AccScience Publishing / TD / Online First / DOI: 10.36922/TD025150027
REVIEW ARTICLE

FBXW7 in leukemia: A critical regulator of oncogenic stability and a potential therapeutic target

Xiuming Li1 Bin Liu1*
Show Less
1 Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
Tumor Discovery, 025150027 https://doi.org/10.36922/TD025150027
Received: 11 April 2025 | Revised: 16 May 2025 | Accepted: 20 May 2025 | Published online: 6 June 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

F-Box and WD repeat domain-containing 7 (FBXW7) is a key tumor suppressor and substrate-recognition component of the Skp1-Cullin-F-box E3 ubiquitin ligase complex, responsible for targeting several crucial oncogenic proteins for proteasomal degradation. It plays a significant role in preventing the accumulation of pro-oncogenic substrates, thereby maintaining cellular homeostasis. Mutations or inactivation of FBXW7 disrupt these processes, leading to the stabilization of oncogenic proteins such as c-Myc, Notch, myeloid cell leukemia 1, and cyclin E, which drive malignant transformation in several cancers, including hematological malignancies such as T-cell and B-cell acute lymphoblastic leukemia. These mutations contribute to resistance to apoptosis, dysregulated proliferation, and poor prognosis, highlighting FBXW7 as a critical factor in leukemia pathogenesis and a promising therapeutic target. Here, we review FBXW7’s structure and function, its key substrates in leukemia, and therapeutic strategies that restore its function or target the oncogenic pathways it regulates. Advances in genome-wide CRISPR screenings and proteomics have further illuminated FBXW7’s involvement in multidrug resistance, positioning it as a biomarker and therapeutic target for improving leukemia treatment outcomes.

Keywords
F-Box and WD repeat domain-containing 7
Leukemia
Ubiquitin-proteasome pathway
c-Myc
Notch
Myeloid cell leukemia 1
Tumor suppressor
Therapeutic target
Funding
This work was supported by the National Natural Science Foundation of China (82273167), Jiangsu Province Basic Research Program Natural Science Foundation (Outstanding Youth Fund Project, BK20220063), and the Key Program of Basic Science (Natural Science) of Jiangsu Province (22KJA350001).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Zhang A, Liu W, Qiu S. Mitochondrial genetic variations in leukemia: A comprehensive overview. Blood Sci. 2024;6(4):e00205. doi: 10.1097/BS9.0000000000000205

 

  1. Choi HS, Kim BS, Yoon S, Oh SO, Lee D. Leukemic stem cells and hematological malignancies. Int J Mol Sci. 2024;25(12):6639. doi: 10.3390/ijms25126639

 

  1. Iyer P, Jasdanwala SS, Wang Y, Bhatia K, Bhatt S. Decoding acute myeloid leukemia: A clinician’s guide to functional profiling. Diagnostics (Basel). 2024;14(22):2560. doi: 10.3390/diagnostics14222560

 

  1. Hosseini A, Dhall A, Ikonen N, et al. Perturbing LSD1 and WNT rewires transcription to synergistically induce AML differentiation. Nature. 2025. doi: 10.1038/s41586-025-08915-1

 

  1. Wiese W, Galita G, Siwecka N, Rozpedek-Kaminska W, Slupianek A, Majsterek I. Endoplasmic reticulum stress in acute myeloid leukemia: Pathogenesis, prognostic implications, and therapeutic strategies. Int J Mol Sci. 2025;26(7):3092. doi: 10.3390/ijms26073092

 

 

  1. Snaith O, Poveda-Rogers C, Laczko D, Yang G, Morrissette JJ. Cytogenetics and genomics of acute myeloid leukemia. Best Pract Res Clin Haematol. 2024;37(1):101533. doi: 10.1016/j.beha.2023.101533

 

  1. Longhitano AP, Slavin MA, Harrison SJ, Teh BW. Bispecific antibody therapy, its use and risks for infection: Bridging the knowledge gap. Blood Rev. 2021;49:100810. doi: 10.1016/j.blre.2021.100810

 

  1. Xiao W, Nardi V, Stein E, Hasserjian RP. A practical approach on the classifications of myeloid neoplasms and acute leukemia: WHO and ICC. J Hematol Oncol. 2024;17(1):56. doi: 10.1186/s13045-024-01571-4

 

  1. Chen L, Zeng P, Tang H, et al. Routes and molecular mechanisms of central nervous system involvement in acute myeloid leukemia (Review). Oncol Rep. 2024;52(5):146. doi: 10.3892/or.2024.8805

 

  1. Demir D. Insights into the new molecular updates in acute myeloid leukemia pathogenesis. Genes (Basel). 2023;14(7):1424. doi: 10.3390/genes14071424

 

  1. Pagliaro L, Chen SJ, Herranz D, et al. Acute lymphoblastic leukaemia. Nat Rev Dis Primers. 2024;10(1):41. doi: 10.1038/s41572-024-00525-x

 

  1. Cerqueira P, Pereira S, Costa R, et al. Cutaneous manifestation of acute lymphoblastic leukemia. Cureus 2024;16(11): e74022. doi: 10.7759/cureus.74022

 

  1. Chen JJ, Tokumori FC, Del Guzzo C, Kim J, Ruan J. Update on T-cell lymphoma epidemiology. Curr Hematol Malig Rep. 2024;19(3):93-103. doi: 10.1007/s11899-024-00727-w

 

  1. Fallati A, Di Marzo N, D’Amico G, Dander E. Mesenchymal stromal cells (MSCs): An ally of B-cell acute lymphoblastic leukemia (B-ALL) cells in disease maintenance and progression within the bone marrow hematopoietic niche. Cancers (Basel). 2022;14(14):3303. doi: 10.3390/cancers14143303

 

  1. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2025 update on diagnosis, therapy, and monitoring. Am J Hematol. 2024;99(11):2191-2212. doi: 10.1002/ajh.27443

 

  1. Kaehler M, von Bubnoff N, Cascorbi I, Gorantla SP. Molecular biomarkers of leukemia: Convergence-based drug resistance mechanisms in chronic myeloid leukemia and myeloproliferative neoplasms. Front Pharmacol. 2024;15:1422565. doi: 10.3389/fphar.2024.1422565

 

  1. Chen D, Wang MY, Tian C. Research progress of targeted therapy for chronic lymphocytic leukemia/small lymphocytic lymphoma --review. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2024;32(2):643-646. doi: 10.19746/j.cnki.issn.1009-2137.2024.02.049

 

  1. Gueuning C, Lazaro E, Dupuy H, et al. Characteristics of large granular lymphocyte leukemia associated with variable common immunodeficiency disorders: A study of 12 cases. Eur J Haematol. 2024;113(4):550-557. doi: 10.1111/ejh.14265

 

  1. Boucher A, Murray J, Rao S. Cohesin mutations in acute myeloid leukemia. Leukemia. 2024;38:2318-2328. doi: 10.1038/s41375-024-02406-4

 

  1. Walter W, Iacobucci I, Meggendorfer M. Diagnosis of acute lymphoblastic leukaemia: An overview of the current genomic classification, diagnostic approaches, and future directions. Histopathology. 2024. doi: 10.1111/his.15338

 

  1. Tosello V, Di Martino L, Piovan E. Targeted metabolomics of tissue and plasma identifies biomarkers in mice with NOTCH1-dependent T-cell acute lymphoblastic leukemia. Int J Mol Sci. 2024;25(12):6543. doi: 10.3390/ijms25126543

 

  1. Yang F, Zhou H, Luo P, et al. Celastrol induces DNA damage and cell death in BCR-ABL T315I-mutant CML by targeting YY1 and HMCES. Phytomedicine. 2024;134:155937. doi: 10.1016/j.phymed.2024.155937

 

  1. Cortes-Lopez PN, Guzman-Montijo E, Fuentes-Venado CE, et al. Cutaneous fusarium disease and leukaemias: A systematic review. Mycoses. 2024;67(7):e13759. doi: 10.1111/myc.13759

 

  1. Cuglievan B, Kantarjian H, Rubnitz JE, et al. Menin inhibitors in pediatric acute leukemia: A comprehensive review and recommendations to accelerate progress in collaboration with adult leukemia and the international community. Leukemia. 2024;38(10):2073-2084. doi: 10.1038/s41375-024-02368-7

 

  1. Cobaleda C, Godley LA, Nichols KE, Wlodarski MW, Sanchez-Garcia I. Insights into the molecular mechanisms of genetic predisposition to hematopoietic malignancies: The importance of gene-environment interactions. Cancer Discov. 2024;14(3):396-405. doi: 10.1158/2159-8290.CD-23-1091

 

  1. He H, Li J, Li W, et al. Clinical features and long-term outcomes of pediatric patients with de novo acute myeloid leukemia in China with or without specific gene abnormalities: A cohort study of patients treated with BCH-AML 2005. Hematology. 2024;29(1):2406596. doi: 10.1080/16078454.2024.2406596

 

  1. Bastos Silveira B, Di Carvalho Melo L, Amorim Dos Santos J, et al. Oral manifestations in pediatric patients with leukemia: A systematic review and meta-analysis. J Am Dent Assoc. 2024;155(10):858-870.e30. doi: 10.1016/j.adaj.2024.07.014

 

  1. Cobaleda C, Vicente-Duenas C, Nichols KE, Sanchez- Garcia I. Childhood B cell leukemia: Intercepting the paths to progression. Bioessays. 2024;46(9):e2400033. doi: 10.1002/bies.202400033

 

  1. Robak T, Pula A, Braun M, Robak E. Extramedullary and extranodal manifestations in chronic lymphocytic leukemia - an update. Ann Hematol. 2024;103(9):3369-3383. doi: 10.1007/s00277-024-05854-1

 

  1. Sumbly V, Landry I, Sneed C, et al. Leukemic stem cells and advances in hematopoietic stem cell transplantation for acute myeloid leukemia: A narrative review of clinical trials. Stem Cell Investig. 2022;9:10. doi: 10.21037/sci-2022-044

 

  1. Schneider K, Zelley K, Nichols KE, Schwartz Levine A, Garber J. Li-Fraumeni syndrome. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews (R). Seattle (WA): University of Washington; 1993.

 

  1. Bhandari J, Thada PK, Killeen RB, Puckett Y. Fanconi anemia. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2024.

 

  1. Barone PD, Tam W, Geyer JT, Leonard JP, Phillips A, Ouseph MM. Nodal T-cell lymphoma transdifferentiated from mantle cell lymphoma with Epstein-Barr virus infection. Pathobiology. 2024;92:1-16. doi: 10.1159/000541974

 

  1. Ionete A, Bardas A, Varady Z, Vasilica M, Szegedi O, Coriu D. modified prophylactic donor lymphocyte infusion (DLI) in an adult T cell lymphoma/leukemia (ATLL) patient-modality of relapse prevention. Diseases. 2024;12(9):210. doi: 10.3390/diseases12090210

 

  1. Shih AJ, Jun T, Skol AD, et al. Inherited cancer predisposing mutations in patients with therapy-related myeloid neoplasms. Br J Haematol. 2023;200(4):489-493. doi: 10.1111/bjh.18543

 

  1. Oiwa K, Lee S, Fujita K, Ueda T, Yamauchi T. Clinical features of clonal cytogenetic abnormalities in Philadelphia-negative cells developed during tyrosine kinase inhibitor treatment. Intern Med. 2024;63(5):729-732. doi: 10.2169/internalmedicine.2182-23

 

  1. Park SE, Lee JK, Kang HJ, Hong YJ, Oh AC, Kim H. A rare case of X-linked four-way Philadelphia chromosome translocation with therapeutic challenges and clonal evolution. Clin Lab. 2024;70(9). doi: 10.7754/Clin.Lab.2024.240323

 

  1. Yang K, Fu K, Zhang H, et al. PBA2, a novel inhibitor of the beta-catenin/CBP pathway, eradicates chronic myeloid leukemia including BCR-ABL T315I mutation. Mol Cancer. 2024;23(1):209. doi: 10.1186/s12943-024-02129-1

 

  1. Liu Y, Jang H, Zhang M, Tsai CJ, Maloney R, Nussinov R. The structural basis of BCR-ABL recruitment of GRB2 in chronic myelogenous leukemia. Biophys J. 2022;121(12):2251-2265. doi: 10.1016/j.bpj.2022.05.030

 

  1. Al-Rawashde FA, Al-Wajeeh AS, Vishkaei MN, et al. Thymoquinone inhibits JAK/STAT and PI3K/Akt/mTOR signaling pathways in MV4-11 and K562 myeloid leukemia cells. Pharmaceuticals (Basel). 2022;15(9):1123. doi: 10.3390/ph15091123

 

  1. Shires KL, Rust AJ, Harryparsad R, Coburn JA, Gopie RE. JAK2/STAT5 pathway mutation frequencies in South African BCR/ABL negative MPN patients. Hematol Oncol Stem Cell Ther. 2023;16(3):291-302. doi: 10.56875/2589-0646.1064

 

  1. Hegde PS, Andrew G, Gui G, et al. Measurable residual FLT3 tyrosine kinase domain mutations before allogeneic transplant for acute myeloid leukemia. Bone Marrow Transplant. 2025;60(2):175-177. doi: 10.1038/s41409-024-02444-7

 

  1. Gener-Ricos G, Bataller A, Rodriguez-Sevilla JJ, et al. NPM1-mutated myeloid neoplasms are a unique entity not defined by bone marrow blast percentage. Cancer. 2024;130(20):3452-3462. doi: 10.1002/cncr.35433

 

  1. Zhao Y, Huang Y, Jiang L, et al. Impact of different CEBPA mutations on therapeutic outcome in acute myeloid leukemia. Ann Hematol. 2024;103(9):3595-3604. doi: 10.1007/s00277-024-05884-9

 

  1. Lin ZK, Zhang R, Ge Z, et al. Characteristics of NOTCH1 mutation in adult T-cell acute lymphoblastic leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2013;21(6):1403-1408. doi: 10.7534/j.issn.1009-2137.2013.06.008

 

  1. Takahashi T, Tsukuda H, Itoh H, Kimura H, Yoshimoto M, Tsujisaki M. Primary and isolated adult T-cell leukemia/lymphoma of the bone marrow. Intern Med. 2011;50(20):2393-2396. doi: 10.2169/internalmedicine.50.5857

 

  1. Kraszewska MD, Dawidowska M, Kosmalska M, et al. BCL11B, FLT3, NOTCH1 and FBXW7 mutation status in T-cell acute lymphoblastic leukemia patients. Blood Cells Mol Dis. 2013;50(1):33-38. doi: 10.1016/j.bcmd.2012.09.001

 

  1. Wu X, Wang F, Yang X, et al. Advances in drug delivery systems for the treatment of acute myeloid leukemia. Small. 2024;20(42):e2403409. doi: 10.1002/smll.202403409

 

  1. Di Fiore R, Suleiman S, Drago-Ferrante R, et al. The role of FBXW7 in gynecologic malignancies. Cells. 2023;12(10):1415. doi: 10.3390/cells12101415

 

  1. Zhu Q, Hu L, Guo Y, Xiao Z, Xu Q, Tong X. FBW7 in hematological tumors. Oncol Lett. 2020;19(3):1657-1664. doi: 10.3892/ol.2020.11264

 

  1. Takeishi S, Nakayama KI. Role of Fbxw7 in the maintenance of normal stem cells and cancer-initiating cells. Br J Cancer. 2014;111(6):1054-1059. doi: 10.1038/bjc.2014.259

 

  1. Hu Y, Bruinstroop E, Hollenberg AN, Fliers E, Boelen A. The role of WD40 repeat-containing proteins in endocrine (dys) function. J Mol Endocrinol. 2023;71(1):e220217. doi: 10.1530/JME-22-0217

 

  1. Liang J, Yu M, Li Y, Zhao L, Wei Q. Glycogen synthase kinase-3: A potential immunotherapeutic target in tumor microenvironment. Biomed Pharmacother. 2024;173:116377. doi: 10.1016/j.biopha.2024.116377

 

  1. Cheng Y, Li G. Role of the ubiquitin ligase Fbw7 in cancer progression. Cancer Metastasis Rev. 2012;31(1-2):75-87. doi: 10.1007/s10555-011-9330-z

 

  1. Zeng J, Chen Z, He Y, et al. A patent review of SCF E3 ligases inhibitors for cancer: Structural design, pharmacological activities and structure-activity relationship. Eur J Med Chem. 2024;278:116821. doi: 10.1016/j.ejmech.2024.116821

 

  1. Yang Y, Xie Q, Hu C, et al. F-box proteins and gastric cancer: an update from functional and regulatory mechanism to therapeutic clinical prospects. Int J Med Sci. 2024;21(8):1575-1588. doi: 10.7150/ijms.91584

 

  1. Bao E, Zhou Y, He S, et al. RING box protein-1(RBX1), a key component of SCF E3 ligase, induced multiple myeloma cell drug-resistance though suppressing p27. Cancer Biol Ther. 2023;24(1):2231670. doi: 10.1080/15384047.2023.2231670

 

  1. Fan J, Bellon M, Ju M, et al. Clinical significance of FBXW7 loss of function in human cancers. Mol Cancer. 2022;21(1):87. doi: 10.1186/s12943-022-01548-2

 

  1. Bivik Stadler C, Arefin B, Ekman H, Thor S. PIP degron-stabilized Dacapo/p21(Cip1) and mutations in ago act in an anti- versus pro-proliferative manner, yet both trigger an increase in Cyclin E levels. Development. 2019;146(13):dev175927. doi: 10.1242/dev.175927

 

  1. Knudsen ES, Witkiewicz AK, Rubin SM. Cancer takes many paths through G1/S. Trends Cell Biol. 2024;34(8):636-645. doi: 10.1016/j.tcb.2023.10.007

 

  1. Fagundes R, Teixeira LK. Cyclin E/CDK2: DNA replication, replication stress and genomic instability. Front Cell Dev Biol. 2021;9:774845. doi: 10.3389/fcell.2021.774845

 

  1. Ruan F, Ruan Y, Gu H, Sun J, Chen Q. Clitocine enhances the drug sensitivity of colon cancer cells by promoting FBXW7- mediated MCL-1 degradation via inhibiting the A2B/cAMP/ ERK axis. Am J Physiol Cell Physiol. 2024;327(4):C884-C900. doi: 10.1152/ajpcell.00310.2024

 

  1. Song X, Shen L, Tong J, et al. Mcl-1 inhibition overcomes intrinsic and acquired regorafenib resistance in colorectal cancer. Theranostics. 2020;10(18):8098-8110. doi: 10.7150/thno.45363

 

  1. Fowler-Shorten DJ, Hellmich C, Markham M, Bowles KM, Rushworth SA. BCL-2 inhibition in haematological malignancies: Clinical application and complications. Blood Rev. 2024;65:101195. doi: 10.1016/j.blre.2024.101195

 

  1. Vazquez-Ulloa E, Lin KL, Lizano M, Sahlgren C. Reversible and bidirectional signaling of notch ligands. Crit Rev Biochem Mol Biol. 2022;57(4):377-398. doi: 10.1080/10409238.2022.2113029

 

  1. Chiplunkar SV, Gogoi D. The multifaceted role of Notch signal in regulating T cell fate. Immunol Lett. 2019;206:59-64. doi: 10.1016/j.imlet.2019.01.004

 

  1. Song C, Guo Y, Chen F, Liu W. IRF-1-inhibited lncRNA XIST regulated the osteogenic differentiation via miR-450b/ FBXW7 axis. Apoptosis. 2023;28(3-4):669-680. doi: 10.1007/s10495-023-01820-w

 

  1. Liu Z, Liu X, Liu S, Cao Q. Cholesterol promotes the migration and invasion of renal carcinoma cells by regulating the KLF5/miR-27a/FBXW7 pathway. Biochem Biophys Res Commun. 2018;502(1):69-75. doi: 10.1016/j.bbrc.2018.05.122

 

  1. Sun L. F-box and WD repeat domain-containing 7 (FBXW7) mediates the hypoxia inducible factor-1alpha (HIF-1alpha)/vascular endothelial growth factor (VEGF) signaling pathway to affect hypoxic-ischemic brain damage in neonatal rats. Bioengineered. 2022;13(1):560-572. doi: 10.1080/21655979.2021.2011635

 

  1. Yumimoto K, Nakayama KI. Recent insight into the role of FBXW7 as a tumor suppressor. Semin Cancer Biol. 2020;67(Pt 2):1-15. doi: 10.1016/j.semcancer.2020.02.017

 

  1. Elbahoty MH, Papineni B, Samant RS. Multiple myeloma: clinical characteristics, current therapies and emerging innovative treatments targeting ribosome biogenesis dynamics. Clin Exp Metastasis. 2024;41:829-842. doi: 10.1007/s10585-024-10305-2

 

  1. Liang JH, Ren YM, Du KX, et al. MYC-induced cytidine metabolism regulates survival and drug resistance via cGas- STING pathway in mantle cell lymphoma. Br J Haematol. 2023;202(3):550-565. doi: 10.1111/bjh.18878

 

  1. McSweeney K, Hoover P, Ramirez-Solano M, Liu Q, Schwartz JR. Overexpression of human SAMD9 inhibits protein translation and alters MYC signaling resulting in cell cycle arrest. Exp Hematol. 2024;137:104249. doi: 10.1016/j.exphem.2024.104249

 

  1. Hu Z, Wu Y, Sun X, Tong Y, Qiu H, Zhuo E. ARMCX1 inhibits lung adenocarcinoma progression by recruiting FBXW7 for c-Myc degradation. Biol Direct. 2024;19(1):82. doi: 10.1186/s13062-024-00532-8

 

  1. Freie B, Carroll PA, Varnum-Finney BJ, et al. A germline point mutation in the MYC-FBW7 phosphodegron initiates hematopoietic malignancies. Genes Dev. 2024;38(5-6):253-272. doi: 10.1101/gad.351292.123

 

  1. Pozzo F, Bittolo T, Tissino E, et al. Multiple mechanisms of NOTCH1 activation in chronic lymphocytic leukemia: NOTCH1 mutations and beyond. Cancers (Basel). 2022;14(12):2997. doi: 10.3390/cancers14122997

 

  1. Luo F, Zhang C, Shi Z, Mao T, Jin LH. Notch signaling promotes differentiation, cell death and autophagy in Drosophila hematopoietic system. Insect Biochem Mol Biol. 2024;173:104176. doi: 10.1016/j.ibmb.2024.104176

 

  1. Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM, Pagano M. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol Cell Biol. 1995;15(5):2612-2624. doi: 10.1128/MCB.15.5.2612

 

  1. Guo X, Zhang R, Ge Z, et al. Mutations of FBXW7 in adult T-cell acute lymphocytic leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2015;23(3):612-618. doi: 10.7534/j.issn.1009-2137.2015.03.002

 

  1. Bincoletto C, Saad ST, da Silva ES, Queiroz ML. Haematopoietic response and bcl-2 expression in patients with acute myeloid leukaemia. Eur J Haematol. 1999;62(1):38-42. doi: 10.1111/j.1600-0609.1999.tb01112.x

 

  1. Yang Z, Hu N, Wang W, et al. Loss of FBXW7 correlates with increased IDH1 expression in glioma and enhances IDH1- mutant cancer cell sensitivity to radiation. Cancer Res. 2022;82(3):497-509. doi: 10.1158/0008-5472.CAN-21-0384

 

  1. He Y, Qi S, Chen L, et al. The roles and mechanisms of SREBP1 in cancer development and drug response. Genes Dis. 2024;11(4):100987. doi: 10.1016/j.gendis.2023.04.022

 

  1. Zhang W, Ren Z, Jia L, Li X, Jia X, Han Y. Fbxw7 and Skp2 regulate stem cell switch between quiescence and mitotic division in lung adenocarcinoma. Biomed Res Int. 2019;2019:9648269. doi: 10.1155/2019/9648269

 

  1. Lin H, Ma N, Zhao L, Yang G, Cao B. KDM5c promotes colon cancer cell proliferation through the FBXW7-c-Jun regulatory axis. Front Oncol. 2020;10:535449. doi: 10.3389/fonc.2020.535449

 

  1. Meyer AE, Furumo Q, Stelloh C, Minella AC, Rao S. Loss of Fbxw7 triggers mammary tumorigenesis associated with E2F/c-Myc activation and Trp53 mutation. Neoplasia. 2020;22(11):644-658. doi: 10.1016/j.neo.2020.07.001

 

  1. Chen XY, Yan X, Song BY, Sun J, Mu LJ, Li WP. Effects of BET bromodomain inhibitor JQ1 on double-expressor lymphoma cell lines and its mechanism. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2022;30(4):1094-1100. doi: 10.19746/j.cnki.issn.1009-2137.2022.04.018

 

  1. Veneziani I, Fruci D, Compagnone M, Pistoia V, Rossi P, Cifaldi L. The BET-bromodomain inhibitor JQ1 renders neuroblastoma cells more resistant to NK cell-mediated recognition and killing by downregulating ligands for NKG2D and DNAM-1 receptors. Oncotarget. 2019;10(22):2151-2160. doi: 10.18632/oncotarget.26736

 

  1. Fiskus W, Piel J, Collins M, et al. BRG1/BRM inhibitor targets AML stem cells and exerts superior preclinical efficacy combined with BET or menin inhibitor. Blood. 2024;143(20):2059-2072. doi: 10.1182/blood.2023022832

 

  1. Cao L, Ruiz Buendia GA, Fournier N, et al. Resistance mechanism to Notch inhibition and combination therapy in human T-cell acute lymphoblastic leukemia. Blood Adv. 2023;7(20):6240-6252. doi: 10.1182/bloodadvances.2023010380

 

  1. Chang YS, Gills JJ, Kawabata S, et al. Inhibition of the NOTCH and mTOR pathways by nelfinavir as a novel treatment for T cell acute lymphoblastic leukemia. Int J Oncol. 2023;63(5):128. doi: 10.3892/ijo.2023.5576

 

  1. Sabol HM, Ferrari AJ, Adhikari M, et al. Targeting notch inhibitors to the myeloma bone marrow niche decreases tumor growth and bone destruction without gut toxicity. Cancer Res. 2021;81(19):5102-5114. doi: 10.1158/0008-5472.CAN-21-0524

 

  1. Inuzuka H, Fukushima H, Shaik S, Liu P, Lau AW, Wei W. Mcl-1 ubiquitination and destruction. Oncotarget. 2011;2(3):239-244. doi: 10.18632/oncotarget.242

 

  1. Sneyers F, Kerkhofs M, Speelman-Rooms F, et al. Intracellular BAPTA directly inhibits PFKFB3, thereby impeding mTORC1-driven Mcl-1 translation and killing MCL-1- addicted cancer cells. Cell Death Dis. 2023;14(9):600. doi: 10.1038/s41419-023-06120-4

 

  1. Pan Y, Liu J, Gao Y, et al. FBXW7 loss of function promotes esophageal squamous cell carcinoma progression via elevating MAP4 and ERK phosphorylation. J Exp Clin Cancer Res. 2023;42(1):75. doi: 10.1186/s13046-023-02630-3

 

  1. Xia H, Dufour CR, Medkour Y, et al. Hepatocyte FBXW7- dependent activity of nutrient-sensing nuclear receptors controls systemic energy homeostasis and NASH progression in male mice. Nat Commun. 2023;14(1):6982. doi: 10.1038/s41467-023-42785-3

 

  1. Chan DKH, Mandal A, Hester S, et al. Biallelic FBXW7 knockout induces AKAP8-mediated DNA damage in neighbouring wildtype cells. Cell Death Discov. 2023;9(1):200. doi: 10.1038/s41420-023-01494-y

 

  1. Zanganeh S, Zahedi AM, Sattarzadeh Bardsiri M, et al. Recent advances and applications of the CRISPR-Cas system in the gene therapy of blood disorders. Gene. 2024;931:148865. doi: 10.1016/j.gene.2024.148865

 

  1. Hesham HM, Dokla EME, Elrazaz EZ, Lasheen DS, Abou El Ella DA. FLT3-PROTACs for combating AML resistance: Analytical overview on chimeric agents developed, challenges, and future perspectives. Eur J Med Chem. 2024;277:116717. doi: 10.1016/j.ejmech.2024.116717

 

  1. Wu M, Zhao Y, Zhang C, Pu K. Advancing proteolysis targeting chimera (PROTAC) nanotechnology in protein homeostasis reprograming for disease treatment. ACS Nano. 2024;18(42):28502-28530. doi: 10.1021/acsnano.4c09800

 

  1. Stephenson SEM, Costain G, Blok LER, et al. Germline variants in tumor suppressor FBXW7 lead to impaired ubiquitination and a neurodevelopmental syndrome. Am J Hum Genet. 2022;109(4):601-617. doi: 10.1016/j.ajhg.2022.03.002

 

  1. Zhang Q, Mady ASA, Ma Y, et al. The WD40 domain of FBXW7 is a poly(ADP-ribose)-binding domain that mediates the early DNA damage response. Nucleic Acids Res. 2019;47(8):4039-4053. doi: 10.1093/nar/gkz058

 

  1. Duan Y, Liu Z, Wang Q, et al. Targeting MYC: Multidimensional regulation and therapeutic strategies in oncology. Genes Dis. 2025;12(4):101435. doi: 10.1016/j.gendis.2024.101435

 

  1. Zhang X, Bian H, Wei W, et al. DLX5 promotes osteosarcoma progression via activation of the NOTCH signaling pathway. Am J Cancer Res. 2021;11(6):3354-3374.

 

  1. Yao W, Bai L, Wang S, Zhai Y, Sun SY. Mcl-1 levels critically impact the sensitivities of human colorectal cancer cells to APG-1252-M1, a novel Bcl-2/Bcl-X(L) dual inhibitor that induces Bax-dependent apoptosis. Neoplasia. 2022;29:100798. doi: 10.1016/j.neo.2022.100798

 

  1. Yu S, Stappenbelt C, Chen M, et al. Cyclin E1 overexpression triggers interferon signaling and is associated with antitumor immunity in breast cancer. J Immunother Cancer. 2025;13(3):e009239. doi: 10.1136/jitc-2024-009239

 

  1. Welcker M, Orian A, Jin J, et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci U S A. 2004;101(24):9085-9090. doi: 10.1073/pnas.0402770101

 

  1. Dye KN, Welcker M, Clurman BE, Roman A, Galloway DA. Merkel cell polyomavirus Tumor antigens expressed in Merkel cell carcinoma function independently of the ubiquitin ligases Fbw7 and beta-TrCP. PLoS Pathog. 2019;15(1):e1007543. doi: 10.1371/journal.ppat.1007543

 

  1. Jain N, Croner LJ, Allan JN, et al. Absence of BTK, BCL2, and PLCG2 mutations in chronic lymphocytic leukemia relapsing after first-line treatment with fixed-duration ibrutinib plus venetoclax. Clin Cancer Res. 2024;30(3):498-505. doi: 10.1158/1078-0432.CCR-22-3934

 

  1. Tong J, Tan S, Nikolovska-Coleska Z, Yu J, Zou F, Zhang L. FBW7-Dependent Mcl-1 degradation mediates the anticancer effect of Hsp90 inhibitors. Mol Cancer Ther. 2017;16(9):1979-1988. doi: 10.1158/1535-7163.MCT-17-0032

 

  1. Zhou C, Yang S, Wang J, et al. Recent advances in PROTAC-based antiviral and antibacterial therapeutics. Bioorg Chem. 2025;160:108437. doi: 10.1016/j.bioorg.2025.108437

 

  1. Cornu M, Lemaitre T, Kieffer C, Voisin-Chiret AS. PROTAC 2.0: Expanding the frontiers of targeted protein degradation. Drug Discov Today. 2025;30:104376. doi: 10.1016/j.drudis.2025.104376

 

  1. Wang Y, Deng S, Xu J. Proteasomal and lysosomal degradation for specific and durable suppression of immunotherapeutic targets. Cancer Biol Med. 2020;17(3):583-598. doi: 10.20892/j.issn.2095-3941.2020.0066

 

  1. Li L, Wazir J, Huang Z, Wang Y, Wang H. A comprehensive review of animal models for cancer cachexia: Implications for translational research. Genes Dis. 2024;11(6):101080. doi: 10.1016/j.gendis.2023.101080

 

  1. Janitri V, ArulJothi KN, Ravi Mythili VM, et al. The roles of patient-derived xenograft models and artificial intelligence toward precision medicine. MedComm (2020). 2024;5(10):e745. doi: 10.1002/mco2.745

 

  1. Burton AJ, Hamza GM, Zhang AX, Muir TW. Chemical biology approaches to study histone interactors. Biochem Soc Trans. 2021;49(5):2431-2441. doi: 10.1042/BST20210772

 

  1. Ihara H, Aoki Y, Aoki T, Toyoda M. Binding of bilirubin to serum albumin in Crigler-Najjar syndrome, type I. Rinsho Byori. 1986;34(9):1075-1078.

 

  1. King B, Trimarchi T, Reavie L, et al. The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell. 2013;153(7):1552-1566. doi: 10.1016/j.cell.2013.05.041

 

  1. Niu M, Wang N, Yang D, et al. Multi-omics integration reveals immune hallmarks and biomarkers associated with FLT3 inhibitor sensitivity in FLT3-mutated AML. Blood Sci. 2025;7(2):e00227. doi: 10.1097/BS9.0000000000000227

 

  1. Ayyadevara V, Wertheim G, Gaur S, et al. DYRK1A inhibition results in MYC and ERK activation rendering KMT2A-R acute lymphoblastic leukemia cells sensitive to BCL2 inhibition. Leukemia. 2025;39(5):1078-1089. doi: 10.1038/s41375-025-02575-w

 

  1. Tantawy SI, Timofeeva N, Sarkar A, Gandhi V. Targeting MCL-1 protein to treat cancer: opportunities and challenges. Front Oncol. 2023;13:1226289. doi: 10.3389/fonc.2023.1226289

 

  1. Li JY, Zuo LP, Xu J, Sun CY. Clinical applications of circulating tumor DNA in hematological malignancies: From past to the future. Blood Rev. 2024;68:101237. doi: 10.1016/j.blre.2024.101237

 

Share
Back to top
Tumor Discovery, Electronic ISSN: 2810-9775 Print ISSN: 3060-8597, Published by AccScience Publishing