AccScience Publishing / MI / Online First / DOI: 10.36922/MI025160033
COMMUNICATION

Development of novel anti-rhinoceros podoplanin monoclonal antibodies for flow cytometry, western blotting, and immunohistochemistry

Shiori Fujisawa1 Rena Ubukata1 Hiroyuki Suzuki1* Tomohiro Tanaka1 Airi Nomura1 Keisuke Shinoda1 Takuya Nakamura1 Hiroyuki Satofuka1 Guanjie Li1 Mika K. Kaneko1 Yukinari Kato1*
Show Less
1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
Received: 14 April 2025 | Revised: 16 July 2025 | Accepted: 1 September 2025 | Published online: 19 September 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Podoplanin (PDPN) is a type I transmembrane glycoprotein characterized by a highly glycosylated extracellular domain, a single transmembrane domain, and a short intracellular tail. PDPN is physiologically expressed in various normal tissues and cell types, including pulmonary type I alveolar epithelial cells, renal podocytes, and lymphatic endothelial cells. In addition to its physiological roles, PDPN has emerged as a valuable biomarker in cancer research. Consequently, the development of anti-PDPN monoclonal antibodies (mAbs) across a range of animal species has facilitated the identification and characterization of PDPN-expressing cells. To date, we have generated anti-PDPN mAbs for over 20 species, suitable for applications, such as flow cytometry, Western blotting, and immunohistochemistry. In the present study, we established two anti-rhinoceros PDPN (rhiPDPN) mAbs—PMab-315 (mouse IgG2a, kappa) and PMab-324 (mouse IgG2b, kappa)—using the Cell-Based Immunization and Screening method. Both mAbs bound to rhiPDPN-overexpressed Chinese hamster ovary K1 (CHO/rhiPDPN) and exhibited an identical KD value (4.5 × 10⁻⁸ M) in a flow cytometry-based assay. Furthermore, PMab-315 and PMab-324 effectively detected rhiPDPN in both Western blot and immunohistochemical analyses. These findings highlight the potential utility of PMab-315 and PMab-324 as robust tools for the pathological investigation of rhinoceros-derived tissues and cells.

Keywords
Rhinoceros podoplanin
Monoclonal antibody
CBIS method
Flow cytometry
Funding
This research was supported in part by the Japan Agency for Medical Research and Development (AMED) under grant numbers: JP25am0521010 (to Y.K.), JP25am0521010 (to Y.K.), JP24ama221339 (to Y.K.), JP24bm1123027 (to Y.K.), and JP24ck0106730 (to Y.K.), and by the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI) under grant numbers: 22K06995 (to H.Suzuki), 24K18268 (to T.T.), 24K11652 (to H.Satofuka), and 22K07224 (to Y.K.).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Suzuki H, Kaneko MK, Kato Y. Roles of podoplanin in malignant progression of tumor. Cells. 2022;11(3):375. doi: 10.3390/cells11030575

 

  1. Dobbs LG, Williams MC, Gonzalez R. Monoclonal antibodies specific to apical surfaces of rat alveolar type I cells bind to surfaces of cultured, but not freshly isolated, type II cells. Biochim Biophys Acta. 1988;970(2):146-156. doi: 10.1016/0167-4889(88)90173-5

 

  1. Rishi AK, Joyce-Brady M, Fisher J, et al. Cloning, characterization, and development expression of a rat lung alveolar type I cell gene in embryonic endodermal and neural derivatives. Dev Biol. 1995;167(1):294-306. doi: 10.1006/dbio.1995.1024

 

  1. Breiteneder-Geleff S, Matsui K, Soleiman A, et al. Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. Am J Pathol. 1997;151(4):1141-1152.

 

  1. Hirakawa S, Hong YK, Harvey N, et al. Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol. 2003;162(2):575-586. doi: 10.1016/s0002-9440(10)63851-5

 

  1. Petrova TV, Mäkinen T, Mäkelä TP, et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the prox-1 homeobox transcription factor. Embo J. 2002;21(17):4593-4599. doi: 10.1093/emboj/cdf470

 

  1. Schacht V, Ramirez MI, Hong YK, et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. Embo J. 2003;22(14):3546-3556. doi: 10.1093/emboj/cdg342

 

  1. Asif PJ, Longobardi C, Hahne M, Medema JP. The role of cancer-associated fibroblasts in cancer invasion and metastasis. Cancers (Basel). 2021;13(18):4720. doi: 10.3390/cancers13184720

 

  1. Sakai T, Aokage K, Neri S, et al. Link between tumor-promoting fibrous microenvironment and an immunosuppressive microenvironment in stage I lung adenocarcinoma. Lung Cancer. 2018;126:64-71. doi: 10.1016/j.lungcan.2018.10.021

 

  1. Hoshino A, Ishii G, Ito T, et al. Podoplanin-positive fibroblasts enhance lung adenocarcinoma tumor formation: Podoplanin in fibroblast functions for tumor progression. Cancer Res. 2011;71(14):4769-4779. doi: 10.1158/0008-5472.Can-10-3228

 

  1. Sasaki K, Sugai T, Ishida K, et al. Analysis of cancer-associated fibroblasts and the epithelial-mesenchymal transition in cutaneous basal cell carcinoma, squamous cell carcinoma, and malignant melanoma. Hum Pathol. 2018;79:1-8. doi: 10.1016/j.humpath.2018.03.006

 

  1. Suzuki J, Aokage K, Neri S, et al. Relationship between podoplanin-expressing cancer-associated fibroblasts and the immune microenvironment of early lung squamous cell carcinoma. Lung Cancer. 2021;153:1-10. doi: 10.1016/j.lungcan.2020.12.020

 

  1. Pula B, Jethon A, Piotrowska A, et al. Podoplanin expression by cancer-associated fibroblasts predicts poor outcome in invasive ductal breast carcinoma. Histopathology. 2011;59(6):1249-1260. doi: 10.1111/j.1365-2559.2011.04060.x

 

  1. Shindo K, Aishima S, Ohuchida K, et al. Podoplanin expression in cancer-associated fibroblasts enhances tumor progression of invasive ductal carcinoma of the pancreas. Mol Cancer. 2013;12(1):168. doi: 10.1186/1476-4598-12-168

 

  1. Kamath PL. Conserving rhinoceros in the face of disease. Proc Natl Acad Sci U S A. 2022;119(25):e2206438119. doi: 10.1073/pnas.2206438119

 

  1. Miller MA, Buss P, Parsons SDC, et al. Conservation of white rhinoceroses threatened by bovine tuberculosis, South Africa, 2016-2017. Emerg Infect Dis. 2018;24(12):2373-2375. doi: 10.3201/eid2412.180293

 

  1. Miller MA, Buss PE, Van Helden PD, Parsons SD. Mycobacterium bovis in a free-ranging black rhinoceros, Kruger National Park, South Africa, 2016. Emerg Infect Dis. 2017;23(3):557-558. doi: 10.3201/eid2303.161622

 

  1. Miller M, Michel A, Van Helden P, Buss P. Tuberculosis in rhinoceros: An underrecognized threat? Transbound Emerg Dis. 2017;64(4):1071-1078. doi: 10.1111/tbed.12489

 

  1. Dwyer R, Goosen W, Buss P, et al. Epidemiology of Mycobacterium bovis infection in free-ranging rhinoceros in Kruger National Park, South Africa. Proc Natl Acad Sci U S A. 2022;119(24):e2120656119. doi: 10.1073/pnas.2120656119

 

  1. Kudo Y, Suzuki H, Tanaka T, Kaneko MK, Kato Y. Development of a novel anti-CD44 variant 5 monoclonal antibody C44mab-3 for multiple applications against pancreatic carcinomas. Antibodies (Basel). 2023;12(2):31. doi: 10.3390/antib12020031

 

  1. Kaneko MK, Honma R, Ogasawara S, et al. PMab-38 recognizes canine podoplanin of squamous cell carcinomas. Monoclon Antib Immunodiagn Immunother. 2016;35(5):263-266. doi: 10.1089/mab.2016.0036

 

  1. Kato Y, Ito Y, Ohishi T, et al. Antibody-drug conjugates using mouse-canine chimeric anti-dog podoplanin antibody exerts antitumor activity in a mouse xenograft model. Monoclon Antib Immunodiagn Immunother. 2020;39(2):37-44. doi: 10.1089/mab.2020.0001

 

  1. Yamamoto H, Suzuki H, Tanaka T, Kaneko MK, Kato Y. PMab-322: A Novel anti-hippopotamus podoplanin monoclonal antibody for multiple applications. Biochem Biophys Rep. 2025;43:102170. doi: 10.1016/j.bbrep.2025.102170.

 

  1. Bernitz N, Kerr TJ, Goosen WJ, et al. Review of diagnostic tests for detection of Mycobacterium bovis infection in South African wildlife. Front Vet Sci. 2021;8:588697. doi: 10.3389/fvets.2021.588697

 

  1. Hlokwe TM, Van Helden P, Michel AL. Evidence of increasing intra and inter-species transmission of Mycobacterium bovis in South Africa: Are we losing the battle? Prev Vet Med. 2014;115(1-2):10-17. doi: 10.1016/j.prevetmed.2014.03.011

 

  1. Espie IW, Hlokwe TM, Gey Van Pittius NC, et al. Pulmonary infection due to Mycobacterium bovis in a black rhinoceros (diceros bicornis minor) in South Africa. J Wildl Dis. 2009;45(4):1187-1193. doi: 10.7589/0090-3558-45.4.1187

 

  1. Shadwick RE, Russell AP, Lauff RF. The structure and mechanical design of rhinoceros dermal armour. Philos Trans R Soc Lond B Biol Sci. 1992;337(1282):419-428. doi: 10.1098/rstb.1992.0118

 

  1. Plochocki JH, Ruiz S, Rodriguez-Sosa JR, Hall MI. Histological study of white rhinoceros integument. PLoS One. 2017;12(4):e0176327. doi: 10.1371/journal.pone.0176327
Share
Back to top
Microbes & Immunity, Electronic ISSN: 3029-2883 Print ISSN: 3041-0886, Published by AccScience Publishing