis in clinical n0 papillary thyroid carcinoma patients underwent total thyroidectomy. Front Oncol. 2021;11:574774. doi: 10.3389/fonc.2021.574774. Erratum in: Front Oncol. 2024;14:1517682. doi: 10.3389/fonc.2024.1517682
- Wada N, Duh QY, Sugino K, et al. Lymph node metastasis from 259 papillary thyroid microcarcinomas: Frequency, pattern of occurrence and recurrence, and optimal strategy for neck dissection. Ann Surg. 2003;237(3):399-407. doi: 10.1097/01.SLA.0000055273.58908.19
- Xuan HN, Anh TD, Xuan HN, Thai DP, Le Van Q. Occult central lymph node metastasis in cN0 papillary thyroid carcinoma patients undergoing TOETVA procedure. J Thyroid Res. 2023;2023:4779409. doi: 10.1155/2023/4779409
- Wang TS, Dubner S, Sznyter LA, Heller KS. Incidence of metastatic well-differentiated thyroid cancer in cervical lymph nodes. Arch Otolaryngol Head Neck Surg. 2004;130(1):110-113. doi: 10.1001/archotol.130.1.110
- Xue S, Wang P, Liu J, Li R, Zhang L, Chen G. Prophylactic central lymph node dissection in cN0 patients with papillary thyroid carcinoma: A retrospective study in China. Asian J Surg. 2016;39(3):131-136. doi: 10.1016/j.asjsur.2015.03.015
- Nguyen QT, Lee EJ, Huang MG, Park YI, Khullar A, Plodkowski RA. Diagnosis and treatment of patients with thyroid cancer. Am Health Drug Benefits. 2015;8(1):30-40.
- Lim YC, Liu L, Chang JW, Koo BS. Lateral lymph node recurrence after total thyroidectomy and central neck dissection in patients with papillary thyroid cancer without clinical evidence of lateral neck metastasis. Oral Oncol. 2016;62:109-113. doi: 10.1016/j.oraloncology.2016.10.010
- Grant CS. Recurrence of papillary thyroid cancer after optimized surgery. Gland Surg. 2015;4(1):52-62. doi: 10.3978/j.issn.2227-684X.2014.12.06
- Mazzaferri EL, Young RL, Oertel JE, Kemmerer WT, Page CP. Papillary thyroid carcinoma: The impact of therapy in 576 patients. Medicine (Baltimore). 1977;56(3):171-196.
- Javidi S, Sadrizadeh S, Sadrizadeh A, Bonakdaran S, Jarahi L. Postoperative complications and long-term outcomes after total and subtotal thyroidectomy: A retrospective study. Sci Rep. 2025;15(1):3705. doi: 10.1038/s41598-024-79860-8
- Getachew B, Afework M, Tamrat G. Indications, sub-types and complications of surgically treated thyroid disease in Africa: A systematic review and meta-analysis. Surg Open Sci. 2025;27:52-60. doi: 10.1016/j.sopen.2025.06.006
- Tarallo M, Carlino C, Crocetti D, et al. Safety and outcomes of thyroid surgery: A high-volume center case series and the role of intraoperative neuromonitoring in preventing complications. J Clin Med. 2025;14(17):6077. doi: 10.3390/jcm14176077
- Lorenz K, Raffaeli M, Barczyński M, Lorente-Poch L, Sancho J. Volume, outcomes, and quality standards in thyroid surgery: An evidence-based analysis-European Society of Endocrine Surgeons (ESES) positional statement. Langenbecks Arch Surg. 2020;405(4):401-425. doi: 10.1007/s00423-021-02257-y
- Cady B. Regional lymph node metastases, a singular manifestation of the process of clinical metastases in cancer: Contemporary animal research and clinical reports suggest unifying concepts. Cancer Treat Res. 2007;135:185-201. doi: 10.1007/978-0-387-69219-7_14
- Cady B. Proliferation and cancer metastasis from the clinical point of view. In: Leong S, editors. From Local Invasion to Metastatic Cancer. Current Clinical Oncology. Totowa, NJ: Humana Press; 2009. doi: 10.1007/978-1-60327-087-8_3
- Sanghani M, Balk EM, Cady B. Impact of axillary lymph node dissection on breast cancer outcome in clinically node negative patients: A systematic review and meta-analysis. Cancer. 2009;115(8):1613-20. doi: 10.1002/cncr.24174
- Jerkovich F, Abelleira E, Bueno F, Guerrero L, Pitoia F. Active surveillance of small metastatic lymph nodes as an alternative to surgery in selected patients with low-risk papillary thyroid cancer: A retrospective cohort study. Thyroid. 2022;32(10):1178-1183. doi: 10.1089/thy.2022.0302
- Lee M, Baek JH, Suh CH, et al. Clinical practice guidelines for radiofrequency ablation of benign thyroid nodules: A systematic review. Ultrasonography. 2021;40(2):256-264. doi: 10.14366/usg.20015
- Papini E, Monpeyssen H, Frasoldati A, Hegedüs L. 2020 European thyroid association clinical practice guideline for the use of image-guided ablation in benign thyroid nodules. Eur Thyroid J. 2020;9(4):172-185. doi: 10.1159/000508484
- Baek JH, Lee JH, Sung JY, et al. Complications encountered in the treatment of benign thyroid nodules with US-guided radiofrequency ablation: A multicenter study. Radiology. 2012;262(1):335-342. doi: 10.1148/radiol.11110416
- He H, Song Q, Lan Y, et al. Efficacy and safety of ultrasound-guided radiofrequency ablation for low-risk papillary thyroid microcarcinoma in patients aged 55 years or older: A retrospective study. Int J Hyperthermia. 2021;38(1):604-610. doi: 10.1080/02656736.2021.1912416
- Xu H, Yang JY, Zhao X, Ma Z. Advances in clinical research on ultrasound-guided radiofrequency ablation for papillary thyroid microcarcinoma. Front Oncol. 2024;14:1422634. doi: 10.3389/fonc.2024.1422634
- Cho SJ, Baek SM, Lim HK, Lee KD, Son JM, Baek JH. Long-term follow-up results of ultrasound-guided radiofrequency ablation for low-risk papillary thyroid microcarcinoma: More than 5-year follow-up for 84 tumors. Thyroid. 2020;30(12):1745-1751. doi: 10.1089/thy.2020.0106
- Öner G, Özçınar B, Ağcaoğlu O, et al. Radiofrequency ablation of metastatic lymph nodes in a patient requiring secondary operation for papillary thyroid carcinoma metastasis. Turk J Surg. 2023;40(2):174-177. doi: 10.47717/turkjsurg.2023.4631
- Lee MK, Baek JH, Chung SR, Choi YJ, Lee JH, Jung SL. Radiofrequency ablation of recurrent thyroid cancers: Anatomy-based management. Ultrasonography. 2022;41(3):434-443. doi: 10.14366/usg.21221
- Monpeyssen H, Alamri A, Ben Hamou A. Long-term results of ultrasound-guided radiofrequency ablation of benign thyroid nodules: State of the art and future perspectives-a systematic review. Front Endocrinol (Lausanne). 2021;12:622996. doi: 10.3389/fendo.2021.622996
- Li S, Ren C, Gong Y, et al. The role of thyroglobulin in preoperative and postoperative evaluation of patients with differentiated thyroid cancer. Front Endocrinol (Lausanne). 2022;13:872527. doi: 10.3389/fendo.2022.872527
- Haser GC, Tuttle RM, Su HK, et al. Active surveillance for papillary thyroid microcarcinoma: New challenges and opportunities for the health care system. Endocr Pract. 2016;22(5):602-611. doi: 10.4158/EP151065.RA
- Rosario PW, Côrtes MCS, Franco Mourão G. Follow-up of patients with thyroid cancer and antithyroglobulin antibodies: A review for clinicians. Endocr Relat Cancer. 2021;28(4):R111-R119. doi: 10.1530/ERC-21-0012
- Barbesino G, Algeciras-Schimnich A, Bornhorst J. Thyroglobulin assay interferences: Clinical usefulness of mass-spectrometry methods. J Endocr Soc. 2022;7(1):bvac169. doi: 10.1210/jendso/bvac169
- Maxon HR. Detection of residual and recurrent thyroid cancer by radionuclide imaging. Thyroid. 1999;9(5):443-446. doi: 10.1089/thy.1999.9.443
- Jang J, Kim HJ, Ha S, et al. Comparison of ultrasensitive and highly sensitive assay to predict stimulated thyroglobulin levels using unstimulated levels in differentiated thyroid cancer patients. Endocrinol Metab (Seoul). 2025;40:759-771. doi: 10.3803/EnM.2025.2302
- Giovanella L, Clark PM, Chiovato L, et al. Thyroglobulin measurement using highly sensitive assays in patients with differentiated thyroid cancer: A clinical position paper. Eur J Endocrinol. 2014;171(2):R33-R46. doi: 10.1530/EJE-14-0148
- Peiris AN, Medlock D, Gavin M. Thyroglobulin for monitoring for thyroid cancer recurrence. JAMA. 2019;321(12):1228. doi: 10.1001/jama.2019.0803
- Sugitani I, Nagaoka R, Saitou M, et al. Long-term outcomes of active surveillance for low-risk papillary thyroid carcinoma: Progression patterns and tumor calcification. World J Surg. 2025;49(1):159-169. doi: 10.1002/wjs.12417
- Filetti S, Durante C, Hartl D, et al. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30(12):1856-1883. doi: 10.1093/annonc/mdz400
- Oda H, Miyauchi A, Ito Y, et al. Comparison of the costs of active surveillance and immediate surgery in the management of low-risk papillary microcarcinoma of the thyroid. Endocr J. 2017;64(1):59-64. doi: 10.1507/endocrj.EJ16-0381
- Lee EK, Moon JH, Hwangbo Y, et al. Progression of low-risk papillary thyroid microcarcinoma during active surveillance: Interim analysis of a multicenter prospective cohort study of active surveillance on papillary thyroid microcarcinoma in Korea. Thyroid. 2022;32(11):1328-1336. doi: 10.1089/thy.2021.0614
- Krajewska J, Kukulska A, Oczko-Wojciechowska M, et al. Early diagnosis of low-risk papillary thyroid cancer results rather in overtreatment than a better survival. Front Endocrinol (Lausanne). 2020;11:571421. doi: 10.3389/fendo.2020.571421
