AccScience Publishing / TD / Online First / DOI: 10.36922/td.8152
REVIEW ARTICLE

Honokiol in cancer: Roles in enhancing combination therapy efficacy and preventing post-transplant malignancies

Laxminarayan Rawat1,2 Raghu Solanki3 Rahul Kumar4 Soumitro Pal1,2* Akash Sabarwal1,2*
Show Less
1 Division of Nephrology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
2 Harvard Medical School, Boston, Massachusetts, United States of America
3 Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
4 Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
Tumor Discovery, 8152 https://doi.org/10.36922/td.8152
Received: 24 December 2024 | Revised: 5 April 2025 | Accepted: 16 April 2025 | Published online: 5 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Therapeutic resistance remains a significant challenge in cancer treatment, often resulting in relapse and poor outcomes. Conventional chemotherapies, such as cisplatin and paclitaxel, are frequently undermined by the development of chemoresistance and systemic toxicity. Targeted therapies, such as receptor tyrosine kinase (RTKs) inhibitors and monoclonal antibodies (mAbs), offer better specificity but face resistance over time. Combination therapies are being explored to improve efficacy and mitigate resistance. Honokiol, a biphenolic natural compound derived from Magnolia species, has emerged as a potential adjunct in combination therapies due to its anti-cancer, anti-inflammatory, and immunomodulatory properties. It enhances the efficacy of chemotherapies, such as cisplatin and paclitaxel, RTK inhibitors, such as cabozantinib and erlotinib, and mAbs, such as cetuximab. Notably, honokiol combined with mAbs has shown promise in pre-clinical studies by reactivating the immune system and reducing tumor growth in resistant models. In addition, honokiol aids in post-transplant cancer prevention by modulating immune responses, reducing tumor progression, and lowering the required dose of immunosuppressants, such as cyclosporine A and rapamycin. Pre-clinical studies in renal cell carcinoma (RCC), head and neck squamous cell carcinoma (HNSCC), and non-small cell lung cancer emphasize its potential to overcome resistance. Despite promising evidence, further clinical studies are needed to validate honokiol as a viable adjunct in combination therapies. While several reviews have focused on the effects of honokiol alone, there is a lack of comprehensive studies examining its potential in combination with other therapies. This review aims to fill this gap by offering critical insights into the role of honokiol as a candidate for combination therapy.

Keywords
Honokiol
Cancer
Combination therapy
Chemotherapy
Receptor tyrosine kinase inhibitors
Post-transplantation cancer
Funding
A.S. acknowledges the Dana-Farber/Harvard Cancer Centre (DF/HCC), Kidney Cancer SPORE, Career Enhancement Award (CEP) 5P50CA101942-18 subaward. S.P. acknowledges the National Institutes of Health Grants (RO1 CA193675 and RO1 CA222355).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. doi: 10.3322/CAAC.21660

 

  1. Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current challenges in cancer treatment. Clin Ther. 2016;38(7):1551-1566. doi: 10.1016/J.CLINTHERA.2016.03.026

 

  1. Greaves M. Evolutionary determinants of cancer. Cancer Discov. 2015;5(8):806-821. doi: 10.1158/2159-8290.CD-15-0439

 

  1. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306-313. doi: 10.1038/nature10762

 

  1. Regad T. Targeting RTK signaling pathways in cancer. Cancers (Basel). 2015;7(3):1758-1784. doi: 10.3390/cancers7030860

 

  1. Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019;2(2):141-160. doi: 10.20517/CDR.2019.10

 

  1. Leary M, Heerboth S, Lapinska K, Sarkar S. Sensitization of drug resistant cancer cells: A matter of combination therapy. Cancers (Basel). 2018;10(12):483. doi: 10.3390/CANCERS10120483

 

  1. Sabarwal A, Agarwal R, Singh RP. Fisetin inhibits cellular proliferation and induces mitochondria-dependent apoptosis in human gastric cancer cells. Mol Carcinog. 2017;56(2):499-514. doi: 10.1002/MC.22512

 

  1. Sabarwal A, Kumar K, Shyanti R, Singh RP. Curcumin in cancer prevention. In: Functional Food and Human Health. Berlin, Germany: Springer; 2018. p. 329-374. doi: 10.1007/978-981-13-1123-9_16

 

  1. Rawat L, Nayak V. Piperlongumine induces ROS mediated apoptosis by transcriptional regulation of SMAD4/P21/P53 genes and synergizes with doxorubicin in osteosarcoma cells. Chem Biol Interact. 2022;354:109832. doi: 10.1016/J.CBI.2022.109832

 

  1. Rawat L, Nayak V. Ursolic acid disturbs ROS homeostasis and regulates survival-associated gene expression to induce apoptosis in intestinal cancer cells. Toxicol Res (Camb). 2021;10(3):369-375. doi: 10.1093/toxres/tfab025

 

  1. Rawat L, Hegde H, Hoti SL, Nayak V. Piperlongumine induces ROS mediated cell death and synergizes paclitaxel in human intestinal cancer cells. Biomed Pharmacother. 2020;128:110243. doi: 10.1016/j.biopha.2020.110243

 

  1. Yao Y, Habib M, Bajwa HF, et al. Herbal therapies in gastrointestinal and hepatic disorders: An evidence-based clinical review. Front Pharmacol. 2022;13:962095. doi: 10.3389/FPHAR.2022.962095

 

  1. Jha NK, Arfin S, Jha SK, et al. Re-establishing the comprehension of phytomedicine and nanomedicine in inflammation-mediated cancer signaling. Semin Cancer Biol. 2022;86:1086-1104. doi: 10.1016/J.SEMCANCER.2022.02.022

 

  1. Alonso-Castro AJ, Zapata-Bustos R, Domínguez F, García-Carrancá A, Salazar-Olivo LA. Magnolia dealbata Zucc and its active principles honokiol and magnolol stimulate glucose uptake in murine and human adipocytes using the insulin-signaling pathway. Phytomedicine. 2011;18(11):926-933. doi: 10.1016/J.PHYMED.2011.02.015

 

  1. Rauf A, Patel S, Imran M, et al. Honokiol: An anticancer lignan. Biomed Pharmacother. 2018;107:555-562. doi: 10.1016/J.BIOPHA.2018.08.054

 

  1. Rauf A, Olatunde A, Imran M, et al. Honokiol: A review of its pharmacological potential and therapeutic insights. Phytomedicine. 2021;90:153647. doi: 10.1016/J.PHYMED.2021.153647

 

  1. Solanki R, Rawat L, Tabasum S, Pal S, Patel S, Sabarwal A. A comprehensive review of anti-cancer mechanisms of polyphenol honokiol and nano carrier-based approaches to enhance its therapeutic potential. Phytochem Rev. 2025:1-27. doi: 10.1007/S11101-025-10090-0

 

  1. Eliaz I, Weil E. Intravenous honokiol in drug-resistant cancer: Two case reports. Integr Cancer Ther. 2020;19:1-5. doi: 10.1177/1534735420922615

 

  1. Ong CP, Lee WL, Tang YQ, Yap WH. Honokiol: A review of its anticancer potential and mechanisms. Cancers (Basel). 2019;12(1):48. doi: 10.3390/CANCERS12010048

 

  1. Saunders RN, Metcalfe MS, Nicholson ML. Rapamycin in transplantation: A review of the evidence. Kidney Int. 2001;59(1):3-16. doi: 10.1046/J.1523-1755.2001.00460.X

 

  1. Laupacis A, Keown PA, Ulan RA, McKenzie N, Stiller CR. Cyclosporin A: A powerful immunosuppressant. Can Med Assoc J. 1982;126(9):1041-1046.

 

  1. Jiang QQ, Fan LY, Yang GL, et al. Improved therapeutic effectiveness by combining liposomal honokiol with cisplatin in lung cancer model. BMC Cancer. 2008;8(1):242. doi: 10.1186/1471-2407-8-242

 

  1. Liu H, Zang C, Emde A, et al. Anti-tumor effect of honokiol alone and in combination with other anti-cancer agents in breast cancer. Eur J Pharmacol. 2008;591(1-3):43-51. doi: 10.1016/J.EJPHAR.2008.06.026

 

  1. Huang KJ, Kuo CH, Chen SH, Lin CY, Lee YR. Honokiol inhibits in vitro and in vivo growth of oral squamous cell carcinoma through induction of apoptosis, cell cycle arrest and autophagy. J Cell Mol Med. 2018;22(3):1894-1908. doi: 10.1111/JCMM.13474

 

  1. Sabarwal A, Chakraborty S, Mahanta S, Banerjee S, Balan M, Pal S. A novel combination treatment with honokiol and rapamycin effectively restricts c-met-induced growth of renal cancer cells, and also inhibits the expression of tumor cell PD-L1 involved in immune escape. Cancers (Basel). 2020;12(7):1782. doi: 10.3390/CANCERS12071782

 

  1. Romani AMP. Cisplatin in cancer treatment. Biochem Pharmacol. 2022;206:115323. doi: 10.1016/J.BCP.2022.115323

 

  1. Cheng N, Xia T, Han Y, He QJ, Zhao R, Ma JR. Synergistic antitumor effects of liposomal honokiol combined with cisplatin in colon cancer models. Oncol Lett. 2011;2(5):957-962. doi: 10.3892/OL.2011.350

 

  1. Liu Y, Chen L, He X, et al. Enhancement of therapeutic effectiveness by combining liposomal honokiol with cisplatin in ovarian carcinoma. Int J Gynecol Cancer. 2008;18(4):652-659. doi: 10.1136/IJGC-00009577-200807000-00009

 

  1. Chang MT, Lee SP, Fang CY, et al. Chemosensitizing effect of honokiol in oral carcinoma stem cells via regulation of IL-6/ Stat3 signaling. Environ Toxicol. 2018;33(11):1105-1112. doi: 10.1002/TOX.22587

 

  1. Qi M, Chen X, Bian L, Zhang H, Ma J. Honokiol combined with curcumin sensitizes multidrug-resistant human lung adenocarcinoma A549/DDP cells to cisplatin. Exp Ther Med. 2021;22(5):1301. doi: 10.3892/ETM.2021.10736

 

  1. Wang TEJ, Liu HT, Lai YH, et al. Honokiol, a polyphenol natural compound, attenuates cisplatin-induced acute cytotoxicity in renal epithelial cells through cellular oxidative stress and cytoskeleton modulations. Front Pharmacol. 2018;9(APR):357. doi: 10.3389/FPHAR.2018.00357

 

  1. Mao RW, He SP, Lan JG, Zhu WZ. Honokiol ameliorates cisplatin-induced acute kidney injury via inhibition of mitochondrial fission. Br J Pharmacol. 2022;179(14):3886-3904. doi: 10.1111/BPH.15837

 

  1. Li M, Li CM, Ye ZC, et al. Sirt3 modulates fatty acid oxidation and attenuates cisplatin-induced AKI in mice. J Cell Mol Med. 2020;24(9):5109-5121. doi: 10.1111/JCMM.15148

 

  1. Weaver BA. How taxol/paclitaxel kills cancer cells. Mol Biol Cell. 2014;25(18):2677-2681. doi: 10.1091/MBC.E14-04-0916

 

  1. Wang X, Beitler JJ, Wang H, et al. Honokiol enhances paclitaxel efficacy in multi-drug resistant human cancer model through the induction of apoptosis. PLoS One. 2014;9(2):e86369. doi: 10.1371/JOURNAL.PONE.0086369

 

  1. Li XQ, Ren J, Wang Y, et al. Synergistic killing effect of paclitaxel and honokiol in non-small cell lung cancer cells through paraptosis induction. Cell Oncol (Dordr). 2021;44(1):135-150. doi: 10.1007/S13402-020-00557-x

 

  1. Wang X, Cheng L, Xie HJ, et al. Functional paclitaxel plus honokiol micelles destroying tumour metastasis in treatment of non-small-cell lung cancer. Artif Cells Nanomed Biotechnol. 2018;46(sup2):1154-1169. doi: 10.1080/21691401.2018.1481082

 

  1. Wang Z, Li X, Wang D, et al. Concurrently suppressing multidrug resistance and metastasis of breast cancer by co-delivery of paclitaxel and honokiol with pH-sensitive polymeric micelles. Acta Biomater. 2017;62:144-156. doi: 10.1016/J.ACTBIO.2017.08.027

 

  1. Lu X, Lu X, Yang P, Zhang Z, Lv H. Honokiol nanosuspensions loaded thermosensitive hydrogels as the local delivery systemin combination with systemic paclitaxel for synergistic therapy of breast cancer. Eur J Pharm Sci. 2022;175:106212. doi: 10.1016/J.EJPS.2022.106212

 

  1. Kalyanaraman B. Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biol. 2020;29:101394. doi: 10.1016/J.REDOX.2019.101394

 

  1. Pillai VB, Kanwal A, Fang YH, et al. Honokiol, an activator of sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in mice. Oncotarget. 2017;8(21):34082. doi: 10.18632/ONCOTARGET.16133

 

  1. Huang L, Zhang K, Guo Y, et al. Honokiol protects against doxorubicin cardiotoxicity via improving mitochondrial function in mouse hearts. Sci Rep. 2017;7(1):11989. doi: 10.1038/s41598-017-12095-y

 

  1. Yi X, Lou L, Wang J, Xiong J, Zhou S. Honokiol antagonizes doxorubicin resistance in human breast cancer via miR- 188-5p/FBXW7/c-Myc pathway. Cancer Chemother Pharmacol. 2021;87(5):647-656. doi: 10.1007/S00280-021-04238-W

 

  1. Thulasiraman P, Johnson AB. Regulation of Mucin 1 and multidrug resistance protein 1 by honokiol enhances the efficacy of doxorubicin-mediated growth suppression in mammary carcinoma cells. Int J Oncol. 2016;49(2):479-486. doi: 10.3892/IJO.2016.3534

 

  1. Ghafouri-Fard S, Abak A, Tondro Anamag F, et al. 5-fluorouracil: A narrative review on the role of regulatory mechanisms in driving resistance to this chemotherapeutic agent. Front Oncol. 2021;11:658636. doi: 10.3389/FONC.2021.658636

 

  1. Ji N, Jiang L, Deng P, et al. Synergistic effect of honokiol and 5‐fluorouracil on apoptosis of oral squamous cell carcinoma cells. J Oral Pathol Med. 2017;46(3):201-207. doi: 10.1111/JOP.12481

 

  1. Lee MY, Shi CS, Hsu YC, et al. Honokiol is a potential therapeutic agent and has a synergistic effect with 5-FU in human urothelial cell carcinoma cells. Anticancer Res. 2019;39(12):6555-6565. doi: 10.21873/ANTICANRES.13871

 

  1. Swidan SA, Hassan MM, Elmansy MN, Swidan SA. Synergistic therapeutic effect of nano-honokiol and 5-fluorouracil on the induced-tongue cancer in rats. J Oral Maxillofac Surg Med Pathol. 2020;32(6):556-562. doi: 10.1016/J.AJOMS.2020.06.003

 

  1. Mikhaevich E, Sorokin D, Scherbakov A. Honokiol inhibits the growth of hormone-resistant breast cancer cells: Its promising effect in combination with metformin. Res Pharm Sci. 2023;18(5):580-591. doi: 10.4103/1735-5362.383712

 

  1. Froudarakis M, Hatzimichael E, Kyriazopoulou L, et al. Revisiting bleomycin from pathophysiology to safe clinical use. Crit Rev Oncol Hematol. 2013;87(1):90-100. doi: 10.1016/J.CRITREVONC.2012.12.003

 

  1. Gowda ASP, Suo Z, Spratt TE. Honokiol inhibits DNA polymerases β and λ and increases bleomycin sensitivity of human cancer cells. Chem Res Toxicol. 2017;30(2):715-725. doi: 10.1021/ACS.CHEMRESTOX.6B00451

 

  1. Pearson HE, Iida M, Orbuch RA, et al. Overcoming resistance to cetuximab with honokiol, a small-molecule polyphenol. Mol Cancer Ther. 2018;17(1):204-214. doi: 10.1158/1535-7163.MCT-17-0384

 

  1. Khera N, Rajput S. Therapeutic potential of small molecule inhibitors. J Cell Biochem. 2017;118(5):959-961. doi: 10.1002/JCB.25782

 

  1. Liu GH, Chen T, Zhang X, Ma XL, Shi HS. Small molecule inhibitors targeting the cancers. MedComm (2020). 2022;3(4):e181. doi: 10.1002/MCO2.181

 

  1. Leeman-Neill RJ, Cai Q, Joyce SC, et al. Honokiol inhibits epidermal growth factor receptor signaling and enhances the antitumor effects of epidermal growth factor receptor inhibitors. Clin Cancer Res. 2010;16(9):2571-2579. doi: 10.1158/1078-0432.CCR-10-0333

 

  1. Rawat L, Balan M, Sasamoto Y, Sabarwal A, Pal S. A novel combination therapy with cabozantinib and honokiol effectively inhibits c-Met-Nrf2-induced renal tumor growth through increased oxidative stress. Redox Biol. 2023;68:102945. doi: 10.1016/J.REDOX.2023.102945

 

  1. Kumar R, Goel H, Solanki R, et al. Recent developments in receptor tyrosine kinase inhibitors: A promising mainstay in targeted cancer therapy. Med Drug Discov. 2024;23:100195. doi: 10.1016/J.MEDIDD.2024.100195

 

  1. Wang Y, Yang Z, Zhao X. Honokiol induces paraptosis and apoptosis and exhibits schedule-dependent synergy in combination with imatinib in human leukemia cells. Toxicol Mech Methods. 2010;20(5):234-241. doi: 10.3109/15376511003758831

 

  1. Song JM, Anandharaj A, Upadhyaya P, et al. Honokiol suppresses lung tumorigenesis by targeting EGFR and its downstream effectors. Oncotarget. 2016;7(36):57752-57769. doi: 10.18632/ONCOTARGET.10759

 

  1. Zang H, Qian G, Arbiser J, et al. Overcoming acquired resistance of EGFR-mutant NSCLC cells to the thirdgeneration EGFR inhibitor, osimertinib, with the natural product honokiol. Mol Oncol. 2020;14(4):882-895. doi: 10.1002/1878-0261.12645

 

  1. Chiang CK, Sheu ML, Lin YW, et al. Honokiol ameliorates renal fibrosis by inhibiting extracellular matrix and pro-inflammatory factors in vivo and in vitro. Br J Pharmacol. 2011;163(3):586-597. doi: 10.1111/J.1476-5381.2011.01242.X

 

  1. Wang L, Wang J. Honokiol ameliorates DSS-induced mouse colitis by inhibiting inflammation and oxidative stress and improving the intestinal barrier. Oxid Med Cell Longev. 2022;2022:1755608. doi: 10.1155/2022/1755608

 

  1. Wang XD, Wang YL, Gao WF. Honokiol possesses potential anti-inflammatory effects on rheumatoid arthritis and GM-CSF can be a target for its treatment. Int J Clin Exp Pathol. 2015;8(7):7929-7936.

 

  1. Cheng X, Wang F, Qiao Y, et al. Honokiol inhibits interleukin-induced angiogenesis in the NSCLC microenvironment through the NF-κB signaling pathway. Chem Biol Interact. 2023;370:110295. doi: 10.1016/J.CBI.2022.110295

 

  1. Chao LK, Liao PC, Ho CL, et al. Anti-inflammatory bioactivities of honokiol through inhibition of protein kinase C, mitogen-activated protein kinase, and the NF-κB pathway to reduce LPS-induced TNFα and NO expression. J Agric Food Chem. 2010;58(6):3472-3478. doi: 10.1021/JF904207M

 

  1. Reyes A, Mohanty A, Pharaon R, Massarelli E. Association between immunosuppressive therapy utilized in the treatment of autoimmune disease or transplant and cancer progression. Biomedicines. 2022;11(1):99. doi: 10.3390/BIOMEDICINES11010099

 

  1. Sprangers B, Nair V, Launay-Vacher V, Riella LV, Jhaveri KD. Risk factors associated with post-kidney transplant malignancies: An article from the cancer-kidney international network. Clin Kidney J. 2018;11(3):315-329. doi: 10.1093/CKJ/SFX122

 

  1. Wu C, Shapiro R. Post-transplant malignancy: Reducing the risk in kidney transplant recipients. Expert Opin Pharmacother. 2011;12(11):1719-1729. doi: 10.1517/14656566.2011.569708

 

  1. O’Neill JP, Sexton DJ, O’Leary E, et al. Post-transplant malignancy in solid organ transplant recipients in Ireland, The Irish Transplant Cancer Group. Clin Transplant. 2019;33(10):e13669. doi: 10.1111/CTR.13669

 

  1. Kauffman HM, Cherikh WS, McBride MA, Cheng Y, Hanto DW. Post-transplant de novo malignancies in renal transplant recipients: The past and present. Transpl Int. 2006;19(8):607-620. doi: 10.1111/J.1432-2277.2006.00330.X

 

  1. Chapman JR, Webster AC, Wong G. Cancer in the transplant recipient. Cold Spring Harb Perspect Med. 2013;3(7):a015677. doi: 10.1101/CSHPERSPECT.A015677

 

  1. Penn I, Alexander JW, Blaine K. Post-transplant malignancy: The role of immunosuppression. Drug Saf. 2000;23(2):101-113. doi: 10.2165/00002018-200023020-00002

 

  1. Banerjee P, Basu A, Arbiser JL, Pal S. The natural product honokiol inhibits calcineurin inhibitor-induced and Ras-mediated tumor promoting pathways. Cancer Lett. 2013;338(2):292-299. doi: 10.1016/J.CANLET.2013.05.036

 

  1. Carracedo A, Pandolfi PP. The PTEN-PI3K pathway: Of feedbacks and cross-talks. Oncogene. 2008;27(41):5527-5541. doi: 10.1038/onc.2008.247

 

  1. Rozengurt E, Soares HP, Sinnet-Smith J. Suppression of feedback loops mediated by pi3k/mtor induces multiple overactivation of compensatory pathways: An unintended consequence leading to drug resistance. Mol Cancer Ther. 2014;13(11):2477-2488. doi: 10.1158/1535-7163.MCT-14-0330

 

  1. Sabarwal A, Wedel J, Liu K, et al. A Combination therapy using an mTOR inhibitor and Honokiol effectively induces autophagy through the modulation of AXL and Rubicon in renal cancer cells and restricts renal tumor growth following organ transplantation. Carcinogenesis. 2022;43(4):360-370. doi: 10.1093/CARCIN/BGAB126

 

  1. Yadav M, Sharma A, Patne K, et al. AXL signaling in cancer: From molecular insights to targeted therapies. Signal Transduct Target Ther. 2025;10(1):37. doi: 10.1038/s41392-024-02121-7

 

  1. Buczek M, Escudier B, Bartnik E, Szczylik C, Czarnecka A. Resistance to tyrosine kinase inhibitors in clear cell renal cell carcinoma: From the patient’s bed to molecular mechanisms. Biochim Biophys Acta. 2014;1845(1):31-41. doi: 10.1016/J.BBCAN.2013.10.001

 

  1. Oudin MJ, Weaver VM. Physical and chemical gradients in the tumor microenvironment regulate tumor cell invasion, migration, and metastasis. Cold Spring Harb Symp Quant Biol. 2016;81(1):189-205. doi: 10.1101/SQB.2016.81.030817

 

  1. Botta GP, Granowicz E, Costantini C. Advances on immunotherapy in genitourinary and renal cell carcinoma. Transl Cancer Res. 2017;6(1):17-29. doi: 10.21037/TCR.2017.02.09

 

  1. Rossi E, Bersanelli M, Gelibter AJ, et al. Combination therapy in renal cell carcinoma: The best choice for every patient? Curr Oncol Rep. 2021;23(12):147. doi: 10.1007/S11912-021-01140-9

 

  1. Lalani AKA, Heng DYC, Basappa NS. Evolving landscape of first-line combination therapy in advanced renal cancer: A systematic review. Ther Adv Med Oncol. 2022;14:1-17. doi: 10.1177/17588359221108685

 

  1. Banik K, Ranaware AM, Deshpande V, et al. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol Res. 2019;144:192-209. doi: 10.1016/J.PHRS.2019.04.004

 

Share
Back to top
Tumor Discovery, Electronic ISSN: 2810-9775 Print ISSN: 3060-8597, Published by AccScience Publishing