AccScience Publishing / TD / Online First / DOI: 10.36922/TD025260056
REVIEW ARTICLE

Beyond Epstein–Barr virus: Unveiling the role of herpesviruses in lymphoma pathogenesis

Valeriia Tsekhovska1,2 Erica Diani3 Noel Onyango4,5 George Ichoho4,5 Davide Gibellini3 Pier Paolo Piccaluga1,2*
Show Less
1 Biobank of Research, IRCCS Azienda Ospedaliera-Universitaria di Bologna Policlinico di S. Orsola, Bologna, Italy
2 Department of Medical and Surgical Sciences, Bologna University School of Medicine, Bologna, Italy
3 Microbiology Unit, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
4 Department of Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
5 KAVI-Institute for Clinical Research, University of Nairobi, Nairobi, Kenya
Tumor Discovery, 025260056 https://doi.org/10.36922/TD025260056
Received: 26 June 2025 | Revised: 3 November 2025 | Accepted: 4 November 2025 | Published online: 18 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Beyond the well-documented oncogenic role of Epstein–Barr virus (EBV), a growing body of evidence implicates other herpesviruses, notably Kaposi’s sarcoma-associated herpesvirus and human herpesvirus (HHV) 6, in the pathogenesis of specific lymphoma subtypes. HHV-7 has also been detected in lymphoma tissues, though its contribution remains less defined. This review systematically examines the epidemiological associations and experimental insights linking these non-EBV herpesviruses to lymphoid malignancies. The discussion delves into the molecular mechanisms through which virally encoded molecules influence critical cellular programs, including the modulation of immune responses, epigenetic reprogramming, and the induction of chronic inflammation. We also review how these viruses hijack multilayered cellular networks, such as nuclear factor kappa B and Janus Kinase/signal transducer and activator of transcription signaling, and reprogram cellular metabolism to support malignant growth. A critical re-evaluation of the evidence for HHV-7 positions it as a putative cofactor in lymphomagenesis, contingent on host immunosuppression, rather than a primary oncogenic driver, highlighting the current absence of proven causality and robust in vivo models. Furthermore, this review provides a structured overview of the clinical implications of these viral associations. We also outline the established diagnostic tools, such as immunohistochemistry and quantitative protein-coupled receptor (PCR), and emerging technologies such as droplet digital PCR and liquid biopsy that hold considerable promise to refine disease monitoring. Meanwhile, we delineate standard-of-care treatments for virus-associated lymphomas from promising investigational approaches, including virus-targeted interventions and novel immunotherapies, offering a framework for both current clinical practice and future research.

Keywords
Herpesvirus
Lymphoma
Human herpesvirus 6
Human herpesvirus 7
Kaposi’s sarcoma-associated herpesvirus
Oncogenesis
Funding
The work reported in this publication was funded by the Italian Ministry of Health (RC-2025-2797263).
Conflict of interest
Pier Paolo Piccaluga is an Editorial Board Member of this journal, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. White MK, Pagano JS, Khalili K. Viruses and human cancers: A long road of discovery of molecular paradigms. Clin Microbiol Rev. 2014;27(3):463-481. doi: 10.1128/CMR.00124-13

 

  1. Rafferty KA. Herpes viruses and cancer. Sci Am. 1973;229(4):26-33. doi: 10.1038/scientificamerican1073-26

 

  1. Golais F, Mrázová V. Human alpha and beta herpesviruses and cancer: Passengers or foes? Folia Microbiol (Praha). 2020;65(3):439-449. doi: 10.1007/s12223-020-00780-x

 

  1. Nicholas J. Evolutionary aspects of oncogenic herpesviruses. Mol Pathol. 2000;53(5):222-237. doi: 10.1136/mp.53.5.222

 

  1. Carbone A, Cesarman E, Spina M, Gloghini A, Schulz TF. HIV-associated lymphomas and gamma-herpesviruses. Blood. 2009;113(6):1213-1224. doi: 10.1182/blood-2008-09-180315

 

  1. Navari M, Etebari M, Ibrahimi M, Leoncini L, Piccaluga PP. Pathobiologic roles of Epstein-Barr virus-encoded MicroRNAs in human lymphomas. Int J Mol Sci. 2018;19(4):1168. doi: 10.3390/ijms19041168

 

  1. Piccaluga PP, Weber A, Ambrosio MR, Ahmed Y, Leoncini L. Epstein-Barr virus-induced metabolic rearrangements in human B-Cell lymphomas. Front Microbiol. 2018;9:1233. doi: 10.3389/fmicb.2018.01233

 

  1. Navari M, Etebari M, De Falco G, et al. The presence of Epstein-Barr virus significantly impacts the transcriptional profile in immunodeficiency-associated Burkitt lymphoma. Front Microbiol. 2015;6:556. doi: 10.3389/fmicb.2015.00556

 

  1. Navari M, Fuligni F, Laginestra MA, et al. Molecular signature of Epstein Barr virus-positive Burkitt lymphoma and post-transplant lymphoproliferative disorder suggest different roles for Epstein Barr virus. Front Microbiol. 2014;5:728. doi: 10.3389/fmicb.2014.00728

 

  1. Mundo L, Ambrosio MR, Picciolini M, et al. Unveiling another missing piece in EBV-driven lymphomagenesis: EBV-encoded MicroRNAs expression in EBER-negative burkitt lymphoma cases. Front Microbiol. 2017;8:229. doi: 10.3389/fmicb.2017.00229

 

  1. Ambrosio MR, Mundo L, Gazaneo S, et al. MicroRNAs sequencing unveils distinct molecular subgroups of plasmablastic lymphoma. Oncotarget. 2017;8(64):107356-107373. doi: 10.18632/oncotarget.22219

 

  1. Piccaluga PP, Navari M, De Falco G, et al. Virus-encoded microRNA contributes to the molecular profile of EBV-positive Burkitt lymphomas. Oncotarget. 2016;7(1):224-240. doi: 10.18632/oncotarget.4399

 

  1. Abate F, Ambrosio MR, Mundo L, et al. Distinct viral and mutational spectrum of endemic burkitt lymphoma. PLoS Pathog. 2015;11(10):e1005158. doi: 10.1371/journal.ppat.1005158

 

  1. da Silva Torres MK, dos Santos Pereira Neto G, Vallinoto IMVC, Reis LO, Vallinoto ACR. The impact of oncogenic viruses on cancer development: A narrative review. Biology (Basel). 2025;14(7):797. doi: 10.3390/biology14070797

 

  1. Tumwine LK, Lalitha R, Agostinelli C, et al. Primary effusion lymphoma associated with Human Herpes Virus-8 and Epstein Barr virus in an HIV-infected woman from Kampala, Uganda: A case report. J Med Case Rep. 2011;5:60. doi: 10.1186/1752-1947-5-60

 

  1. Kitsou K, Iliopoulou M, Spoulou V, Lagiou P, Magiorkinis G. Viral causality of human cancer and potential roles of human endogenous retroviruses in the multi-omics era: An evolutionary epidemiology review. Front Oncol. 2021;11:687631. doi: 10.3389/fonc.2021.687631

 

  1. Henze L, Buhl C, Sandherr M, et al. Management of herpesvirus reactivations in patients with solid tumours and hematologic malignancies: Update of the Guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society for Hematology and Medical Oncology (DGHO) on herpes simplex virus type 1, herpes simplex virus type 2, and varicella zoster virus. Ann Hematol. 2022;101(3):491-511. doi: 10.1007/s00277-021-04746-y

 

  1. Wahbeh F, Sabatino JJ. Epstein-Barr virus in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2025;12(6):e200460. doi: 10.1212/NXI.0000000000200460

 

  1. Engels EA. Infectious agents as causes of non-hodgkin lymphoma. Cancer Epidemiol Biomark Prevent. 2007;16(3):401-404. doi: 10.1158/1055-9965.EPI-06-1056

 

  1. Chang Y, Moore PS, Weiss RA. Human oncogenic viruses: Nature and discovery. Philos Trans R Soc Lond B Biol Sci. 2017;372(1732):20160264. doi: 10.1098/rstb.2016.0264

 

  1. Fertitta V, Marcillo DIE, Privitera GF, et al. Oral Viral DNA profiling in obesity, adenomatous polyposis, and colorectal cancer identifies human β-papillomavirus types aspotentially sex-related and modifiable cancer risk indicators. Cancers (Basel). 2025;17(18):3024. doi: 10.3390/cancers17183024

 

  1. Sehrawat S, Kumar D, Rouse BT. Herpesviruses: Harmonious pathogens but relevant cofactors in other diseases? Front Cell Infect Microbiol. 2018;8:177. doi: 10.3389/fcimb.2018.00177

 

  1. Berneman ZN, Torelli G, Luppi M, Jarrett RF. Absence of a directly causative role for human herpesvirus 7 in human lymphoma and a review of human herpesvirus 6 in human malignancy. Ann Hematol. 1998;77(6):275-278. doi: 10.1007/s002770050457

 

  1. Eliassen E, Lum E, Pritchett J, et al. Human herpesvirus 6 and malignancy: A review. Front Oncol. 2018;8:512. doi: 10.3389/fonc.2018.00512

 

  1. Uppal T, Banerjee S, Sun Z, Verma S, Robertson E. KSHV LANA-the master regulator of KSHV latency. Viruses. 2014;6(12):4961-4998. doi: 10.3390/v6124961

 

  1. Greninger AL, Roychoudhury P, Xie H, et al. Ultrasensitive capture of human herpes simplex virus genomes directly from clinical samples reveals extraordinarily limited evolution in cell culture. mSphere. 2018;3(3):e00283-18. doi: 10.1128/mSphereDirect.00283-18

 

  1. Zhang Y, Guo W, Zhan Z, Bai O. Carcinogenic mechanisms of virus-associated lymphoma. Front Immunol. 2024;15:1361009. doi: 10.3389/fimmu.2024.1361009

 

  1. Jha H, Banerjee S, Robertson E. The role of gammaherpesviruses in cancer pathogenesis. Pathogens. 2016;5(1):18. doi: 10.3390/pathogens5010018

 

  1. Alibek K, Baiken Y, Kakpenova A, et al. Implication of human herpesviruses in oncogenesis through immune evasion and suppression. Infect Agent Cancer. 2014;9(1):3. doi: 10.1186/1750-9378-9-3

 

  1. Cesarman E. Gammaherpesvirus and lymphoproliferative disorders in immunocompromised patients. Cancer Lett. 2011;305(2):163-174. doi: 10.1016/j.canlet.2011.03.003

 

  1. Coccaro N, Tota G, Anelli L, Zagaria A, Specchia G, Albano F. Digital PCR: A reliable tool for analyzing and monitoring hematologic malignancies. Int J Mol Sci. 2020;21(9):3141. doi: 10.3390/ijms21093141

 

  1. Jauhiainen MK, Mohanraj U, Perdomo MF, et al. Presence of herpesviruses, parvoviruses, and polyomaviruses in sinonasal lymphoma. Eur Arch Otorhinolaryngol. 2024;281(8):4201-4211. doi: 10.1007/s00405-024-08702-0

 

  1. Dolcetti R, Di Luca D, Carbone A, et al. Human herpesvirus 6 in human immunodeficiency virus-infected individuals: Association with early histologic phases of lymphadenopathy syndrome but not with malignant lymphoproliferative disorders. J Med Virol. 1996;48(4):344-353. doi: 10.1002/(SICI)1096-9071(199604)48::4<344:AID-JMV8>3.0.CO;2-7

 

  1. Verbeek R, Vandekerckhove L, van Cleemput J. Update on human herpesvirus 7 pathogenesis and clinical aspects as a roadmap for future research. J Virol. 2024;98(6):e0043724. doi: 10.1128/jvi.00437-24

 

  1. Lisco A, Grivel JC, Biancotto A, et al. Viral interactions in human lymphoid tissue: Human herpesvirus 7 suppresses the replication of CCR5-tropic human immunodeficiency virus type 1 via CD4 modulation. J Virol. 2007;81(2):708-717. doi: 10.1128/JVI.01367-06

 

  1. Zhang Y, Dai Y, Zheng T, Ma S. Risk factors of non-Hodgkin’s lymphoma. Expert Opin Med Diagn. 2011;5(6):539-550. doi: 10.1517/17530059.2011.618185

 

  1. Bassig BA, Willhauck‐Fleckenstein M, Shu XO, et al. Serologic markers of viral infection and risk of non‐odgkin lymphoma: A pooled study of three prospective cohorts in China and Singapore. Int J Cancer. 2018;143(3):570-579. doi: 10.1002/ijc.31385

 

  1. Ponti R, Bergallo M, Costa C, et al. Human herpesvirus 7 detection by quantitative real time polymerase chain reaction in primary cutaneous T-cell lymphomas and healthy subjects: Lack of a pathogenic role. Br J Dermatol. 2008;159:1131-1137. doi: 10.1111/j.1365-2133.2008.08811.x

 

  1. Kutle I, Dittrich A, Wirth D. Mouse models for human herpesviruses. Pathogens. 2023;12(7):953. doi: 10.3390/pathogens12070953

 

  1. Fujiwara S, Nakamura H. Animal models for gammaherpesvirus infections: Recent development in the analysis of virus-induced pathogenesis. Pathogens. 2020;9(2):116. doi: 10.3390/pathogens9020116

 

  1. Rigney J, Zhang K, Greas M, Liu Y. A review of KSHV/HHV8- associated neoplasms and related lymphoproliferative lesions. Lymphatics. 2025;3(3):20. doi: 10.3390/lymphatics3030020

 

  1. Narkhede M, Arora S, Ujjani C. Primary effusion lymphoma: Current perspectives. Onco Targets Ther. 2018;11:3747-3754. doi: 10.2147/OTT.S167392

 

  1. Stammler R, Vacher L, Fournier B, et al. Combined flow‐fluorescence in situ hybridization to HHV‐8 and EBV reveals the viral heterogeneity of primary effusion lymphoma. J Med Virol. 2024;96(8):e29836. doi: 10.1002/jmv.29836

 

  1. SahBandar IN, Sy CB, van den Akker T, et al. Primary effusion lymphoma in an HIV-negative patient with chronic myeloid leukemia treated with dasatinib. Pathobiology. 2023;90(5):356-364. doi: 10.1159/000530429

 

  1. Gathers D, Galloway E, Kelemen K, Rosenthal A, Gibson S, Munoz J. Primary effusion lymphoma: A clinicopathologic perspective. Cancers (Basel). 2022;14(3):722. doi: 10.3390/cancers14030722

 

  1. Lurain K, Yarchoan R, Uldrick TS. Treatment of kaposi sarcoma herpesvirus-associated multicentric Castleman disease. Hematol Oncol Clin North Am. 2018;32(1):75-88. doi: 10.1016/j.hoc.2017.09.007

 

  1. Du MQ, Diss TC, Liu H, et al. KSHV- and EBV-associated germinotropic lymphoproliferative disorder. Blood. 2002;100(9):3415-3418. doi: 10.1182/blood-2002-02-0487

 

  1. Zanelli M, Zizzo M, Bisagni A, et al. Germinotropic lymphoproliferative disorder: A systematic review. Ann Hematol. 2020;99(10):2243-2253. doi: 10.1007/s00277-020-04024-3

 

  1. Bhavsar T, Lee JC, Perner Y, et al. KSHV-associated and EBV-associated Germinotropic Lymphoproliferative Disorder. Am J Surg Pathol. 2017;41(6):795-800. doi: 10.1097/PAS.0000000000000823

 

  1. HHV-8 LANA-1. In: Leong’s Manual of Diagnostic Antibodies for Immunohistology. Cambridge: Cambridge University Press; 2016. p. 263-264. doi: 10.1017/9781139939508.127

 

  1. Veselinyová D, Mašlanková J, Kalinová K, Mičková H, Mareková M, Rabajdová M. Selected in situ hybridization methods: Principles and application. Molecules. 2021;26(13):3874. doi: 10.3390/molecules26133874

 

  1. Piccaluga PP, Gazzola A, Agostinelli C, Bacci F, Sabattini E, Pileri SA. Pathobiology of Epstein-Barr virus-driven peripheral T-cell lymphomas. Semin Diagn Pathol. 2011;28(3):234-244. doi: 10.1053/j.semdp.2011.02.007

 

  1. Painter JT, Clayton NP, Herbert RA. Useful immunohistochemical markers of tumor differentiation. Toxicol Pathol. 2010;38(1):131-141. doi: 10.1177/0192623309356449

 

  1. Bilajac E, Mahmutović L, Lundstrom K, et al. Viral agents as potential drivers of diffuse large B-cell lymphoma tumorigenesis. Viruses. 2022;14(10):2105. doi: 10.3390/v14102105

 

  1. Hussain I, Boza J, Lukande R, et al. Automated detection of kaposi sarcoma-associated herpesvirus-infected cells in immunohistochemical images of skin biopsies. JCO Glob Oncol. 2025;11:e2400536. doi: 10.1200/GO-24-00536

 

  1. Zhang H, Cao L, Brodsky J, et al. Quantitative or digital PCR? A comparative analysis for choosing the optimal one for biosensing applications. TrAC Trends Anal Chem. 2024;174:117676. doi: 10.1016/j.trac.2024.117676

 

  1. Almasri M, Maher N, Deeban B, Diop NM, Moia R, Gaidano G. Liquid biopsy in B and T cell lymphomas: From bench to bedside. Int J Mol Sci. 2025;26(10):4869. doi: 10.3390/ijms26104869

 

  1. Diez-Feijóo R, Andrade-Campos M, Gibert J, et al. Cell-Free DNA as a biomarker at diagnosis and follow-up in 256 B and T-cell lymphomas. Cancers (Basel). 2024;16(2):321. doi: 10.3390/cancers16020321

 

  1. Parums DV. A review of circulating tumor DNA (ctDNA) and the liquid biopsy in cancer diagnosis, screening, and monitoring treatment response. Med Sci Monit. 2025;31:e949300. doi: 10.12659/MSM.949300

 

  1. Drandi D, Kubiczkova-Besse L, Ferrero S, et al. Minimal residual disease detection by droplet digital PCR in multiple myeloma, mantle cell lymphoma, and follicular lymphoma. J Mol Diagn. 2015;17(6):652-660. doi: 10.1016/j.jmoldx.2015.05.007

 

  1. Hübel K, Bower M, Aurer I, et al. Human immunodeficiency virus‐associated Lymphomas: EHA-ESMO Clinical Practice Guideline for diagnosis, treatment and follow‐up. Hemasphere. 2024;8(9):e150. doi: 10.1002/hem3.150

 

  1. Xing Y, Huang J, Zhang Y, Wang Y, Qi S. Advancing the understanding and management of angioimmunoblastic T-cell lymphoma: Insights into its pathogenesis, clinical features, and emerging therapeutic strategies. Front Oncol. 2025;15:1479179. doi: 10.3389/fonc.2025.1479179

 

  1. Moskowitz AJ. Practical treatment approach for angioimmunoblastic T-cell lymphoma. J Oncol Pract. 2019;15(3):137-143. doi: 10.1200/JOP.18.00511

 

  1. Okada S, Goto H, Yotsumoto M. Current status of treatmentfor primary effusion lymphoma. Intractable Rare Dis Res. 2014;3(3):65-74. doi: 10.5582/irdr.2014.01010

 

  1. Naimo E, Zischke J, Schulz TF. Recent advances in developing treatments of Kaposi’s sarcoma herpesvirus-related diseases. Viruses. 2021;13(9):1797. doi: 10.3390/v13091797

 

  1. Dimopoulos MA, Voorhees PM, Schjesvold F, et al. Daratumumab or active monitoring for high-risk smoldering multiple myeloma. N Engl J Med. 2025;392(18):1777-1788. doi: 10.1056/NEJMoa2409029

 

  1. Ferrero S, Grimaldi D, Arrigoni E, et al. Candidate germline biomarkers of lenalidomide efficacy in mantle cell lymphoma: The Fondazione Italiana Linfomi MCL0208 trial. Blood Adv. 2023;7(14):3764-3774. doi: 10.1182/bloodadvances.2022009504

 

  1. Panaampon J, Okada S. Promising immunotherapeutic approaches for primary effusion lymphoma. Explor Target Antitumor Ther. 2024;5:699-713. doi: 10.37349/etat.2024.00242

 

  1. Cortlana V, Gambill J, Ghazal J, et al. Expanding horizons in T-cell lymphoma therapy: Focus on personalized treatment strategies. Oncology (Williston Park). 2025;39(2):80-84. doi: 10.46883/2025.25921036

 

  1. Irimia R, Piccaluga PP. Histone deacetylase inhibitors for peripheral T-cell lymphomas. Cancers (Basel). 2024;16(19):3359. doi: 10.3390/cancers16193359
Share
Back to top
Tumor Discovery, Electronic ISSN: 2810-9775 Print ISSN: 3060-8597, Published by AccScience Publishing