Staphylococcus aureus capsule: Production, function, and regulation

Staphylococcus aureus is a major opportunistic pathogen that causes a wide spectrum of human and animal diseases. Capsule is one of the key virulence factors of S. aureus. Approximately 90% of S. aureus isolates produce capsular polysaccharides (CPs) that envelop the entire bacterial cells. CPs can suppress the phagocytosis of S. aureus by innate immune cells, promote intracellular survival, and reduce the killing efficacy of antimicrobial agents. As a result, CPs are versatile candidates for vaccine development. The synthesis of S. aureus CPs is controlled by the cap operon, which contains 16 genes encoding functional enzymes involved in the biosynthesis and transport of CPs. During S. aureus growth, cap operon expression is strictly regulated. The control region of the cap operon is characterized by two promoters: a housekeeping sigma factor A (SigA)-dependent promoter and a stress-responsive sigma factor B-dependent promoter. Many transcription factors, including both positive and negative regulatory molecules, are timely involved in the regulatory network of S. aureus capsule synthesis. Moreover, environmental conditions such as medium composition and carbon dioxide levels further modulate CP production. In this review, the structure and function of S. aureus CPs are introduced, and the biosynthesis of S. aureus CPs is discussed. Moreover, the regulation of S. aureus CP production is summarized, the factors affecting CP production are outlined, and the preparation of S. aureus CPs is reviewed. The advanced information presented here may provide useful references for further research on the production and function of S. aureus CPs.
- Eltabeeb MA, Hamed RR, El-Nabarawi MA, et al. Nanocomposite alginate hydrogel loaded with propranolol hydrochloride kolliphor-based cerosomes as a repurposed platform for methicillin-resistant Staphylococcus aureus- (MRSA)-induced skin infection; in-vitro, ex-vivo, in-silico, and in-vivo evaluation. Drug Deliv Transl Res. 2025;15(2):556-576. doi: 10.1007/s13346-024-01611-z
- Li L, Koirala B, Hernandez Y, et al. Identification of structurally diverse menaquinone-binding antibiotics with in vivo activity against multidrug-resistant pathogens. Nat Microbiol. 2022;7(1):120-131. doi: 10.1038/s41564-021-01013-8
- Chen XW, Chen HQ, Wu JH, et al. Isoniazid potentiates tigecycline to kill methicillin-resistant Staphylococcus aureus. Emerg Microbes Infect. 2025;14(1):2434587. doi: 10.1080/22221751.2024.2434587
- Dang X, Han S, Du Y, Fei Y, Guo B, Wang X. Engineered environment-friendly multifunctional food packaging with superior nonleachability, polymer miscibility and antimicrobial activity. Food Chem. 2025;466:142192. doi: 10.1016/j.foodchem.2024.142192
- DeLeo FR, Chambers HF. Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J Clin Invest. 2009;119(9):2464-2474. doi: 10.1172/JCI38226
- Gordon RJ, Lowy FD. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis. 2008;46(Suppl 5):S350-S359. doi: 10.1086/533591
- Nguyen TH, Cheung G, Rigby KM, et al. Rapid pathogen-specific recruitment of immune effector cells in the skin by secreted toxins. Nat Microbiol. 2022;7(1):62-72. doi: 10.1038/s41564-021-01012-9
- Chakraborty T, Polley S, Ray Chaudhuri N, et al. A staphylococcal capsule-producing enzyme that unfolds via multiple intermediates predominantly exists as the trimers at low concentrations. J Biomol Struct Dyn. 2024;1-15. doi: 10.1080/07391102.2024.2438364
- Gilbert I. Dissociation in an encapsulated Staphylococcus. J Bacteriol. 1931;21(3):157-160. doi: 10.1128/jb.21.3.157-160.1931
- Sompolinsky D, Samra Z, Karakawa WW, Vann WF, Schneerson R, Malik Z. Encapsulation and capsular types in isolates of Staphylococcus aureus from different sources and relationship to phage types. J Clin Microbiol. 1985;22(5):828-834. doi: 10.1128/jcm.22.5.828-834.1985
- Visansirikul S, Kolodziej SA, Demchenko AV. Staphylococcus aureus capsular polysaccharides: A structural and synthetic perspective. Org Biomol Chem. 2020;18(5):783-798. doi: 10.1039/c9ob02546d
- Keinhörster D, George SE, Weidenmaier C, Wolz C. Function and regulation of Staphylococcus aureus wall teichoic acids and capsular polysaccharides. Int J Med Microbiol. 2019;309(6):151333. doi: 10.1016/j.ijmm.2019.151333
- Tuchscherr L, Löffler B, Buzzola FR, Sordelli DO. Staphylococcus aureus adaptation to the host and persistence: Role of loss of capsular polysaccharide expression. Future Microbiol. 2010;5(12):1823-1832. doi: 10.2217/fmb.10.147
- O’Riordan K, Lee JC, Chan KH, Lee JC. Staphylococcus aureus capsular polysaccharides. Clin Microbiol Rev. 2004;17(1):218-234. doi: 10.1128/CMR.17.1.218-234.2004
- Portolés M, Kiser K, Bhasin N, et al. Staphylococcus aureus Cap5O has UDP-mannac dehydrogenase activity and is essential for capsule expression. Infect Immun. 2001;2(69):917-923. doi: 10.1128/IAI.69.2.917-923.2001
- Echaniz-Aviles G, Velazquez-Meza ME, Rodriguez- Arvizu B, et al. Detection of capsular genotypes of methicillin-resistant Staphylococcus aureus and clonal distribution of the cap5 and cap8 genes in clinical isolates. Arch Microbiol. 2022;204(3):186. doi: 10.1007/s00203-022-02793-1
- Wilkinson BJ, Holmes KM. Staphylococcus aureus cell surface: Capsule as a barrier to bacteriophage adsorption. Infect Immun. 1979;23(2):549-552. doi: 10.1128/iai.23.2.549-552.1979
- Behera A, Rai D, Kulkarni SS. Total syntheses of conjugation-ready trisaccharide repeating units of Pseudomonas aeruginosa O11 and Staphylococcus aureus type 5 capsular polysaccharide for vaccine development. J Am Chem Soc. 2020;142(1):456-467. doi: 10.1021/jacs.9b11309
- Von Eiff C, Taylor KL, Mellmann A, et al. Distribution of capsular and surface polysaccharide serotypes of Staphylococcus aureus. Diagn Microbiol Infect Dis. 2007;58(3):297-302. doi: 10.1016/j.diagmicrobio.2007.01.016
- Jones C. Revised structures for the capsular polysaccharides from Staphylococcus aureus types 5 and 8, components of novel glycoconjugate vaccines. Carbohydr Res. 2005;340(6):1097-1106. doi: 10.1016/j.carres.2005.02.001
- Østerlid KE, Cergano R, Overkleeft HS, Van der Marel GA, Codée JD. Synthesis of a set of Staphylococcus aureus capsular polysaccharide type 1 oligosaccharides carrying taurine esters. Chemistry. 2025;0:e202500132. doi: 10.1002/chem.202500132
- Keinhörster D, Salzer A, Duque Jaramillo A, et al. Revisiting the regulation of the capsular polysaccharide biosynthesis gene cluster in Staphylococcus aureus. Mol Microbiol. 2019;112(4):1083-1099. doi: 10.1111/mmi.14347
- Liau DF, Melly MA, Hash JH. Surface polysaccharide from Staphylococcus aureus M that contains taurine, D-aminogalacturonic acid, and D-fucosamine. J Bacteriol. 1974;119(3):913-922. doi: 10.1128/jb.119.3.913-922.1974
- Murthy SV, Melly MA, Harris TM, Hellerqvist CG, Hash JH. The repeating sequence of the capsular polysaccharide of Staphylococcus aureus M. Carbohydr Res. 1983;117:113-123. doi: 10.1016/0008-6215(83)88080-x
- Karakawa WW, Young DA, Kane JA. Structural analysis of the cellular constituents of a fresh clinical isolate of Staphylococcus aureus, and their role in the interaction between the organisms and polymorphonuclear leukocytes in the presence of serum factors. Infect Immun. 1978;21(2):496-505. doi: 10.1128/iai.21.2.496-505.1978
- Lu SR, Lai YH, Chen JH, Liu CY, Mong KK. Dimethylformamide: An unusual glycosylation modulator. Angew Chem Int Ed Engl. 2011;50(32):7315-7320. doi: 10.1002/anie.201100076
- Lee JC, Liu MJ, Parsonnet J, Arbeit RD. Expression of type 8 capsular polysaccharide and production of toxic shock syndrome toxin 1 are associated among vaginal isolates of Staphylococcus aureus. J Clin Microbiol. 1990;28(12):2612-2615. doi: 10.1128/jcm.28.12.2612-2615.1990
- Mohamed N, Timofeyeva Y, Jamrozy D, et al. Molecular epidemiology and expression of capsular polysaccharides in Staphylococcus aureus clinical isolates in the United States. PLoS One. 2019;14(1):e0208356. doi: 10.1371/journal.pone.0208356
- Shi H, Wang L, Li G, et al. Characteristic profiles of molecular types, antibiotic resistance, antibiotic resistance genes, and virulence genes of Staphylococcus aureus isolates from caprine mastitis in China. Front Cell Infect Microbiol. 2025;15:1533844. doi: 10.3389/fcimb.2025.1533844
- Bardiau M, Caplin J, Detilleux J, et al. Existence of two groups of Staphylococcus aureus strains isolated from bovine mastitis based on biofilm formation, intracellular survival, capsular profile and agr-typing. Vet Microbiol. 2016;185:1-6. doi: 10.1016/j.vetmic.2016.01.003
- Rausch M, Deisinger JP, Ulm H, et al. Coordination of capsule assembly and cell wall biosynthesis in Staphylococcus aureus. Nat Commun. 2019;10(1):1404. doi: 10.1038/s41467-019-09356-x
- Karakawa WW, Sutton A, Schneerson R, Karpas A, Vann WF. Capsular antibodies induce type-specific phagocytosis of capsulated Staphylococcus aureus by human polymorphonuclear leukocytes. Infect Immun. 1988;56(5):1090-1095. doi: 10.1128/iai.56.5.1090-1095.1988
- Nanra JS, Buitrago SM, Crawford S, et al. Capsular polysaccharides are an important immune evasion mechanism for Staphylococcus aureus. Hum Vaccin Immunother. 2013;9(3):480-487. doi: 10.4161/hv.23223
- Thakker M, Park J, Carey V, Lee JC. Staphylococcus aureus serotype 5 capsular polysaccharide is antiphagocytic and enhances bacterial virulence in a murine bacteremia model. Infect Immun. 1998;11(66):5183-5189. doi: 10.1128/IAI.66.11.5183-5189.1998
- Watts A, Ke D, Wang Q, et al. Staphylococcus aureus strains that express serotype 5 or serotype 8 capsular polysaccharides differ in virulence. Infect Immun. 2005;73(6):3502-3511. doi: 10.1128/IAI.73.6.3502-3511.2005
- Nilsson IM, Lee JC, Bremell T, Rydén C, Tarkowski A. The role of staphylococcal polysaccharide microcapsule expression in septicemia and septic arthritis. Infect Immun. 1997;65(10):4216-4221. doi: 10.1128/iai.65.10.4216-4221.1997
- McLoughlin RM, Solinga RM, Rich J, et al. CD4+ T cells and CXC chemokines modulate the pathogenesis of Staphylococcus aureus wound infections. Proc Natl Acad Sci USA. 2006;103(27):10408-10413. doi: 10.1073/pnas.0508961103
- Kuipers A, Stapels DAC, Weerwind LT, et al. The Staphylococcus aureus polysaccharide capsule and Efb-dependent fibrinogen shield act in concert to protect against phagocytosis. Microbiology (Reading). 2016;162(7):1185-1194. doi: 10.1099/mic.0.000293
- Sutra L, Rainard P, Poutrel B. Phagocytosis of mastitis isolates of Staphylococcus aureus and expression of type 5 capsular polysaccharide are influenced by growth in the presence of milk. J Clin Microbiol. 1990;28(10):2253-2258. doi: 10.1128/jcm.28.10.2253-2258.1990
- Alvarez LP, Barbagelata MS, Gordiola M, Cheung AL, Sordelli DO, Buzzola FR. Salicylic acid diminishes Staphylococcus aureus capsular polysaccharide type 5 expression. Infect Immun. 2010;78(3):1339-1344. doi: 10.1128/IAI.00245-09
- Brissac T, Martínez E, Kruckow KL, et al. Capsule promotes intracellular survival and vascular endothelial cell translocation during invasive pneumococcal disease. mBio. 2021;12(5):e0251621. doi: 10.1128/mBio.02516-21
- Witte W. Transfer of drug-resistance-plasmids in mixed cultures of Staphylococci. Zentralbl Bakteriol Orig A. 1977;237(2-3):147-159.
- Lehmann E, Van Dalen R, Gritsch L, et al. The capsular polysaccharide obstructs wall teichoic acid functions in Staphylococcus aureus. J Infect Dis. 2024;230(5):1253-1261. doi: 10.1093/infdis/jiae188
- Kaku N, Ishige M, Yasutake G, et al. Long-term impact of molecular epidemiology shifts of methicillin-resistant Staphylococcus aureus on severity and mortality of bloodstream infection. Emerg Microbes Infect. 2025;14(1):2449085. doi: 10.1080/22221751.2024.2449085
- Babra C, Tiwari J, Costantino P, et al. Human methicillin-sensitive Staphylococcus aureus biofilms: Potential associations with antibiotic resistance persistence and surface polysaccharide antigens. J Basic Microbiol. 2014;54(7):721-728. doi: 10.1002/jobm.201200557
- Matthes R, Lührman A, Holtfreter S, et al. Antibacterial activity of cold atmospheric pressure argon plasma against 78 genetically different (mecA, luk-P, agr or capsular polysaccharide type) Staphylococcus aureus strains. Skin Pharmacol Physiol. 2016;29(2):83-91. doi: 10.1159/000443210
- Jansen A, Szekat C, Schröder W, et al. Production of capsular polysaccharide does not influence Staphylococcus aureus vancomycin susceptibility. BMC Microbiol. 2013;13:65. doi: 10.1186/1471-2180-13-65
- Berni F, Enotarpi J, Voskuilen T, et al. Synthetic carbohydrate-based cell wall components from Staphylococcus aureus. Drug Discov Today Technol. 2020;38:35-43. doi: 10.1016/j.ddtec.2021.01.003
- Berti F, De Ricco R, Rappuoli R. Role of O-acetylation in the immunogenicity of bacterial polysaccharide vaccines. Molecules. 2018;23(6):1340. doi: 10.3390/molecules23061340
- Scully IL, Pavliak V, Timofeyeva Y, Liu Y, Singer C, Anderson AS. O-Acetylation is essential for functional antibody generation against Staphylococcus aureus capsular polysaccharide. Hum Vaccin Immunother. 2018;14(1):81-84. doi: 10.1080/21645515.2017.1386360
- Fattom AI, Horwith G, Fuller S, Propst M, Naso R. Development of StaphVAX, a polysaccharide conjugate vaccine against S. aureus infection: From the lab bench to phase III clinical trials. Vaccine. 2004;22(7):880-887. doi: 10.1016/j.vaccine.2003.11.034
- Begier E, Seiden DJ, Patton M, et al. SA4Ag, a 4-antigen Staphylococcus aureus vaccine, rapidly induces high levels of bacteria-killing antibodies. Vaccine. 2017;35(8):1132-1139. doi: 10.1016/j.vaccine.2017.01.024
- Østerlid KE, Sorieul C, Unione L, et al. Long, synthetic Staphylococcus aureus type 8 capsular oligosaccharides reveal structural epitopes for effective immune recognition. J Am Chem Soc. 2025;147(3):2829-2840. doi: 10.1021/jacs.4c16118
- Sorieul C, Mikladal B, Wu DY, et al. Multimeric, multivalent fusion carrier proteins for site-selective glycoconjugate vaccines simultaneously targeting Staphylococcus aureus and Pseudomonas aeruginosa. Chem Sci. 2025;16(13):5688-5700. doi: 10.1039/d4sc08622h
- Sau S, Bhasin N, Wann ER, Lee JC, Foster TJ, Lee CY. The Staphylococcus aureus allelic genetic loci for serotype 5 and 8 capsule expression contain the type-specific genes flanked by common genes. Microbiology (Reading). 1997;143(7):2395-2405. doi: 10.1099/00221287-143-7-2395
- Kneidinger B, O’Riordan K, Li J, Brisson JR, Lee JC, Lam JS. Three highly conserved proteins catalyze the conversion of UDP-N-acetyl-D-glucosamine to precursors for the biosynthesis of O antigen in Pseudomonas aeruginosa O11 and capsule in Staphylococcus aureus type 5. Implications for the UDP-N-acetyl-L-fucosamine biosynthetic pathway. J Biol Chem. 2003;278(6):3615-3627. doi: 10.1074/jbc.M203867200
- Bhasin N, Albus A, Michon F, Livolsi PJ, Park JS, Lee JC. Identification of a gene essential for O-acetylation of the Staphylococcus aureus type 5 capsular polysaccharide. Mol Microbiol. 1998;27(1):9-21. doi: 10.1046/j.1365-2958.1998.00646.x
- Herbert S, Newell SW, Lee C, et al. Regulation of Staphylococcus aureus type 5 and type 8 capsular polysaccharides by CO2. J Bacteriol. 2001;183(15):4609-4613. doi: 10.1128/JB.183.15.4609–4613.2001
- Ouyang S, Sau S, Lee CY. Promoter analysis of the cap8 operon, involved in type 8 capsular polysaccharide production in Staphylococcus aureus. J Bacteriol. 1999;181(8):2492-2500. doi: 10.1128/JB.181.8.2492-2500.1999
- Jutras BL, Chenail AM, Rowland CL, et al. Eubacterial SpoVG homologs constitute a new family of site-specific DNA-binding proteins. PLos One. 2013;8(6):e66683. doi: 10.1371/journal.pone.0066683
- Lei MG, Lee CY. RbsR activates capsule but represses the rbsUDK operon in Staphylococcus aureus. J Bacteriol. 2015;197(23):3666-3675. doi: 10.1128/JB.00640-15
- Lei MG, Lee CY. MgrA activates staphylococcal capsule via SigA-dependent promoter. J Bacteriol. 2020;203(2):e00495-20. doi: 10.1128/JB.00495-20
- Batte JL, Samanta D, Elasri MO. MsaB activates capsule production at the transcription level in Staphylococcus aureus. Microbiology (Reading). 2016;162(3):575-589. doi: 10.1099/mic.0.000243
- Dassy B, Hogan T, Foster TJ, Fournier JM. Involvement of the accessory gene regulator (agr) in expression of type 5 capsular polysaccharide by Staphylococcus aureus. J Gen Microbiol. 1993;139(6):1301-1306. doi: 10.1099/00221287-139-6-1301
- George SE, Nguyen T, Geiger T, et al. Phenotypic heterogeneity and temporal expression of the capsular polysaccharide in Staphylococcus aureus. Mol Microbiol. 2015;98(6):1073-1088. doi: 10.1111/mmi.13174
- Van Wamel W, Xiong YQ, Bayer AS, Yeaman MR, Nast CC, Cheung AL. Regulation of Staphylococcus aureus type 5 capsular polysaccharides by agr and sarA in vitro and in an experimental endocarditis model. Microb Pathog. 2002;33(2):73-79. doi: 10.1006/mpat.2002.0513
- Luong T, Sau S, Gomez M, Lee JC, Lee YC. Regulation of Staphylococcus aureus capsular polysaccharide expression by agr and sarA. Infect Immun. 2002;70(2):444-450. doi: 10.1128/IAI.70.2.444-450.2002
- Luong TT, Lee CY. The arl locus positively regulates Staphylococcus aureus type 5 capsule via an mgrA-dependent pathway. Microbiology (Reading). 2006;152(10):3123-3131. doi: 10.1099/mic.0.29177-0
- Seidl K, Muller S, Francois P, et al. Effect of a glucose impulse on the CcpA regulon in Staphylococcus aureus. BMC Microbiol. 2009;18(9):95. doi: 10.1186/1471-2180-9-95
- Zhu Y, Nandakumar R, Sadykov MR, et al. RpiR homologues may link Staphylococcus aureus RNAIII synthesis and pentose phosphate pathway regulation. J Bacteriol. 2011;193(22):6187-6196. doi: 10.1128/JB.05930-11
- Gaupp R, Wirf J, Wonnenberg B, et al. RpiRc is a pleiotropic effector of virulence determinant synthesis and attenuates pathogenicity in Staphylococcus aureus. Infect Immun. 2016;84(7):2031-2041. doi: 10.1128/IAI.00285-16
- Graham JW, Lei MG, Lee CY. Trapping and identification of cellular substrates of the Staphylococcus aureus ClpC chaperone. J Bacteriol. 2013;195(19):4506-4516. doi: 10.1128/JB.00758-13
- Romilly C, Lays C, Tomasini A, et al. A non-coding RNA promotes bacterial persistence and decreases virulence by regulating a regulator in Staphylococcus aureus. PLoS Pathog. 2014;10(3):e1003979. doi: 10.1371/journal.ppat.1003979
- Chen Z, Luong TT, Lee CY. The sbcDC locus mediates repression of type 5 capsule production as part of the SOS response in Staphylococcus aureus. J Bacteriol. 2007;189(20):7343-7350. doi: 10.1128/JB.01079-07
- Poupel O, Proux C, Jagla B, Msadek T, Dubrac S. SpdC, a novel virulence factor, controls histidine kinase activity in Staphylococcus aureus. PLoS Pathog. 2018;14(3):e1006917. doi: 10.1371/journal.ppat.1006917
- Bischoff M, Brelle S, Minatelli S, Molle V. Stk1-mediated phosphorylation stimulates the DNA-binding properties of the Staphylococcus aureus SpoVG transcriptional factor. Biochem Biophys Res Commun. 2016;473(4):1223-1228. doi: 10.1016/j.bbrc.2016.04.044
- Zhao L, Xue T, Shang F, Sun H, Sun B. Staphylococcus aureus AI-2 quorum sensing associates with the KdpDE two-component system to regulate capsular polysaccharide synthesis and virulence. Infect Immun. 2010;78(8):3506-3515. doi: 10.1128/IAI.00131-10
- Batte JL, Sahukhal GS, Elasri MO. MsaB and CodY interact to regulate Staphylococcus aureus capsule in a nutrient-dependent manner. J Bacteriol. 2018;200(17):e00294-18. doi: 10.1128/JB.00294-18
- Hardt P, Engels I, Rausch M, et al. The cell wall precursor lipid II acts as a molecular signal for the Ser/Thr kinase PknB of Staphylococcus aureus. Int J Med Microbiol. 2017;307(1):1-10. doi: 10.1016/j.ijmm.2016.12.001
- Li X, Busch LM, Piersma S, et al. Functional and proteomic dissection of the contributions of CodY, SigB and the hibernation promoting factor HPF to interactions of Staphylococcus aureus USA300 with human lung epithelial cells. J Proteome Res. 2024;23(10):4742-4760. doi: 10.1021/acs.jproteome.4c00724
- Bischoff M, Entenza JM, Giachino P. Influence of a functional sigB operon on the global regulators SAR and AGR in Staphylococcus aureus. J Bacteriol. 2001;183(17):5171-5179. doi: 10.1128/JB.183.17.5171-5179.2001
- Bischoff M, Dunman P, Kormanec J, et al. Microarray-based analysis of the Staphylococcus aureus σB regulon. J Bacteriol. 2004;186(13):4085-4099. doi: 10.1128/JB.186.13.4085-4099.2004
- Pane-Farre J, Jonas B, Forstner K, Engelmann S, Hecker M. The σB regulon in Staphylococcus aureus and its regulation. Int J Med Microbiol. 2006;296(4-5):237-258. doi: 10.1016/j.ijmm.2005.11.011
- Mader U, Nicolas P, Depke M, et al. Staphylococcus aureus transcriptome architecture: From laboratory to infection-mimicking conditions. PLoS Genet. 2016;12(4):e1005962. doi: 10.1371/journal.pgen.1005962
- Li J, Zhu K, Li C, et al. Alkaline shock protein 23 (Asp23)- controlled cell wall imbalance promotes membrane vesicle biogenesis in Staphylococcus aureus. J Extracell Vesicles. 2024;13(9):e12501. doi: 10.1002/jev2.12501
- Cheung AL, Bayer AS, Zhang G, et al. Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol Med Microbiol. 2004;40(1):1-9. doi: 10.1016/S0928-8244(03)00309-2
- Yang Z, Zhang N, Liu Q, et al. The effect of culture condition on Type 5 capsular polysaccharide production of Staphylococcus aureus from diary cattle. Agri Sci Tech. 2008;9(1):85-88. doi: 10.16175/j.crki.1009-4009.2008.01.030
- Poutrel B, Gilbert FB, Lebrun M. Effects of culture conditions on production of type 5 capsular polysaccharide by human and bovine Staphylococcus aureus strains. Clin Diagn Lab Immunol. 1995;2(2):166-171. doi: 10.1128/cdli.2.2.166-171.1995
- Herbert S, Worlitzsch D, Dassy B, et al. Regulation of Staphylococcus aureus capsular polysaccharide type 5: In vitro and in vivo inhibition by CO2. Pneumologie. 1997;51(11):1043-1050.
- Pohlmann-Dietze P, Ulrich M, Kiser KB, et al. Adherence of Staphylococcus aureus to endothelial cells: Influence of capsular polysaccharide, global regulator agr, and bacterial growth phase. Infect Immun. 2000;68(9):4865-4871. doi: 10.1128/IAI.68.9.4865-4871.2000
- Dassy B, Stringfellow WT, Lieb M, Fournier JM. Production of type 5 capsular polysaccharide by Staphylococcus aureus grown in a semi-synthetic medium. J Gen Microbiol. 1991;137(5):1155-1162. doi: 10.1099/00221287-137-5-1155
- Stringfellow WT, Dassy B, Lieb M, Fournier JM. Staphylococcus aureus growth and type 5 capsular polysaccharide production in synthetic media. Appl Environ Microbiol. 1991;57(2):618-621. doi: 10.1128/aem.57.2.618-621.1991
- Fournier JM, Vann WF, Karakawa WW. Purification and characterization of Staphylococcus aureus type 8 capsular polysaccharide. Infect Immun. 1984;45(1):87-93. doi: 10.1128/iai.45.1.87-93.1984
- O’Brien CN, Guidry AJ, Fattom A, Shepherd S, Douglass LW, Westhoff DC. Production of antibodies to Staphylococcus aureus serotypes 5, 8, and 336 using poly (DL-lactide-co-glycolide) microspheres. J Dairy Sci. 2000;83(8):1758-1766. doi: 10.3168/jds.S0022-0302(00)75046-6
- Havaei SA, Hancock IC. The capsular turnover product of Staphylococcus aureus strain Smith. Fems Microbiol Lett. 1994;118(1-2):37-43. doi: 10.1111/j.1574-6968.1994.tb06800.x
- Suligoy CM, Díaz RE, Gehrke AK, et al. Acapsular Staphylococcus aureus with a non-functional agr regains capsule expression after passage through the bloodstream in a bacteremia mouse model. Sci Rep. 2020;10(1):14108. doi: 10.1038/s41598-020-70671-1
- Ashkenazi I, Longwell M, Byers B, et al. Nanoparticle ultrasonication: A promising approach for reducing bacterial biofilm in total joint infection-an in vivo rat model investigation. Arthroplasty. 2024;6(1):57. doi: 10.1186/s42836-024-00279-7
- Bei J, Wu J, Liu J. Re-N-acetylation of group B Streptococcus type ia capsular polysaccharide improves the immunogenicity of glycoconjugate vaccines. Carbohydr Polym. 2024;330:121848. doi: 10.1016/j.carbpol.2024.121848
- Gaikwad WK, Jana SK, Dhere RM, Ravenscroft N, Kodam KM. Purification of capsular polysaccharides isolated from S. pneumoniae serotype 2 by hydrogen peroxide and endonuclease. Carbohydr Polym. 2022;294:119783. doi: 10.1016/j.carbpol.2022.119783
- Reddy GP, Hayat U, Bush CA, Morris JG Jr. Capsular polysaccharide structure of a clinical isolate of Vibrio vulnificus strain BO62316 determined by heteronuclear NMR spectroscopy and high-performance anion-exchange chromatography. Anal Biochem. 1993;214(1):106-115. doi: 10.1006/abio.1993.1463
- Wu J, Yang X, Wang Z. Isolation, purification and reactingogenicity of Staphylococcus aureus type 8 capsular polysaccharide. Chin Vet Sci. 2010;40(12):1214-1217. doi: 10.16656/j.issn.1673-4696.2010.12.002
- Wang L, Wang L, Shi Q, et al. Purification and molecular weight distribution of a key exopolysaccharide component of Bacillus megaterium TF10. J Environ Sci (China). 2018;63:9-15. doi: 10.1016/j.jes.2016.12.006
- Goncalves VM, Takagi M, Lima RB, Massaldi H, Giordano RC, Tanizaki MM. Purification of capsular polysaccharide from Streptococcus pneumoniae serotype 23F by a procedure suitable for scale-up. Biotechnol Appl Biochem. 2003;37(3):283-287. doi: 10.1042/BA20020075
- Li S, Zhao S, Pei J, et al. Stimuli-responsive lysozyme nanocapsule engineered microfiltration membranes with a dual-function of anti-adhesion and antibacteria for biofouling mitigation. ACS Appl Mater Interfaces. 2021;13(27):32205-32216. doi: 10.1021/acsami.1c07445
- He Y, Hou W, Thompson M, Holovics H, Hobson T, Jones MT. Size exclusion chromatography of polysaccharides with reverse phase liquid chromatography. J Chromatogr A. 2014;1323:97-103. doi: 10.1016/j.chroma.2013.11.010
- Ahmadi K, Aslani MM, Pouladfar G, et al. Preparation and preclinical evaluation of two novel Staphylococcus aureus capsular polysaccharide 5 and 8‐fusion protein (Hla‐MntC‐SACOL0723) immunoconjugates. Iubmb Life. 2020;72(2):226-236. doi: 10.1002/iub.2159
- Pato TP, Barbosa AP, Da SJJ. Purification of capsular polysaccharide from Neisseria meningitidis serogroup C by liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;832(2):262-267. doi: 10.1016/j.jchromb.2006.01.008
- Ahmadi K, Hasaniazad M, Kalani M, et al. Comparative study of the immune responses to the HMS-based fusion protein and capsule-based conjugated molecules as vaccine candidates in a mouse model of Staphylococcus aureus systemic infection. Microb Pathog. 2021;150:104656. doi: 10.1016/j.micpath.2020.104656
- Tollersrud T, Kenny K, Reitz AJ Jr., Lee, JC. Genetic and serologic evaluation of capsule production by bovine mammary isolates of Staphylococcus aureus and other Staphylococcus spp. from Europe and the United States. J Clin Microbiol. 2000;38(8):2998-3003. doi: 10.1128/JCM.38.8.2998-3003.2000
- Mechref Y, Hu Y, Desantos-Garcia JL, Hussein A, Tang H. Quantitative glycomics strategies. Mol Cell Proteomics. 2013;12(4):874-884. doi: 10.1074/mcp.R112.026310
- Che D, Huang Z, He F. Comparison between sulfuric acid-phenol and sulfuric acid-anthrone methods used for determination of polysaccharides in shoots of Aralia elata (Miq.) seem. Agri Biotech. 2018;3(7):170-173.
- Cuesta G, Suarez N, Bessio MI, et al. Quantitative determination of pneumococcal capsular polysaccharide serotype 14 using a modification of phenol-sulfuric acid method. J Microbiol Methods. 2003;52(1):69-73. doi: 10.1016/s0167-7012(02)00151-3
- Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S, Lee YC. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal Biochem. 2005;339(1):69-72. doi: 10.1016/j.ab.2004.12.001
- An H, Qian C, Huang Y, et al. Functional vulnerability of liver macrophages to capsules defines virulence of blood-borne bacteria. J Exp Med. 2022;219(4):e20212032. doi: 10.1084/jem.20212032
- Shainheit MG, Valentino MD, Gilmore MS, Camilli A. Mutations in pneumococcal cpsE generated via in vitro serial passaging reveal a potential mechanism of reduced encapsulation utilized by a conjunctival isolate. J Bacteriol. 2015;197(10):1781-1791. doi: 10.1128/JB.02602-14
- Tuchscherr LP, Buzzola FR, Alvarez LP, Caccuri RL, Lee JC, Sordelli DO. Capsule-negative Staphylococcus aureus induces chronic experimental mastitis in mice. Infect Immun. 2005;73(12):7932-7937. doi: 10.1128/IAI.73.12.7932-7937.2005
- Grunert T, Stessl B, Wolf F, Sordelli DO, Buzzola FR, Ehling- Schulz M. Distinct phenotypic traits of Staphylococcus aureus are associated with persistent, contagious bovine intramammary infections. Sci Rep. 2018;8(1):15968. doi: 10.1038/s41598-018-34371-1
- Fischer J, Lee JC, Peters G, Kahl BC. Acapsular clinical Staphylococcus aureus isolates lack agr function. Clin Microbiol Infect. 2014;20(7):O414-O417. doi: 10.1111/1469-0691.12429
- Lei MG, Gudeta DD, Luong TT, Lee CY. MgrA negatively impacts Staphylococcus aureus invasion by regulating capsule and FnbA. Infect Immun. 2019;87(12):e00590-19. doi: 10.1128/IAI.00590-19
- Lei MG, Lee CY. Repression of capsule production by XdrA and CodY in Staphylococcus aureus. J Bacteriol. 2018;200(18):e00203-18. doi: 10.1128/JB.00203-18
- Rai D, Kulkarni SS. Total synthesis of trisaccharide repeating unit of Staphylococcus aureus type 8 (CP8) capsular polysaccharide. Org Lett. 2023;25(9):1509-1513. doi: 10.1021/acs.orglett.3c00290
- Lei MG, Lee CY. Regulation of staphylococcal capsule by SarZ is SigA-dependent. J Bacteriol. 2022;204(8):e0015222. doi: 10.1128/jb.00152-22.
- Gao S, Jin W, Quan Y, et al. Bacterial capsules: Occurrence, mechanism, and function. NPJ Biofilms Microbiomes. 2024;10(1):21. doi: 10.1038/s41522-024-00497-6