AccScience Publishing / TD / Online First / DOI: 10.36922/TD025080015
REVIEW ARTICLE

Dysregulated heme metabolism in cancer progression: Pathways, biomarkers, and therapeutic challenges

Ankit Kumar Yadav1 Pooja Singh1 Roopak Murali1 Ganesh Venkatraman2 Rajesh Kumar Gandhirajan1*
Show Less
1 Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
2 Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
Tumor Discovery, 025080015 https://doi.org/10.36922/TD025080015
Received: 23 February 2025 | Revised: 19 June 2025 | Accepted: 3 July 2025 | Published online: 29 August 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Heme, a vital inorganic compound consisting of a tetrapyrrole protoporphyrin ring (protoporphyrin IX) with an iron ion at its core, is essential for several metabolic processes, including the electron transport chain, oxidative phosphorylation, glycolysis, and the tricarboxylic acid cycle. As a critical cofactor for enzymes such as hemoglobin, myoglobin, cytochrome P450, and peroxidase, heme is fundamental to normal cell function at physiological concentrations, and above these concentrations, it can also act as a driver of oncogenesis. Dysregulated heme metabolism profoundly impacts cancer biology, affecting tumor growth, progression, and resistance to currently available treatments. Disruptions in heme homeostasis alter redox balance, modulate immune responses, and increase metabolic flexibility within the tumor microenvironment (TME). Elevated levels of heme oxygenase, a key enzyme responsible for heme degradation, and other enzymes of the heme biosynthetic pathway—including transporter and trafficking proteins—are associated with enhanced cancer cell survival, therapeutic resistance, and immune evasion. Moreover, the buildup of porphyrins (porphyrin overdrive) within the TME has potential utility as a biomarker for early cancer detection and monitoring. This review synthesizes the literature on tumor-derived heme and its role in multiple cancers, emphasizing the significance of considering heme as a major factor in oncogenesis, including tumor initiation, progression, and resistance to current treatment options.

Keywords
Heme
Porphyrin overdrive
Tumor microenvironment
Metabolism
Therapy resistance
Funding
Part of this work was funded by the Department of Biotechnology, India (Grant No: BT/PR44553/ MED/30/2391/2021).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Duvigneau JC, Esterbauer H, Kozlov AV. Role of heme oxygenase as a modulator of heme-mediated pathways. Antioxidants (Basel). 2019;8(10):475. doi: 10.3390/antiox8100475

 

  1. Fiorito V, Allocco AL, Petrillo S, et al. The heme synthesis-export system regulates the tricarboxylic acid cycle flux and oxidative phosphorylation. Cell Rep. 2021;35(11):109252. doi: 10.1016/j.celrep.2021.109252

 

  1. Wang T, Ashrafi A, Modareszadeh P, et al. An analysis of the multifaceted roles of heme in the pathogenesis of cancer and related diseases. Cancers (Basel). 2021;13(16):4142. doi: 10.3390/cancers13164142

 

  1. San Francisco B, Kranz RG. Interaction of holoCcmE with CcmF in heme trafficking and cytochrome c biosynthesis. J Mol Biol. 2014;426(3):570-585. doi: 10.1016/j.jmb.2013.10.025

 

  1. Yuan X, Rietzschel N, Kwon H, et al. Regulation of intracellular heme trafficking revealed by subcellular reporters. Proc Natl Acad Sci U S A. 2016;113(35):E5144-E5152. doi: 10.1073/pnas.1609865113

 

  1. Kim HJ, Khalimonchuk O, Smith PM, Winge DR. Structure, function, and assembly of heme centers in mitochondrial respiratory complexes. Biochim Biophys Acta. 2012;1823(9):1604-1616. doi: 10.1016/j.bbamcr.2012.04.008

 

  1. Fiorito V, Chiabrando D, Petrillo S, Bertino F, Tolosano E. The multifaceted role of heme in cancer. Front Oncol. 2019;9:1540. doi: 10.3389/fonc.2019.01540

 

  1. Ricci A, Di Betto G, Bergamini E, Buzzetti E, Corradini E, Ventura P. Iron metabolism in the disorders of heme biosynthesis. Metabolites. 2022;12(9):819. doi: 10.3390/metabo12090819

 

  1. Adapa SR, Sami A, Meshram P, Ferreira GC, Jiang RHY. Uncovering porphyrin accumulation in the tumor microenvironment. Genes (Basel). 2024;15(7):961. doi: 10.3390/genes15070961

 

  1. Layer G, Reichelt J, Jahn D, Heinz DW. Structure and function of enzymes in heme biosynthesis. Protein Sci. 2010;19(6):1137-1161. doi: 10.1002/pro.405

 

  1. Duarte TL, Viveiros N, Godinho C, Duarte D. Heme (dys)homeostasis and liver disease. Front Physiol. 2024;15:1436897. doi: 10.3389/fphys.2024.1436897

 

  1. Bonkowsky HL, Sinclair PR, Sinclair JF. Hepatic heme metabolism and its control. Yale J Biol Med. 1979;52(1):13-37.

 

  1. Hooda J, Shah A, Zhang L. Heme, an essential nutrient from dietary proteins, critically impacts diverse physiological and pathological processes. Nutrients. 2014;6(3):1080-1102. doi: 10.3390/nu6031080

 

  1. Saman S, Srivastava N, Yasir M, Chauhan I. A comprehensive review on current treatments and challenges involved in the treatment of ovarian cancer. Curr Cancer Drug Targets. 2024;24(2):142-166. doi: 10.2174/1568009623666230811093139

 

  1. Montalbetti N, Simonin A, Kovacs G, Hediger MA. Mammalian iron transporters: Families SLC11 and SLC40. Mol Aspects Med. 2013;34(2-3):270-287. doi: 10.1016/j.mam.2013.01.002

 

  1. West AR, Oates PS. Mechanisms of heme iron absorption: Current questions and controversies. World J Gastroenterol. 2008;14(26):4101-4110. doi: 10.3748/wjg.14.4101

 

  1. Fiorito V, Forni M, Silengo L, Altruda F, Tolosano E. Crucial role of FLVCR1a in the maintenance of intestinal heme homeostasis. Antioxid Redox Signal. 2015;23(18):1410-1423. doi: 10.1089/ars.2014.6216

 

  1. Fiorito V, Neri F, Pala V, et al. Hypoxia controls Flvcr1 gene expression in Caco2 cells through HIF2α and ETS1. Biochim Biophys Acta. 2014;1839(4):259-264. doi: 10.1016/j.bbagrm.2014.02.010

 

  1. Vinchi F, Ingoglia G, Chiabrando D, et al. Heme exporter FLVCR1a regulates heme synthesis and degradation and controls activity of cytochromes P450. Gastroenterology. 2014;146(5):1325-1338. doi: 10.1053/j.gastro.2014.01.053

 

  1. Adin CA. Bilirubin as a therapeutic molecule: Challenges and opportunities. Antioxidants (Basel). 2021;10(10):1536. doi: 10.3390/antiox10101536

 

  1. Ryter SW. Therapeutic potential of heme oxygenase-1 and carbon monoxide in acute organ injury, critical illness, and inflammatory disorders. Antioxidants (Basel). 2020;9(11):1153. doi: 10.3390/antiox9111153

 

  1. Minegishi S, Sagami I, Negi S, Kano K, Kitagishi H. Circadian clock disruption by selective removal of endogenous carbon monoxide. Sci Rep. 2018;8(1):11996. doi: 10.1038/s41598-018-30425-6

 

  1. Yuan Z, De La Cruz LK, Yang X, Wang B. Carbon monoxide signaling: Examining its engagement with various molecular targets in the context of binding affinity, concentration, and biologic response. Pharmacol Rev. 2022;74(3):823-873. doi: 10.1124/pharmrev.121.000564

 

  1. Ganesh JM, Prerana P, Dharmarajan A, Warrier S, Gandhirajan RK. Modulation of reactive oxygen species in cancers: Recent advances. Free Radic Res. 2022;56(5-6):447-470. doi: 10.1080/10715762.2022.2133704

 

  1. Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol. 2024;25(2):133-155. doi: 10.1038/s41580-023-00648-1

 

  1. Prawan A, Kundu JK, Surh YJ. Molecular basis of heme oxygenase-1 induction: Implications for chemoprevention and chemoprotection. Antioxid Redox Signal. 2005;7(11- 12):1688-1703. doi: 10.1089/ars.2005.7.1688

 

  1. Hayashi S, Omata Y, Sakamoto H, et al. Characterization of rat heme oxygenase-3 gene. Implication of processed pseudogenes derived from heme oxygenase-2 gene. Gene. 2004;336(2):241-250. doi: 10.1016/j.gene.2004.04.002

 

  1. Chiang SK, Chen SE, Chang LC. The role of HO-1 and Its crosstalk with oxidative stress in cancer cell survival. Cells. 2021;10(9):2401. doi: 10.3390/cells10092401

 

  1. Cui M, Ma Y, Yu Y. Heme oxygenase-1/carbon monoxide signaling participates in the accumulation of triterpenoids of Ganoderma lucidum. J Zhejiang Univ Sci B. 2021; 22(11):941-953. doi: 10.1631/jzus.B2000818

 

  1. Alaoui-Jamali MA, Bismar TA, Gupta A, et al. A novel experimental heme oxygenase-1-targeted therapy for hormone-refractory prostate cancer. Cancer Res. 2009;69(20):8017-8024. doi: 10.1158/0008-5472.can-09-0419

 

  1. Berberat PO, Dambrauskas Z, Gulbinas A, et al. Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clin Cancer Res. 2005;11(10):3790-3798. doi: 10.1158/1078-0432.CCR-04-2159

 

  1. Kongpetch S, Kukongviriyapan V, Prawan A, Senggunprai L, Kukongviriyapan U, Buranrat B. Crucial role of heme oxygenase-1 on the sensitivity of cholangiocarcinoma cells to chemotherapeutic agents. PLoS One. 2012;7(4):e34994. doi: 10.1371/journal.pone.0034994

 

  1. Miyake M, Ishii M, Kawashima K, et al. siRNA-mediated knockdown of the heme synthesis and degradation pathways: Modulation of treatment effect of 5-aminolevulinic acid-based photodynamic therapy in urothelial cancer cell lines. Photochem Photobiol. 2009;85(4):1020-1027. doi: 10.1111/j.1751-1097.2009.00543.x

 

  1. Sangkhae V, Nemeth E. Regulation of the iron homeostatic hormone hepcidin. Adv Nutr. 2017;8(1):126-136. doi: 10.3945/an.116.013961

 

  1. Le Gal K, Schmidt EE, Sayin VI. Cellular redox homeostasis. Antioxidants (Basel). 2021;10(9):1377. doi: 10.3390/antiox10091377

 

  1. Medina MV, Sapochnik D, Garcia Sola M, Coso O. Regulation of the expression of heme oxygenase-1: Signal transduction, gene promoter activation, and beyond. Antioxid Redox Signal. 2020;32(14):1033-1044. doi: 10.1089/ars.2019.7991

 

  1. Hong CC, Ambrosone CB, Ahn J, et al. Genetic variability in iron-related oxidative stress pathways (Nrf2, NQ01, NOS3, and HO-1), iron intake, and risk of postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev. 2007;16(9):1784-1794. doi: 10.1158/1055-9965.epi-07-0247

 

  1. Ohshima K, Morii E. Metabolic reprogramming of cancer cells during tumor progression and metastasis. Metabolites. 2021;11(1):28. doi: 10.3390/metabo11010028

 

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17-48. doi: 10.3322/caac.21763

 

  1. Hooda J, Cadinu D, Alam MM, et al. Enhanced heme function and mitochondrial respiration promote the progression of lung cancer cells. PLoS One. 2013;8(5):e63402. doi: 10.1371/journal.pone.0063402

 

  1. Sohoni S, Ghosh P, Wang T, et al. Elevated heme synthesis and uptake underpin intensified oxidative metabolism and tumorigenic functions in non-small cell lung cancer cells. Cancer Res. 2019;79(10):2511-2525. doi: 10.1158/0008-5472.can-18-2156

 

  1. Ghosh P, Guo Y, Ashrafi A, et al. Oxygen-enhanced optoacoustic tomography reveals the effectiveness of targeting heme and oxidative phosphorylation at normalizing tumor vascular oxygenation. Cancer Res. 2020; 80(17):3542-3555. doi: 10.1158/0008-5472.CAN-19-3247

 

  1. Wiel C, Le Gal K, Ibrahim MX, et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell. 2019;178(2):330-345.e22. doi: 10.1016/j.cell.2019.06.005

 

  1. Koukourakis MI, Kalamida D, Mitrakas AG, et al. Metabolic cooperation between co-cultured lung cancer cells and lung fibroblasts. Lab Invest. 2017;97(11):1321-1331. doi: 10.1038/labinvest.2017.79

 

  1. Wang T, Ashrafi A, Konduri PC, et al. Heme sequestration as an effective strategy for the suppression of tumor growth and progression. Mol Cancer Ther. 2021;20(12):2506-2518. doi: 10.1158/1535-7163.MCT-21-0033

 

  1. Hossain MS, Karuniawati H, Jairoun AA, et al. Colorectal cancer: A review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies. Cancers (Basel). 2022;14(7):1732. doi: 10.3390/cancers14071732

 

  1. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12-49. doi: 10.3322/caac.21820

 

  1. Clinton SK, Giovannucci EL, Hursting SD. The world cancer research Fund/American Institute for cancer research third expert report on diet, nutrition, physical activity, and cancer: Impact and future directions. J Nutr. 2020;150(4):663-671. doi: 10.1093/jn/nxz268

 

  1. Lewandowska A, Rudzki G, Lewandowski T, Stryjkowska- Gora A, Rudzki S. Risk factors for the diagnosis of colorectal cancer. Cancer Control. 2022;29:10732748211056692. doi: 10.1177/10732748211056692

 

  1. Krukowska K, Magierowski M. Carbon monoxide (CO)/ heme oxygenase (HO)-1 in gastrointestinal tumors pathophysiology and pharmacology - possible anti- and pro-cancer activities. Biochem Pharmacol. 2022;201:115058. doi: 10.1016/j.bcp.2022.115058

 

  1. Hemmati M, Yousefi B, Bahar A, Eslami M. Importance of heme oxygenase-1 in gastrointestinal cancers: Functions, inductions, regulations, and signaling. J Gastrointest Cancer. 2021;52(2):454-461. doi: 10.1007/s12029-021-00587-0

 

  1. Yin H, Fang J, Liao L, Maeda H, Su Q. Upregulation of heme oxygenase-1 in colorectal cancer patients with increased circulation carbon monoxide levels, potentially affects chemotherapeutic sensitivity. BMC Cancer. 2014;14:436. doi: 10.1186/1471-2407-14-436

 

  1. Davudian S, Mansoori B, Shajari N, Mohammadi A, Baradaran B. BACH1, the master regulator gene: A novel candidate target for cancer therapy. Gene. 2016;588(1):30-37. doi: 10.1016/j.gene.2016.04.040

 

  1. Seo GS, Jiang WY, Chi JH, et al. Heme oxygenase-1 promotes tumor progression and metastasis of colorectal carcinoma cells by inhibiting antitumor immunity. Oncotarget. 2015;6(23):19792-19806. doi: 10.18632/oncotarget.4075

 

  1. Fernandez-Fierro A, Funes SC, Rios M, Covian C, Gonzalez J, Kalergis AM. Immune modulation by inhibitors of the HO system. Int J Mol Sci. 2020;22(1):294. doi: 10.3390/ijms22010294

 

  1. Lu JJ, Abudukeyoumu A, Zhang X, Liu LB, Li MQ, Xie F. Heme oxygenase 1: A novel oncogene in multiple gynecological cancers. Int J Biol Sci. 2021;17(9):2252-2261. doi: 10.7150/ijbs.61073

 

  1. Kimura S, Aung NY, Ohe R, et al. Increasing heme oxygenase-1-expressing macrophages indicates a tendency of poor prognosis in advanced colorectal cancer. Digestion. 2020;101(4):401-410. doi: 10.1159/000500225

 

  1. Nitti M, Ivaldo C, Traverso N, Furfaro AL. Clinical significance of heme oxygenase 1 in tumor progression. Antioxidants (Basel). 2021;10(5):789. doi: 10.3390/antiox10050789

 

  1. Wilson AH. The prostate gland: A review of its anatomy, pathology, and treatment. JAMA. 2014;312(5):562. doi: 10.1001/jama.2013.279650

 

  1. Eidelman E, Twum-Ampofo J, Ansari J, Siddiqui MM. The metabolic phenotype of prostate cancer. Front Oncol. 2017;7:131. doi: 10.3389/fonc.2017.00131

 

  1. Salloom RJ, Ahmad IM, Abdalla MY. Targeting heme degradation pathway augments prostate cancer cell sensitivity to docetaxel-induced apoptosis and attenuates migration. Front Oncol. 2024;14:1431362. doi: 10.3389/fonc.2024.1431362

 

  1. He F, Ru X, Wen T. NRF2, a transcription factor for stress response and beyond. Int J Mol Sci. 2020;21(13):4777. doi: 10.3390/ijms21134777

 

  1. Saha S, Buttari B, Panieri E, Profumo E, Saso L. An overview of Nrf2 signaling pathway and its role in inflammation. Molecules. 2020;25(22):5474. doi: 10.3390/molecules25225474

 

  1. Reichard JF, Motz GT, Puga A. Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1. Nucleic Acids Res. 2007;35(21):7074-7086. doi: 10.1093/nar/gkm638

 

  1. Gotardelo DR, Courrol LC, Bellini MH, De Oliveira Silva FR, Soares CRJ. Porphyrins are increased in the faeces of patients with prostate cancer: A case-control study. BMC Cancer. 2018;18(1):1090. doi: 10.1186/s12885-018-5030-1

 

  1. Neubauer JA, Sunderram J. Heme oxygenase-1 and chronic hypoxia. Respir Physiol Neurobiol. 2012;184(2):178-185. doi: 10.1016/j.resp.2012.06.027

 

  1. Chepelev NL, Willmore WG. Regulation of iron pathways in response to hypoxia. Free Radic Biol Med. 2011;50(6):645-666. doi: 10.1016/j.freeradbiomed.2010.12.023

 

  1. Lee PJ, Jiang BH, Chin BY, et al. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem. 1997;272(9):5375-5381.

 

  1. De Oliveira Silva FR, Bellini MH, Tristao VR, Schor N, Vieira ND Jr., Courrol LC. Intrinsic fluorescence of protoporphyrin IX from blood samples can yield information on the growth of prostate tumours. J Fluoresc. 2010;20(6):1159-1165. doi: 10.1007/s10895-010-0662-9

 

  1. Canesin G, Di Ruscio A, Li M, et al. Scavenging of labile heme by hemopexin is a key checkpoint in cancer growth and metastases. Cell Rep. 2020;32(12):108181. doi: 10.1016/j.celrep.2020.108181

 

  1. Holland EC. Glioblastoma multiforme: The terminator. Proc Natl Acad Sci U S A. 2000;97(12):6242-6244. doi: 10.1073/pnas.97.12.6242

 

  1. Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97-109. doi: 10.1007/s00401-007-0243-4

 

  1. Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol. 2021;23(8):1231-1251. doi: 10.1093/neuonc/noab106

 

  1. Bao LJ, Jaramillo MC, Zhang ZB, et al. Nrf2 induces cisplatin resistance through activation of autophagy in ovarian carcinoma. Int J Clin Exp Pathol. 2014;7(4):1502-1513.

 

  1. Castruccio Castracani C, Longhitano L, Distefano A, et al. Heme oxygenase-1 and carbon monoxide regulate growth and progression in glioblastoma cells. Mol Neurobiol. 2020;57(5):2436-2446. doi: 10.1007/s12035-020-01869-7

 

  1. Li Y, Zhang Q, Wu M, et al. Suppressing MDSC Infiltration in tumor microenvironment serves as an option for treating ovarian cancer metastasis. Int J Biol Sci. 2022;18(9):3697-3713. doi: 10.7150/ijbs.70013

 

  1. Koshiyama M, Matsumura N, Konishi I. Subtypes of ovarian cancer and ovarian cancer screening. Diagnostics (Basel). 2017;7(1):12. doi: 10.3390/diagnostics7010012

 

  1. Ji J, Lv J, Lv M, et al. USP14 regulates heme metabolism and ovarian cancer invasion through BACH1 deubiquitination and stabilization. Biochem Biophys Res Commun. 2023;667:186-193. doi: 10.1016/j.bbrc.2023.04.082

 

  1. Zhao Z, Xu Y, Lu J, Xue J, Liu P. High expression of HO-1 predicts poor prognosis of ovarian cancer patients and promotes proliferation and aggressiveness of ovarian cancer cells. Clin Transl Oncol. 2018;20(4):491-499. doi: 10.1007/s12094-017-1738-7

 

  1. Reza S, Anjum R, Khandoker RZ, Khan SR, Islam MR, Dewan SMR. Public health concern-driven insights and response of low- and middle-income nations to the World health Organization call for cervical cancer risk eradication. Gynecol Oncol Rep. 2024;54:101460. doi: 10.1016/j.gore.2024.101460

 

  1. Yang Y, Wang HX, Zhang L, et al. Inhibition of heme oxygenase-1 enhances hyperthermia-induced autophagy and antiviral effect. Int J Biol Sci. 2019;15(3):568-578. doi: 10.7150/ijbs.29759

 

  1. Consoli V, Sorrenti V, Gulisano M, Spampinato M, Vanella L. Navigating heme pathways: The breach of heme oxygenase and hemin in breast cancer. Mol Cell Biochem. 2024;480:1495-1518. doi: 10.1007/s11010-024-05119-5

 

  1. Luond F, Tiede S, Christofori G. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. Br J Cancer. 2021;125(2):164-175. doi: 10.1038/s41416-021-01328-7

 

  1. Martelotto LG, Ng CK, Piscuoglio S, Weigelt B, Reis-Filho JS. Breast cancer intra-tumor heterogeneity. Breast Cancer Res. 2014;16(3):210. doi: 10.1186/bcr3658

 

  1. Wang Z, Jiang Q, Dong C. Metabolic reprogramming in triple-negative breast cancer. Cancer Biol Med. 2020;17(1):44-59. doi: 10.20892/j.issn.2095-3941.2019.0210

 

  1. Colo GP, Schweitzer K, Oresti GM, et al. Proteomic analysis of the effect of hemin in breast cancer. Sci Rep. 2023;13(1):10091. doi: 10.1038/s41598-023-35125-4

 

  1. Pignatelli P, Umme S, D’Antonio DL, Piattelli A, Curia MC. Reactive oxygen species produced by 5-aminolevulinic acid photodynamic therapy in the treatment of cancer. Int J Mol Sci. 2023;24(10):8964. doi: 10.3390/ijms24108964

 

  1. Shimamura Y, Tamatani D, Kuniyasu S, et al. 5-aminolevulinic acid enhances ultrasound-mediated antitumor activity via mitochondrial oxidative damage in breast cancer. Anticancer Res. 2016;36(7):3607-3612.

 

  1. Bhattacharya S, Prajapati BG, Singh S, Anjum MM. Nanoparticles drug delivery for 5-aminolevulinic acid (5-ALA) in photodynamic therapy (PDT) for multiple cancer treatment: A critical review on biosynthesis, detection, and therapeutic applications. J Cancer Res Clin Oncol. 2023;149(19):17607-17634. doi: 10.1007/s00432-023-05429-z

 

  1. Palasuberniam P, Yang X, Kraus D, Jones P, Myers KA, Chen B. ABCG2 transporter inhibitor restores the sensitivity of triple negative breast cancer cells to aminolevulinic acid-mediated photodynamic therapy. Sci Rep. 2015;5:13298. doi: 10.1038/srep13298

 

  1. Hu ZI, O’Reilly EM. Therapeutic developments in pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2024;21(1):7-24. doi: 10.1038/s41575-023-00840-w

 

  1. Zhu XG, Chudnovskiy A, Baudrier L, et al. Functional genomics in vivo reveal metabolic dependencies of pancreatic cancer cells. Cell Metab. 2021;33(1):211-221.e6. doi: 10.1016/j.cmet.2020.10.017

 

  1. Ahmad IM, Dafferner AJ, O’Connell KA, et al. Heme oxygenase-1 inhibition potentiates the effects of nab-paclitaxel-gemcitabine and modulates the tumor microenvironment in pancreatic ductal adenocarcinoma. Cancers (Basel). 2021;13(9):2264. doi: 10.3390/cancers13092264

 

  1. Nuhn P, Kunzli BM, Hennig R, et al. Heme oxygenase-1 and its metabolites affect pancreatic tumor growth in vivo. Mol Cancer. 2009;8:37. doi: 10.1186/1476-4598-8-37

 

  1. Johnson DE, Burtness B, Leemans CR, Lui VW, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020;6(1):92. doi: 10.1038/s41572-020-00224-3

 

  1. Mascaro M, Alonso EG, Schweitzer K, et al. Hemoxygenase-1 promotes head and neck cancer cell viability. Antioxidants (Basel). 2022;11(10):2077. doi: 10.3390/antiox11102077

 

  1. Ito E, Yue S, Moriyama EH, et al. Uroporphyrinogen decarboxylase is a radiosensitizing target for head and neck cancer. Sci Transl Med. 2011;3(67):67ra7. doi: 10.1126/scitranslmed.3001922

 

  1. Adeva-Andany MM, Perez-Felpete N, Fernandez- Fernandez C, Donapetry-Garcia C, Pazos-Garcia C. Liver glucose metabolism in humans. Biosci Rep. 2016;36(6):e00416. doi: 10.1042/BSR20160385

 

  1. Rui L. Energy metabolism in the liver. Compr Physiol. 2014;4(1):177-197. doi: 10.1002/cphy.c130024

 

  1. Balwani M, Wang B, Anderson KE, et al. Acute hepatic porphyrias: Recommendations for evaluation and long-term management. Hepatology. 2017;66(4):1314-1322. doi: 10.1002/hep.29313

 

  1. Czlonkowska A, Litwin T, Dusek P, et al. Wilson disease. Nat Rev Dis Primers. 2018;4(1):21. doi: 10.1038/s41572-018-0018-3

 

  1. Lisman T, Caldwell SH, Intagliata NM. Haemostatic alterations and management of haemostasis in patients with cirrhosis. J Hepatol. Jun 2022;76(6):1291-1305. doi: 10.1016/j.jhep.2021.11.004

 

  1. Puy H, Gouya L, Deybach JC. Porphyrias. Lancet. 2010;375(9718):924-937. doi: 10.1016/S0140-6736(09)61925-5

 

  1. Mitchell NDP, Pierre TGS, Ramm LE, Ramm GA, Olynyk JK. Risk profiling for cirrhosis and hepatocellular carcinoma in HFE hemochromatosis using mobilizable iron stores and alcohol consumption. Sci Rep. 2025;15(1):16011. doi: 10.1038/s41598-025-99672-8

 

  1. Chatzikalil E, Arvanitakis K, Kalopitas G, et al. Hepatic iron overload and hepatocellular carcinoma: New insights into pathophysiological mechanisms and therapeutic approaches. Cancers (Basel). 2025;17(3):392. doi: 10.3390/cancers17030392

 

  1. Fleming RE, Britton RS, Waheed A, Sly WS, Bacon BR. Pathophysiology of hereditary hemochromatosis. Semin Liver Dis. 2005;25(4):411-419. doi: 10.1055/s-2005-923313

 

  1. Sun X, Ou Z, Chen R, et al. Activation of the p62-Keap1- NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 2016;63(1):173-184. doi: 10.1002/hep.28251

 

  1. Jaramillo MC, Zhang DD. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 2013;27(20):2179-2191. doi: 10.1101/gad.225680.113

 

  1. Adapa SR, Meshram P, Sami A, Jiang RHY. Harnessing porphyrin accumulation in liver cancer: Combining genomic data and drug targeting. Biomolecules. 2024;14(8):959. doi: 10.3390/biom14080959

 

  1. Adapa SR, Hunter GA, Amin NE, et al. Porphyrin overdrive rewires cancer cell metabolism. Life Sci Alliance. 2024;7(7):e202302547. doi: 10.26508/lsa.202302547

 

  1. Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136-1152. doi: 10.1056/nejmra1406184

 

  1. Singh P, Murali R, Shanmugam SG, et al. Aberrant lipid metabolic signatures in acute myeloid leukemia. Stem Cells. 2024;42(3):200-215. doi: 10.1093/stmcls/sxad095

 

  1. Fukuda Y, Wang Y, Lian S, et al. Upregulated heme biosynthesis, an exploitable vulnerability in MYCN-driven leukemogenesis. JCI Insight. 2017;2(15):e92409. doi: 10.1172/jci.insight.92409

 

  1. Zhe N, Wang J, Chen S, et al. Heme oxygenase-1 plays a crucial role in chemoresistance in acute myeloid leukemia. Hematology. 2015;20(7):384-391. doi: 10.1179/1607845414Y.0000000212

 

  1. Salerno L, Romeo G, Modica MN, et al. Heme oxygenase-1: A new druggable target in the management of chronic and acute myeloid leukemia. Eur J Med Chem. 2017;142:163-178. doi: 10.1016/j.ejmech.2017.07.031

 

  1. Lin KH, Xie A, Rutter JC, et al. Systematic dissection of the metabolic-apoptotic interface in aml reveals heme biosynthesis to be a regulator of drug sensitivity. Cell Metab. 2019;29(5):1217-1231.e7. doi: 10.1016/j.cmet.2019.01.011

 

  1. Huang H, Zhu X, Yu Y, et al. EGFR mutations induce the suppression of CD8(+) T cell and anti-PD-1 resistance via ERK1/2-p90RSK-TGF-β axis in non-small cell lung cancer. J Transl Med. 2024;22(1):653. doi: 10.1186/s12967-024-05456-5

 

  1. Song K, Li M, Xu XJ, et al. HIF-1alpha and GLUT1 gene expression is associated with chemoresistance of acute myeloid leukemia. Asian Pac J Cancer Prev. 2014;15(4):1823-1829. doi: 10.7314/apjcp.2014.15.4.1823

 

  1. Gong L, Ji L, Xu D, Wang J, Zou J. TGF-beta links glycolysis and immunosuppression in glioblastoma. Histol Histopathol. 2021;36(11):1111-1124. doi: 10.14670/hh-18-366

 

  1. Lecker LSM, Berlato C, Maniati E, et al. TGFBI production by macrophages contributes to an immunosuppressive microenvironment in ovarian cancer. Cancer Res. 2021;81(22):5706-5719. doi: 10.1158/0008-5472.can-21-0536

 

  1. Matsuda S, Revandkar A, Dubash TD, et al. TGF-β in the microenvironment induces a physiologically occurring immune-suppressive senescent state. Cell Rep. 2023;42(3):112129. doi: 10.1016/j.celrep.2023.112129

 

  1. Park H, Bang JH, Nam AR, et al. The prognostic role of soluble TGF-beta and its dynamics in unresectable pancreatic cancer treated with chemotherapy. Cancer Med. 2020;9(1):43-51. doi: 10.1002/cam4.2677

 

  1. Pique-Gili M, Andreu-Oller C, Mesropian A, et al. Oncogenic role of PMEPA1 and its association with immune exhaustion and TGF-β activation in HCC. JHEP Rep. 2024;6(11):101212. doi: 10.1016/j.jhepr.2024.101212

 

  1. Selno ATH, Schlichtner S, Yasinska IM, et al. Transforming growth factor beta type 1 (TGF-beta) and hypoxia-inducible factor 1 (HIF-1) transcription complex as master regulators of the immunosuppressive protein galectin-9 expression in human cancer and embryonic cells. Aging (Albany NY). 2020;12(23):23478-23496. doi: 10.18632/aging.202343

 

  1. Singh S, Gouri V, Samant M. TGF-β in correlation with tumor progression, immunosuppression and targeted therapy in colorectal cancer. Med Oncol. 2023;40(11):335. doi: 10.1007/s12032-023-02204-5

 

  1. Trugilo KP, Cebinelli GCM, Castilha EP, Da Silva MR, Berti FCB, De Oliveira KB. The role of transforming growth factor beta in cervical carcinogenesis. Cytokine Growth Factor Rev. 2024;80:12-23. doi: 10.1016/j.cytogfr.2024.10.006
Share
Back to top
Tumor Discovery, Electronic ISSN: 2810-9775 Print ISSN: 3060-8597, Published by AccScience Publishing