Establishment of a novel anti-mouse CD73 monoclonal antibody C73Mab-9 by the Cell-Based Immunization and Screening method

Cluster of differentiation 73 (CD73), also known as ecto-5’-nucleotidase, is a glycosyl-phosphatidylinositol-anchored cell-surface molecule that belongs to the 5’-nucleosidase family. CD73 metabolizes extracellular adenosine (ADO) 5’-monophosphate into ADO and inorganic phosphate. CD73 plays a vital role in cancer-immune evasion by facilitating ADO production. Therefore, the development of specific anti-CD73 antibodies is desired to clarify the biological and pathological functions of CD73. Moreover, developing antibodies against mouse CD73 (mCD73) is also essential for pre-clinical experiments. This study successfully established an anti-mCD73 monoclonal antibody (clone C73Mab-9, rat IgG2a, and lambda) using the Cell-Based Immunization and Screening (CBIS) method. In flow cytometric analysis, C73Mab-9 was confirmed to recognize mCD73 in mCD73-overexpressed CHO-K1 (CHO/mCD73), MUSS, and NMuMG cells. The dissociation constant values of C73Mab-9 were 7.6 × 10−9 M for CHO/mCD73 and 1.2 × 10−9 M for MUSS cells, respectively. Furthermore, C73Mab-9 detected mCD73 in Western blot analysis. Therefore, C73Mab-9, established by the CBIS method, is useful for basic research and is expected to contribute to pre-clinical studies.
- Demaria O, Cornen S, Daëron M, Morel Y, Medzhitov R, Vivier E. Harnessing innate immunity in cancer therapy. Nature. 2019;574(7776):45-56. doi: 10.1038/s41586-019-1593-5
- De Simone M, Arrigoni A, Rossetti G, et al. Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor-infiltrating T regulatory cells. Immunity. 2016;45(5):1135-1147. doi: 10.1016/j.immuni.2016.10.021
- Kumagai S, Momoi Y, Nishikawa H. Immunogenomic cancer evolution: A framework to understand cancer immunosuppression. Sci Immunol. 2025;10(105):eabo5570. doi: 10.1126/sciimmunol.abo5570
- Paul S, Konig MF, Pardoll DM, et al. Cancer therapy with antibodies. Nat Rev Cancer. 2024;24(6):399-426. doi: 10.1038/s41568-024-00690-x
- Höckel M, Vaupel P. Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J Nat Cancer Inst. 2001;93(4):266-276. doi: 10.1093/jnci/93.4.266
- Vaupel P, Mayer A. Hypoxia in cancer: Significance and impact on clinical outcome. Cancer Metastasis Rev. 2007;26(2):225-239. doi: 10.1007/s10555-007-9055-1
- Rankin EB, Giaccia AJ. Hypoxic control of metastasis. Science. 2016;352(6282):175-180. doi: 10.1126/science.aaf4405
- Synnestvedt K, Furuta GT, Comerford KM, et al. Ecto- 5’-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest. 2002;110(7):993-1002. doi: 10.1172/JCI15337
- Ohta A, Gorelik E, Prasad SJ, et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci. 2006;103(35):13132-13137. doi: 10.1073/pnas.0605251103
- Sitkovsky MV, Lukashev D, Apasov S, et al. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol. 2004;22:657-682. doi: 10.1146/annurev.immunol.22.012703.104731
- Zimmermann H. 5’-Nucleotidase: Molecular structure and functional aspects. Biochem J. 1992;285(2):345-365. doi: 10.1042/bj2850345
- Sträter N. Ecto-5’-nucleotidase: Structure function relationships. Purinergic Signal. 2006;2(2):343-350. doi: 10.1007/s11302-006-9000-8
- Mastelic-Gavillet B, Navarro Rodrigo B, Décombaz L, et al. Adenosine mediates functional and metabolic suppression of peripheral and tumor-infiltrating CD8+ T cells. J Immunother Cancer. 2019;7(1):257. doi: 10.1186/s40425-019-0719-5
- Lokshin A, Raskovalova T, Huang X, Zacharia LC, Jackson EK, Gorelik E. Adenosine-mediated inhibition of the cytotoxic activity and cytokine production by activated natural killer cells. Cancer Res. 2006;66(15):7758-7765. doi: 10.1158/0008-5472.Can-06-0478
- Raskovalova T, Huang X, Sitkovsky M, Zacharia LC, Jackson EK, Gorelik E. Gs protein-coupled adenosine receptor signaling and lytic function of activated NK cells. J Immunol. 2005;175(7):4383-4391. doi: 10.4049/jimmunol.175.7.4383
- Forte G, Sorrentino R, Montinaro A, et al. Inhibition of CD73 improves B cell-mediated anti-tumor immunity in a mouse model of melanoma. J Immunol. 2012;189(5):2226-2233. doi: 10.4049/jimmunol.1200744
- Bernardi A, Bavaresco L, Wink MR, et al. Indomethacin stimulates activity and expression of ecto-5’-nucleotidase/ CD73 in glioma cell lines. Eur J Pharmacol. 2007;569(1-2):8-15. doi: 10.1016/j.ejphar.2007.04.058
- Zhu Y, Banerjee A, Xie P, et al. Pharmacological suppression of the OTUD4/CD73 proteolytic axis revives antitumor immunity against immune-suppressive breast cancers. J Clin Invest. 2024;134(10):e176390. doi: 10.1172/JCI176390
- Koivisto MK, Tervahartiala M, Kenessey I, Jalkanen S, Boström PJ, Salmi M. Cell-type-specific CD73 expression is an independent prognostic factor in bladder cancer. Carcinogenesis. 2018;40(1):84-92. doi: 10.1093/carcin/bgy154
- Jacoberger-Foissac C, Cousineau I, Bareche Y, et al. CD73 inhibits cGAS-STING and cooperates with CD39 to promote pancreatic cancer. Cancer Immunol Res. 2023;11(1):56-71. doi: 10.1158/2326-6066.Cir-22-0260
- Montalbán Del Barrio I, Penski C, Schlahsa L, et al. Adenosine-generating ovarian cancer cells attract myeloid cells which differentiate into adenosine-generating tumor associated macrophages - a self-amplifying, CD39- and CD73-dependent mechanism for tumor immune escape. J Immunother Cancer. 2016;4(1):49. doi: 10.1186/s40425-016-0154-9
- Giatromanolaki A, Kouroupi M, Pouliliou S, et al. Ectonucleotidase CD73 and CD39 expression in non-small cell lung cancer relates to hypoxia and immunosuppressive pathways. Life Sci. 2020;259:118389. doi: 10.1016/j.lfs.2020.118389
- Loi S, Pommey S, Haibe-Kains B, et al. CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci. 2013;110(27):11091-11096. doi: 10.1073/pnas.1222251110
- Quezada C, Garrido W, Oyarzún C, et al. 5’-ectonucleotidase mediates multiple-drug resistance in glioblastoma multiforme cells. J Cell Physiol. 2013;228(3):602-608. doi: 10.1002/jcp.24168
- Zarek PE, Huang CT, Lutz ER, et al. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood. 2008;111(1):251-259. doi: 10.1182/blood-2007-03-081646
- Leone RD, Sun IM, Oh MH, et al. Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models. Cancer Immunol Immunother. 2018;67(8):1271-1284. doi: 10.1007/s00262-018-2186-0
- Ohta A, Kini R, Ohta A, et al. The development and immunosuppressive functions of CD4(+) CD25(+) FoxP3(+) regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front Immunol. 2012;3:190. doi: 10.3389/fimmu.2012.00190
- Nettersheim FS, Brunel S, Sinkovits RS, et al. PD-1 and CD73 on naive CD4+ T cells synergistically limit responses to self. Nat Immunol. 2025;26(1):105-115. doi: 10.1038/s41590-024-02021-6
- Schneider E, Winzer R, Rissiek A, et al. CD73-mediated adenosine production by CD8 T cell-derived extracellular vesicles constitutes an intrinsic mechanism of immune suppression. Nat Commun. 2021;12(1):5911. doi: 10.1038/s41467-021-26134-w
- Lu T, Zhang Z, Zhang J, et al. CD73 in small extracellular vesicles derived from HNSCC defines tumour-associated immunosuppression mediated by macrophages in the microenvironment. J Extracell Vesicles. 2022;11(5):e12218. doi: 10.1002/jev2.12218
- Allard B, Allard D, Buisseret L, Stagg J. The adenosine pathway in immuno-oncology. Nat Rev Clin Oncol. 2020;17(10):611-629. doi: 10.1038/s41571-020-0382-2
- Takei J, Ohishi T, Kaneko MK, Harada H, Kawada M, Kato Y. A defucosylated anti-PD-L1 monoclonal antibody 13-mG2a-f exerts antitumor effects in mouse xenograft models of oral squamous cell carcinoma. Biochem Biophys Rep. 2020;24:100801. doi: 10.1016/j.bbrep.2020.100801
- Takei J, Asano T, Nanamiya R, et al. Development of anti-human T cell immunoreceptor with Ig and ITIM domains (TIGIT) monoclonal antibodies for flow cytometry. Monoclon Antib Immunodiagn Immunother. 2021;40(2):71-75. doi: 10.1089/mab.2021.0006
- Furusawa Y, Kaneko MK, Kato Y. Establishment of C20Mab-11, a novel anti-CD20 monoclonal antibody, for the detection of B cells. Oncol Lett. 2020;20(2):1961-1967. doi: 10.3892/ol.2020.11753
- Tanaka T, Kaneko Y, Yamamoto H, et al. Development of a novel anti-erythropoietin-producing hepatocellular receptor B6 monoclonal antibody Eb6Mab-3 for flow cytometry. Biochem Biophys Rep. 2025;41:101960. doi: 10.1016/j.bbrep.2025.101960
- Ikota H, Nobusawa S, Arai H, et al. Evaluation of IDH1 status in diffusely infiltrating gliomas by immunohistochemistry using anti-mutant and wild type IDH1 antibodies. Brain Tumor Pathol. 2015;32(4):237-244. doi: 10.1007/s10014-015-0222-8
- Ávila-Ibarra LR, Mora-García MDL, García-Rocha R, et al. Mesenchymal stromal cells derived from normal cervix and cervical cancer tumors increase CD73 expression in cervical cancer cells through TGF-β1 production. Stem Cells Dev. 2019;28(7):477-488. doi: 10.1089/scd.2018.0183
- Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev. 2017;276(1):121-144. doi: 10.1111/imr.12528
- Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F. Increased level of extracellular ATP at tumor sites: In vivo imaging with plasma membrane luciferase. PLoS One. 2008;3(7):e2599. doi: 10.1371/journal.pone.0002599
- Bhat AA, Nisar S, Maacha S, et al. Cytokine-chemokine network driven metastasis in esophageal cancer; Promising avenue for targeted therapy. Mol Cancer. 2021;20(1):2. doi: 10.1186/s12943-020-01294-3
- Baghy K, Ladányi A, Reszegi A, Kovalszky I. Insights into the tumor microenvironment-components, functions and therapeutics. Int J Mol Sci. 2023;24(24):17536. doi: 10.3390/ijms242417536
- Sadej R, Skladanowski AC. Dual, enzymatic and non-enzymatic, function of ecto-5’-nucleotidase (eN, CD73) in migration and invasion of A375 melanoma cells. Acta Biochim Pol. 2012;59(4):647-52.
- Gao ZW, Wang HP, Lin F, et al. CD73 promotes proliferation and migration of human cervical cancer cells independent of its enzyme activity. BMC Cancer. 2017;17(1):135. doi: 10.1186/s12885-017-3128-5
- Terp MG, Olesen KA, Arnspang EC, et al. Anti-human CD73 monoclonal antibody inhibits metastasis formation in human breast cancer by inducing clustering and internalization of CD73 expressed on the surface of cancer cells. J Immunol. 2013;191(8):4165-4173. doi: 10.4049/jimmunol.1301274
- Ardeshiri K, Hassannia H, Ghalamfarsa G, Jafary H, Jadidi F. Simultaneous blockade of the CD73/EGFR axis inhibits tumor growth. IUBMB Life. 2025;77(1):e2933. doi: 10.1002/iub.2933
- Xu JG, Chen S, He Y, et al. An antibody cocktail targeting two different CD73 epitopes enhances enzyme inhibition and tumor control. Nat Commun. 2024;15(1):10872. doi: 10.1038/s41467-024-55207-9
- Lupia M, Angiolini F, Bertalot G, et al. CD73 regulates stemness and epithelial-mesenchymal transition in ovarian cancer-initiating cells. Stem Cell Rep. 2018;10(4):1412-1425. doi: 10.1016/j.stemcr.2018.02.009
- Ma XL, Shen MN, Hu B, et al. CD73 promotes hepatocellular carcinoma progression and metastasis via activating PI3K/ AKT signaling by inducing Rap1-mediated membrane localization of P110β and predicts poor prognosis. J Hematol Oncol. 2019;12(1):37. doi: 10.1186/s13045-019-0724-7
- Ma XL, Hu B, Tang WG, et al. CD73 sustained cancer-stem-cell traits by promoting SOX9 expression and stability in hepatocellular carcinoma. J Hematol Oncol. 2020;13(1):11. doi: 10.1186/s13045-020-0845-z
- Costa A, Kieffer Y, Scholer-Dahirel A, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell. 2018;33(3):463-479.e10. doi: 10.1016/j.ccell.2018.01.011
- Yu M, Guo G, Huang L, et al. CD73 on cancer-associated fibroblasts enhanced by the A2B-mediated feedforward circuit enforces an immune checkpoint. Nat Commun. 2020;11(1):515. doi: 10.1038/s41467-019-14060-x
- Mediavilla-Varela M, Luddy K, Noyes D, et al. Antagonism of adenosine A2A receptor expressed by lung adenocarcinoma tumor cells and cancer associated fibroblasts inhibits their growth. Cancer Biol Ther. 2013;14(9):860-868. doi: 10.4161/cbt.25643
- Okada Y, Suzuki H, Kaneko MK, Kato Y. Development of a sensitive anti-mouse CD39 monoclonal antibody (C39Mab-1) for flow cytometry and western blot analyses. Monoclon Antib Immunodiagn Immunother. 2024;43(1):24-31. doi: 10.1089/mab.2023.0016
- Suzuki H, Tanaka T, Kudo Y, et al. A rat anti-mouse CD39 monoclonal antibody for flow cytometry. Monoclon Antib Immunodiagn Immunother. 2023;42(6):203-208. doi: 10.1089/mab.2023.0018
- Young A, Ngiow SF, Barkauskas DS, et al. Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses. Cancer Cell. 2016;30(3):391-403. doi: 10.1016/j.ccell.2016.06.025