Application prospects of artificial intelligence-driven virtual cell in reshaping the diagnostic and therapeutic paradigm of osteoarthritis
Osteoarthritis (OA) is a leading cause of global disability, characterized by progressive joint degeneration. Current management remains limited to symptomatic treatment, lacking strategies to modify disease progression or provide personalized care. As an emerging multi-scale modeling framework, the artificial intelligence-driven virtual cell (AIVC) aims to integrate molecular, cellular, and tissue-level data to systematically simulate the pathogenesis of OA. By leveraging advanced architectures such as geometric deep learning, diffusion models, and graph neural networks, AIVC has the potential to resolve the complex interactions that drive OA, including inflammatory cascades and mechanobiological feedback loops. Its key application prospects include virtual drug screening, patient-specific digital twin construction, and mechanism-based precision intervention stratification. Although closed-loop validation schemes integrating AIVC technology with organoid models and robotic experiments are still in the early stages of development, and challenges such as data standardization and model interpretability persist, AIVC offers a transformative paradigm for shifting OA management from reactive treatment to proactive, personalized prevention. Realizing this potential will require close cross-disciplinary integration and collaboration among computational biology, rheumatology, artificial intelligence, and bioengineering.
- Bunne C, Roohani Y, Rosen Y, et al. How to build the virtual cell with artificial intelligence: Priorities and opportunities. Cell. 2024;187(25):7045-7063. doi: 10.1016/j.cell.2024.11.015
- Qian L, Dong Z, Guo T. Grow AI virtual cells: Three data pillars and closed-loop learning. Cell Res. 2025;35(5):319-321. doi: 10.1038/s41422-025-01101-y
- Bruyère O, Cooper C, Pelletier JP, et al. An algorithm recommendation for the management of knee osteoarthritis in Europe and internationally: A report from a task force of the European society for clinical and economic aspects of osteoporosis and osteoarthritis (ESCEO). Semin Arthritis Rheum. 2014;44(3):253-263. doi: 10.1016/j.semarthrit.2014.05.014
- Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis: A review. JAMA. 2021;325(6):568-578. doi: 10.1001/jama.2020.22171
- Jiang Y. Osteoarthritis year in review 2021: Biology. Osteoarthritis Cartilage. 2022;30(2):207-215. doi: 10.1016/j.joca.2021.11.009
- Puntillo F, Giglio M, Corriero A, et al. Unraveling the joints: A narrative review of osteoarthritis. Eur Rev Med Pharmacol Sci. 2024;28(15):4080-4104. doi: 10.26355/eurrev_202408_36639
- Courties A, Kouki I, Soliman N, Mathieu S, Sellam J. Osteoarthritis year in review 2024: Epidemiology and therapy. Osteoarthritis Cartilage. 2024;32(11):1397-1404. doi: 10.1016/j.joca.2024.07.014
- Coryell PR, Diekman BO, Loeser RF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat Rev Rheumatol. 2021;17(1):47-57. doi: 10.1038/s41584-020-00533-7
- Dou H, Wang S, Hu J, et al. Osteoarthritis models: From animals to tissue engineering. J Tissue Eng. 2023;14:20417314231172584. doi: 10.1177/20417314231172584
- Forteza-Genestra MA, Antich-Rosselló M, Ráez- Meseguer C, et al. Intra-articular injection of platelet lysate-derived extracellular vesicles recovers from knee osteoarthritis in an in vivo rat model. J Orthop Translat. 2024;45:1-9. doi: 10.1016/j.jot.2023.10.005
- Liu Q, Hao H, Li J, et al. Oral administration of bovine milk-derived extracellular vesicles attenuates cartilage degeneration via modulating gut microbiota in DMM-induced mice. Nutrients. 2023;15(3):747. doi: 10.3390/nu15030747
- Cook K, Li H. Advancing extracellular vesicle production: Improving physiological relevance and yield with 3D cell culture. Nanoscale. 2025;17(25):15110-15131. doi: 10.1039/d5nr00707k
- Lyu X, Wang J, Su J. Intelligent manufacturing for osteoarthritis organoids. Cell Prolif. 2025;58(7):e70043. doi: 10.1111/cpr.70043
- Liu D, Li X, Zhang L, et al. Small molecule inhibitors of osteoarthritis: Current development and future perspective. Front Physiol. 2023;14:1156913. doi: 10.3389/fphys.2023.1156913
- Ghouri A, Quicke JG, Conaghan PG. New developments in osteoarthritis pharmacological therapies. Rheumatology (Oxford). 2021;60(Suppl 6):vi1-vi11. doi: 10.1093/rheumatology/keab679
- Da Costa BR, Pereira TV, Saadat P, et al. Effectiveness and safety of non-steroidal anti-inflammatory drugs and opioid treatment for knee and hip osteoarthritis: Network meta-analysis. Bmj. 2021;375:n2321. doi: 10.1136/bmj.n2321
- Brophy RH, Fillingham YA. AAOS clinical practice guideline summary: Management of osteoarthritis of the knee (nonarthroplasty), third edition. J Am Acad Orthop Surg. 2022;30(9):e721-e729. doi: 10.5435/jaaos-d-21-01233
- Kompel AJ, Roemer FW, Murakami AM, Diaz LE, Crema MD, Guermazi A. Intra-articular corticosteroid injections in the hip and knee: Perhaps not as safe as we thought? Radiology. 2019;293(3):656-663. doi: 10.1148/radiol.2019190341
- Van Der Aar E, Deckx H, Dupont S, et al. Safety, pharmacokinetics, and pharmacodynamics of the ADAMTS-5 inhibitor GLPG1972/S201086 in healthy volunteers and participants with osteoarthritis of the knee or hip. Clin Pharmacol Drug Dev. 2022;11(1):112-122. doi: 10.1002/cpdd.1042
- Lana JF, Purita J, Jeyaraman M, et al. Innovative approaches in knee osteoarthritis treatment: A comprehensive review of bone marrow-derived products. Biomedicines. 2024;12(12): ???. doi: 10.3390/biomedicines12122812
- Messier SP, Mihalko SL, Legault C, et al. Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: The IDEA randomized clinical trial. JAMA. 2013;310(12):1263-1273. doi: 10.1001/jama.2013.277669
- Tsitsilianos N, Shirazi Z, Lu J, Singh JR. Bone marrow aspirate injection for osteoarthritis of the hip; A pilot study. Interv Pain Med. 2022;1(4):100163. doi: 10.1016/j.inpm.2022.100163
- Zhou J, Li X, Han Z, et al. Acetyl-11-keto-β-boswellic acid restrains the progression of synovitis in osteoarthritis via the Nrf2/HO-1 pathway. Acta Biochim Biophys Sin (Shanghai). 2024;56(11):1644-1658. doi: 10.3724/abbs.2024102
- Li Y, Zhao J, Guo S, He D. siRNA therapy in osteoarthritis: Targeting cellular pathways for advanced treatment approaches. Front Immunol. 2024;15:1382689. doi: 10.3389/fimmu.2024.1382689
- Tan F, Wang D, Yuan Z. The fibroblast-like synoviocyte derived exosomal long non-coding RNA H19 alleviates osteoarthritis progression through the miR-106b-5p/TIMP2 axis. Inflammation. 2020;43(4):1498-1509. doi: 10.1007/s10753-020-01227-8
- Chwastek J, Kędziora M, Borczyk M, et al. The emerging role of endocannabinoid system modulation in human fibroblast-like synoviocytes: Exploring new biomarkers and potential therapeutic targets. Biomed Pharmacother. 2025;186:118040. doi: 10.1016/j.biopha.2025.118040
- Nelson AE, Fang F, Arbeeva L, et al. A machine learning approach to knee osteoarthritis phenotyping: Data from the FNIH biomarkers consortium. Osteoarthritis Cartilage. 2019;27(7):994-1001. doi: 10.1016/j.joca.2018.12.027
- Joseph GB, McCulloch CE, Nevitt MC, Link TM, Sohn JH. Machine learning to predict incident radiographic knee osteoarthritis over 8 Years using combined MR imaging features, demographics, and clinical factors: Data from the osteoarthritis initiative. Osteoarthritis Cartilage. 2022;30(2):270-279. doi: 10.1016/j.joca.2021.11.007
- Mohammadi S, Salehi MA, Jahanshahi A, et al. Artificial intelligence in osteoarthritis detection: A systematic review and meta-analysis. Osteoarthritis Cartilage. 2024;32(3):241-253. doi: 10.1016/j.joca.2023.09.011
- Nguyen E, Poli M, Durrant MG, et al. Sequence modeling and design from molecular to genome scale with Evo. Science. 2024;386(6723):eado9336. doi: 10.1126/science.ado9336
- Minnig MCC, Golightly YM, Nelson AE. Epidemiology of osteoarthritis: Literature update 2022-2023. Curr Opin Rheumatol. 2024;36(2):108-112. doi: 10.1097/bor.0000000000000985
- Athaya T, Ripan RC, Li X, Hu H. Multimodal deep learning approaches for single-cell multi-omics data integration. Brief Bioinform. 2023;24(5):bbad313. doi: 10.1093/bib/bbad313
- Kanioura A, Filippidou MK, Tsounidi D, Petrou PS, Chatzandroulis S, Tserepi A. An organ-on-a-chip modular platform with integrated immunobiosensors for monitoring the extracellular environment. Micromachines (Basel). 2025;16(7):740. doi: 10.3390/mi16070740
- Pasztorek M, Fischer J, Otahal A, De Luna A, Nehrer S, Rosser J. Exploring osteoarthritis dynamics: Patient-specific cartilage samples in an organ-on-a-chip model. Cartilage. 2024:1-10. doi: 10.1177/19476035241277654
- Banh L, Cheung KK, Chan MWY, Young EWK, Viswanathan S. Advances in organ-on-a-chip systems for modelling joint tissue and osteoarthritic diseases. Osteoarthritis Cartilage. 2022;30(8):1050-1061. doi: 10.1016/j.joca.2022.03.012
- Demehri S, Kasaeian A, Roemer FW, Guermazi A. Osteoarthritis year in review 2022: Imaging. Osteoarthritis Cartilage. 2023;31(8):1003-1011. doi: 10.1016/j.joca.2023.03.005
- Rockel JS, Sharma D, Espin-Garcia O, et al. Deep learning-based clustering for endotyping and post-arthroplasty response classification using knee osteoarthritis multiomic data. Ann Rheum Dis. 2025;84(5):844-855. doi: 10.1016/j.ard.2025.01.012
- Song G, Yang W. NepoIP/MM: Toward accurate biomolecular simulation with a machine learning/molecular mechanics model incorporating polarization effects. J Chem Theory Comput. 2025;21(11):5588-5598. doi: 10.1021/acs.jctc.5c00372
- Pan B, Yao P, Ma J, et al. Identification of key biomarkers related to fibrocartilage chondrocytes for osteoarthritis based on bulk, single-cell transcriptomic data. Front Immunol. 2024;15:1482361. doi: 10.3389/fimmu.2024.1482361
- Xia J, Qiao Z, Hao X, Zhang Y. LDHA-induced histone lactylation mediates the development of osteoarthritis through regulating the transcription activity of TPI1 gene. Autoimmunity. 2024;57(1):2384889. doi: 10.1080/08916934.2024.2384889
- Andrade Guerreiro JJ, Aoki Y, Saito S, Suzuki K. Detection of osteoarthritis from multimodal hand data. Annu Int Conf IEEE Eng Med Biol Soc. 2022;2022:3607-3610. doi: 10.1109/embc48229.2022.9871560
- Wang Y, Liu X, Fan Y, et al. Predicting drug responses of unseen cell types through transfer learning with foundation models. Nat Comput Sci. 2025. doi: 10.1038/s43588-025-00887-6
- Cui H, Tejada-Lapuerta A, Brbić M, et al. Towards multimodal foundation models in molecular cell biology. Nature. 2025;640(8059):623-633. doi: 10.1038/s41586-025-08710-y
- Luo B, Teng F, Tang G, et al. StereoMM: A graph fusion model for integrating spatial transcriptomic data and pathological images. Brief Bioinform. 2025;26(3):bbaf210. doi: 10.1093/bib/bbaf210
- Shen Y, Shen Y, Wang M, et al. A spatial imaging-transcriptomics paradigm for deciphering the molecular basis of microscopic MRI in the normal brain and Alzheimer’s disease. Cell Rep. 2025;44(8):116073. doi: 10.1016/j.celrep.2025.116073
- Sumi K, Abe T, Kunimatsu R, et al. The effect of mesenchymal stem cells on chemotaxis of osteoclast precursor cells. J Oral Sci. 2018;60(2):221-225. doi: 10.2334/josnusd.17-0187
- Zhao S, Cui Z, Zhang G, Gong Y, Su L. MGPPI: Multiscale graph neural networks for explainable protein-protein interaction prediction. Front Genet. 2024;15:1440448. doi: 10.3389/fgene.2024.1440448
- Li B, Bao F, Hou Y, et al. Tissue characterization at an enhanced resolution across spatial omics platforms with deep generative model. Nat Commun. 2024;15(1):6541. doi: 10.1038/s41467-024-50837-5
- Tong X, Qu N, Kong X, et al. Deep representation learning of chemical-induced transcriptional profile for phenotype-based drug discovery. Nat Commun. 2024;15(1):5378. doi: 10.1038/s41467-024-49620-3
- Jin I, Lee S, Schmuhalek M, Nam H. DD-PRiSM: A deep learning framework for decomposition and prediction of synergistic drug combinations. Brief Bioinform. 2024;26(1):bbae717. doi: 10.1093/bib/bbae717
- Huang W, Liu H. Predicting single-cell cellular responses to perturbations using cycle consistency learning. Bioinformatics. 2024;40(Suppl 1):i462-i470. doi: 10.1093/bioinformatics/btae248
- Kusumoto D, Yuasa S, Fukuda K. Induced pluripotent stem cell-based drug screening by use of artificial intelligence. Pharmaceuticals (Basel). 2022;15(5):562. doi: 10.3390/ph15050562
- Shen CY, Zhou QR, Wu X, et al. Accelerating cartilage regeneration with DNA-SF hydrogel sustained release system-based cartilage organoids. Mil Med Res. 2025;12(1):39. doi: 10.1186/s40779-025-00625-z
- Chen Z, Wang W, Chen Y, Ji M, Hu Y. Osteoarthritis synovium as a nidus for monosodium urate crystal deposition inducing severe gout studied by label-free stimulated Raman scattering combined with synovial organoids. MedComm (2020). 2025;6(1):e70040. doi: 10.1002/mco2.70040
- Wang J, Chen X, Li R, et al. Standardization and consensus in the development and application of bone organoids. Theranostics. 2025;15(2):682-706. doi: 10.7150/thno.105840
- Skoracka J, Bajewska K, Kulawik M, Suchorska W, Kulcenty K. Advances in cartilage tissue regeneration: A review of stem cell therapies, tissue engineering, biomaterials, and clinical trials. Excli J. 2024;23:1170-1182. doi: 10.17179/excli2024-7088
- Wu Y, Li J, Zeng Y, et al. Exosomes rewire the cartilage microenvironment in osteoarthritis: From intercellular communication to therapeutic strategies. Int J Oral Sci. 2022;14(1):40. doi: 10.1038/s41368-022-00187-z
- Palombella S, Salehi S, Mondadori C, et al. Detailed methodology to establish a synovium/cartilage-on-a-chip model to investigate the process of monocyte extravasation. Methods Mol Biol. 2022;2373:253-266. doi: 10.1007/978-1-0716-1693-2_15
- Ding Q, Xu Q, Hong Y, et al. Integrated analysis of single-cell RNA-seq, bulk RNA-seq, Mendelian randomization, and eQTL reveals T cell-related nomogram model and subtype classification in rheumatoid arthritis. Front Immunol. 2024;15:1399856. doi: 10.3389/fimmu.2024.1399856
- Segura FM, Segura FP, Zudaire MPL, Segura FV. Advances in artificial intelligence for automated knee osteoarthritis classification using the IKDC system. Eur J Orthop Surg Traumatol. 2024;35(1):32. doi: 10.1007/s00590-024-04124-0
- Maerz T, Sherman E, Newton M, et al. Metabolomic serum profiling after ACL injury in rats: A pilot study implicating inflammation and immune dysregulation in post-traumatic osteoarthritis. J Orthop Res. 2018;36(7):1969-1979. doi: 10.1002/jor.23854
- Demanse D, Saxer F, Lustenberger P, et al. Unsupervised machine-learning algorithms for the identification of clinical phenotypes in the osteoarthritis initiative database. Semin Arthritis Rheum. 2023;58:152140. doi: 10.1016/j.semarthrit.2022.152140
- Abdullah SS, Rajasekaran MP. Automatic detection and classification of knee osteoarthritis using deep learning approach. Radiol Med. 2022;127(4):398-406. doi: 10.1007/s11547-022-01476-7
- Calivà F, Namiri NK, Dubreuil M, Pedoia V, Ozhinsky E, Majumdar S. Studying osteoarthritis with artificial intelligence applied to magnetic resonance imaging. Nat Rev Rheumatol. 2022;18(2):112-121. doi: 10.1038/s41584-021-00719-7
- Udomsinprasert W, Mookkhan N, Tabtimnark T, et al. Cartilage oligomeric matrix protein as a potential biomarker for knee osteoarthritis. Bone Joint Res. 2024;13(6):261-271. doi: 10.1302/2046-3758.136.Bjr-2023-0180.R1
- Kaur B, Rana D, Konar M, et al. Comparative proteomic analysis of osteoarthritis and rheumatoid arthritis: Identifying potential biomarkers. J Orthop Res. 2025;43(8):1396-1412. doi: 10.1002/jor.26092
- Deng C, Sun Y, Zhang Z, Ma X, Liu X, Zhou F. Development and evaluation of nomograms for predicting osteoarthritis progression based on MRI cartilage parameters: Data from the FNIH OA biomarkers consortium. BMC Med Imaging. 2023;23(1):43. doi: 10.1186/s12880-023-01001-w
- Roos EM, Lohmander LS. The knee injury and osteoarthritis outcome score (KOOS): From joint injury to osteoarthritis. Health Qual Life Outcomes. 2003;1:64. doi: 10.1186/1477-7525-1-64
- Chen Z, Tian S, Pei J, et al. UniCure: A Foundation Model for Predicting Personalized Cancer Therapy Response. bioRxiv[Preprint]; 2025. doi: 10.1101/2025.06.14.658531
- Pizurica M, Zheng Y, Carrillo-Perez F, et al. Digital profiling of gene expression from histology images with linearized attention. Nat Commun. 2024;15(1):9886. doi: 10.1038/s41467-024-54182-5
- Sun R, Qian L, Li Y, et al. A Perturbation Proteomics-Based Foundation Model for Virtual Cell Construction. bioRxiv [Preprint]; 2025. doi: 10.1101/2025.02.07.637070
- Marques L, Costa B, Pereira M, et al. Advancing precision medicine: A review of innovative in silico approaches for drug development, clinical pharmacology and personalized healthcare. Pharmaceutics. 2024;16(3):332. doi: 10.3390/pharmaceutics16030332
- Ou J, Zhang J, Alswadeh M, et al. Advancing osteoarthritis research: The role of AI in clinical, imaging and omics fields. Bone Res. 2025;13(1):48. doi: 10.1038/s41413-025-00423-2
- Yin L, Ye M, Qiao Y, et al. Unlocking the full potential of mesenchymal stromal cell therapy for osteoarthritis through machine learning-based in silico trials. Cytotherapy. 2024;26(10):1252-1263. doi: 10.1016/j.jcyt.2024.05.016
- Jamshidi A, Espin-Garcia O, Wilson TG, et al. MicroRNA signature for early prediction of knee osteoarthritis structural progression using integrated machine and deep learning approaches. Osteoarthritis Cartilage. 2025;33(3):330-340. doi: 10.1016/j.joca.2024.11.008
- Neubauer M, Moser L, Neugebauer J, et al. Artificial-intelligence-aided radiographic diagnostic of knee osteoarthritis leads to a higher association of clinical findings with diagnostic ratings. J Clin Med. 2023;12(3):744. doi: 10.3390/jcm12030744
- Yoosuf N, Maciejewski M, Ziemek D, et al. Early prediction of clinical response to anti-TNF treatment using multi-omics and machine learning in rheumatoid arthritis. Rheumatology (Oxford). 2022;61(4):1680-1689. doi: 10.1093/rheumatology/keab521
- Torga T, Suutre S, Kisand K, Aunapuu M, Arend A. Cartilage collagen neoepitope C2C expression in the articular cartilage and its relation to joint tissue damage in patients with knee osteoarthritis. Biomedicines. 2024;12(5):1063. doi: 10.3390/biomedicines12051063
- Hu Q, Ecker M. Overview of MMP-13 as a promising target for the treatment of osteoarthritis. Int J Mol Sci. 2021;22(4):1742. doi: 10.3390/ijms22041742
- Jardon M, Burke C, Li Z, et al. Reliability of pre-operative symptoms, radiographs, and MRI for the assessment of cartilage loss in patients with femoroacetabular impingement syndrome with intra-operative correlation. Skeletal Radiol. 2025;54(10):2117-2126. doi: 10.1007/s00256-025-04939-w
- Yang Z, Lu H, Lin Z, Zhu W, Guo H, Xie C. MRI-based patient-specific nomogram for diagnostic risk stratification of patients with early knee OA. Rheumatology (Oxford). 2025;64(10):5428-5438. doi: 10.1093/rheumatology/keaf319
- Woolacott NF, Corbett MS, Rice SJ. The use and reporting of WOMAC in the assessment of the benefit of physical therapies for the pain of osteoarthritis of the knee: Findings from a systematic review of clinical trials. Rheumatology (Oxford). 2012;51(8):1440-1446. doi: 10.1093/rheumatology/kes043
