AccScience Publishing / MI / Online First / DOI: 10.36922/mi.8320
REVIEW ARTICLE

Correlation between varicella-zoster virus infection and cancer development: A comprehensive analysis

Fernando Cisneros IV1 Blake Martin1 Shizue Mito1*
Show Less
1 Department of Medical Education, School of Medicine, The University of Texas Rio Grande Valley, Edinburg, Texas, United States of America
Received: 31 December 2024 | Revised: 9 April 2025 | Accepted: 9 April 2025 | Published online: 2 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Varicella-zoster virus (VZV) is a highly prevalent pathogen primarily recognized for causing chickenpox during primary infection, and herpes zoster (HZ), also known as shingles, upon reactivation. While post-infectious complications of VZV, such as encephalitis, pneumonia, and post-herpetic neuralgia, are well-established, recent large population-based studies suggest that HZ may increase the risk of occult cancers. This has sparked discussions on the need for cancer screening in patients with HZ to improve early diagnosis and prognosis. However, the specific types of cancers most strongly associated with VZV reactivation have not been systematically identified, and the subsequent cancer risk remains inconclusive. Emerging evidence suggests that VZV may also modulate key oncogenic pathways, such as the inhibition of apoptosis, alteration of cell cycle regulatory enzymes, and interference with immunosurveillance, which could potentially promote cancer development. These findings indicate that VZV’s role in cancer biology extends beyond merely increasing cancer risk and may involve direct cellular manipulation that facilitates oncogenesis. Understanding the interplay between VZV and cancer is critical for public health. Further exploration of the mechanisms of viral oncogenesis could provide valuable insights into how VZV contributes to cancer development and open avenues for targeted preventive and therapeutic strategies.

Keywords
Varicella-zoster virus
Herpes zoster
Post-herpetic neuralgia
Cancer
Apoptosis
Cell cycle regulatory enzymes
Immunosurveillance
Oncogenesis
Funding
None.
Conflict of interest
Shizue Mito is the Youth Editorial Board Member of this journal but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Gershon AA, Gershon MD, Breuer J, Levin MJ, Oaklander AL, Griffiths PD. Advances in the understanding of the pathogenesis and epidemiology of herpes zoster. J Clin Virol. 2010;48 Suppl 1(Suppl 1):S2-S7. doi: 10.1016/S1386-6532(10)70002-0

 

  1. Arvin AM. Creating the “dew drop on a rose petal”: The molecular pathogenesis of varicella-zoster virus skin lesions. Microbiol Mol Biol Rev. 2023;87(3):e0011622. doi: 10.1128/mmbr.00116-22

 

  1. Kennedy PG, Mogensen TH. Determinants of neurological syndromes caused by varicella zoster virus (VZV). J Neurovirol. 2020;26(4):482-495. doi: 10.1007/s13365-020-00857-w

 

  1. Eshleman E, Shahzad A, Cohrs RJ. Varicella zoster virus latency. Future Virol. 2011;6(3):341-355. doi: 10.2217/fvl.10.90

 

  1. Kennedy PGE, Gershon AA. Clinical features of varicella-zoster virus infection. Viruses. 2018;10(11):609. doi: 10.3390/v10110609

 

  1. Jones D, Como CN, Jing L, et al. Varicella zoster virus productively infects human peripheral blood mononuclear cells to modulate expression of immunoinhibitory proteins and blocking PD-L1 enhances virus-specific CD8+ T cell effector function. PLoS Pathog. 2019;15(3):e1007650. doi: 10.1371/journal.ppat.1007650

 

  1. Wyburn-Mason R. Malignant change arising in tissues affected by herpes. Br Med J. 1955;2(4948):1106-1109. doi: 10.1136/bmj.2.4948.1106

 

  1. Sorel O, Messaoudi I. Insights into the pathogenesis of varicella viruses. Curr Clin Microbiol Rep. 2019;6(3):156-165. doi: 10.1007/s40588-019-00119-2

 

  1. Wrensch M, Weinberg A, Wiencke J, et al. History of chickenpox and shingles and prevalence of antibodies to varicella-zoster virus and three other herpesviruses among adults with glioma and controls. Am J Epidemiol. 2005;161(10):929-938. doi: 10.1093/aje/kwi119

 

  1. Multhoff G, Molls M, Radons J. Chronic inflammation in cancer development. Front Immunol. 2011;2:98. doi: 10.3389/fimmu.2011.00098

 

  1. Cotton SJ, Belcher J, Rose P, Jagadeesan SK, Neal RD. The risk of a subsequent cancer diagnosis after herpes zoster infection: Primary care database study. Br J Cancer. 2013;108(3):721-726. doi: 10.1038/bjc.2013.13

 

  1. Fueyo MA, Lookingbill DP. Herpes zoster and occult malignancy. J Am Acad Dermatol. 1984;11(3):480-482. doi: 10.1016/s0190-9622(84)70195-2

 

  1. Utpat S, Utpat N, Nookala V, Podakula L, Utpat K. Case report: Hospital-acquired chickenpox in a healthcare setting. Epidemiol Infect. 2023;152:e3. doi: 10.1017/S0950268823001917

 

  1. Newman AM, Jhaveri R. Myths and misconceptions: Varicella-zoster virus exposure, infection risks, complications, and treatments. Clin Ther. 2019;41(9): 1816-1822. doi: 10.1016/j.clinthera.2019.06.009

 

  1. Zhang Z, Liu N, Zhang J, et al. Epidemiological characteristics of varicella under different immunisation strategies in Suzhou prefecture, Jiangsu province. Vaccines (Basel). 2022;10(10):1745. doi: 10.3390/vaccines10101745

 

  1. Rice PS. Ultra-violet radiation is responsible for the differences in global epidemiology of chickenpox and the evolution of varicella-zoster virus as man migrated out of Africa. Virol J. 2011;8:189. doi: 10.1186/1743-422X-8-189

 

  1. Institute of Medicine (U.S.). Committee to review adverse effects of vaccines. In: Stratton KR, editor. Adverse Effects of Vaccines: Evidence and Causality. United States: National Academies Press; 2012. p. 865.

 

  1. Marin M, Lopez AS, Melgar M, Dooling K, Curns AT, Leung J. Decline in severe varicella disease during the United States varicella vaccination program: Hospitalizations and deaths, 1990-2019. J Infect Dis. 2022;226(Suppl 4):S407-S415. doi: 10.1093/infdis/jiac242

 

  1. Zhou F, Leung J, Marin M, Dooling KL, Anderson TC, Ortega-Sanchez IR. Health and economic impact of the United States varicella vaccination program, 1996-2020. J Infect Dis. 2022;226(Suppl 4):S463-S469. doi: 10.1093/infdis/jiac271

 

  1. Depledge DP, Sadaoka T, Ouwendijk WJD. Molecular aspects of varicella-zoster virus latency. Viruses. 2018;10(7):349. doi: 10.3390/v10070349

 

  1. Doan HQ, Ung B, Ramirez-Fort MK, Khan F, Tyring SK. Zostavax: A subcutaneous vaccine for the prevention of herpes zoster. Expert Opin Biol Ther. 2013;13(10): 1467-1477. doi: 10.1517/14712598.2013.830101

 

  1. Serpell M, Gater A, Carroll S, Abetz-Webb L, Mannan A, Johnson R. Burden of post-herpetic neuralgia in a sample of UK residents aged 50 years or older: Findings from the Zoster Quality of Life (ZQOL) study. Health Qual Life Outcomes. 2014;12:92. doi: 10.1186/1477-7525-12-92

 

  1. Saguil A, Kane S, Mercado M, Lauters R. Herpes zoster and postherpetic neuralgia: Prevention and management. Am Fam Physician. 2017;96(10):656-663.

 

  1. Forbes HJ, Bhaskaran K, Grint D, et al. Incidence of acute complications of herpes zoster among immunocompetent adults in England: A matched cohort study using routine health data. Br J Dermatol. 2021;184(6):1077-1084. doi: 10.1111/bjd.19687

 

  1. Dhillon RS, Smith PD. Diskogenic reactivation of herpes zoster. World Neurosurg. 2018;109:138-139. doi: 10.1016/j.wneu.2017.09.132

 

  1. Patil A, Goldust M, Wollina U. Herpes zoster: A review of clinical manifestations and management. Viruses. 2022;14(2):192. doi: 10.3390/v14020192

 

  1. Purohit SK, Corbett AJ, Slobedman B, Abendroth A. Varicella Zoster Virus infects mucosal associated invariant T cells. Front Immunol. 2023;14:1121714. doi: 10.3389/fimmu.2023.1121714

 

  1. Sen N, Mukherjee G, Arvin AM. The use of single cell mass cytometry to define the molecular mechanisms of varicella-zoster virus lymphotropism. Front Microbiol. 2020;11:1224. doi: 10.3389/fmicb.2020.01224

 

  1. Arnold N, Messaoudi I. Simian varicella virus causes robust transcriptional changes in T cells that support viral replication. Virus Res. 2017;238:226-235. doi: 10.1016/j.virusres.2017.07.004

 

  1. Ouwendijk WJD, van Veen S, Mahalingam R, Verjans G. Simian varicella virus inhibits the interferon gamma signalling pathway. J Gen Virol. 2017;98(10):2582-2588. doi: 10.1099/jgv.0.000925

 

  1. Zerboni L, Sen N, Oliver SL, Arvin AM. Molecular mechanisms of varicella zoster virus pathogenesis. Nat Rev Microbiol. 014;12(3):197-210. doi: 10.1038/nrmicro3215

 

  1. Sorel O, Messaoudi I. Varicella virus-host interactions during latency and reactivation: Lessons from simian varicella virus. Front Microbiol. 2018;9:3170. doi: 10.3389/fmicb.2018.03170

 

  1. Lizzi J, Hill T, Jakubowski J. Varicella zoster virus encephalitis. Clin Pract Cases Emerg Med. 2019;3(4):380-382. doi: 10.5811/cpcem.2019.8.43010

 

  1. Cross C, English S, Krause M, Zalewski N. A 59-year-old immunocompetent man with rapid onset of truncal ataxia: A case of acute cerebellitis secondary to varicella zoster virus. (P4.9-035). Neurology. 2019;92(15 Suppl):P4.9-035. doi: 10.1212/WNL.92.15_supplement.P4.9-035

 

  1. Shoji H, Matsuo K, Matsushita T, et al. Herpes zoster peripheral nerve complications: Their pathophysiology in spinal ganglia and nerve roots. Intractable Rare Dis Res. 2023;12(4):246-250. doi: 10.5582/irdr.2023.01090

 

  1. Sebastian AP, Basu A, Mitta N, Benjamin D. Transverse myelitis caused by varicella-zoster. BMJ Case Rep. 2021;14(8):e243217. doi: 10.1136/bcr-2020-238078

 

  1. Mirouse A, Vignon P, Piron P, et al. Severe varicella-zoster virus pneumonia: A multicenter cohort study. Crit Care. 2017;21(1):137. doi: 10.1186/s13054-017-1731-0

 

  1. Cao LJ, Zheng YM, Li F, Hao HJ, Gao F. Varicella-zoster virus meningitis with hypoglycorrhachia: A case report. World J Clin Cases. 2023;11(29):7101-7106. doi: 10.12998/wjcc.v11.i29.7101

 

  1. Eleftheriou D, Moraitis E, Hong Y, et al. Microparticle-mediated VZV propagation and endothelial activation: Mechanism of VZV vasculopathy. Neurology. 2020;94(5):e474-e480. doi: 10.1212/WNL.0000000000008885

 

  1. Hertzog J, Zhou W, Fowler G, et al. Varicella-Zoster virus ORF9 is an antagonist of the DNA sensor cGAS. EMBO J. 2022;41(14):e109217. doi: 10.15252/embj.2021109217

 

  1. Zahid A, Ismail H, Li B, Jin T. Molecular and structural basis of DNA sensors in antiviral innate immunity. Front Immunol. 2020;11:613039. doi: 10.3389/fimmu.2020.613039

 

  1. Liu H, Zhang H, Wu X, et al. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature. 2018;563(7729):131-136. doi: 10.1038/s41586-018-0629-6

 

  1. Du JM, Qian MJ, Yuan T, et al. cGAS and cancer therapy: A double-edged sword. Acta Pharmacol Sin. 2022;43(9): 2202-2211. doi: 10.1038/s41401-021-00839-6

 

  1. Nguyen LN, Kanneganti TD. PANoptosis in viral infection: The missing puzzle piece in the cell death field. J Mol Biol. 2022;434(4):167249. doi: 10.1016/j.jmb.2021.167249

 

  1. Kennedy PG, Graner MW, Gunaydin D, Bowlin J, Pointon T, Yu X. Varicella-Zoster Virus infected human neurons are resistant to apoptosis. J Neurovirol. 2020;26(3):330-337. doi: 10.1007/s13365-020-00831-6

 

  1. Steain M, Slobedman B, Abendroth A. Modulation of apoptosis and cell death pathways by varicella-zoster virus. Curr Top Microbiol Immunol. 2023;438:59-73. doi: 10.1007/82_2021_249

 

  1. Markus A, Waldman Ben-Asher H, Kinchington PR, Goldstein RS. Cellular transcriptome analysis reveals differential expression of pro- and antiapoptosis genes by varicella-zoster virus-infected neurons and fibroblasts. J Virol. 2014;88(13):7674-7677. doi: 10.1128/JVI.00500-14

 

  1. Wong RS. Apoptosis in cancer: From pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30(1):87. doi: 10.1186/1756-9966-30-87

 

  1. Chen X, Duan N, Zhang C, Zhang W. Survivin and tumorigenesis: Molecular mechanisms and therapeutic strategies. J Cancer. 2016;7(3):314-323. doi: 10.7150/jca.13332

 

  1. Ge J, Wang Y, Li X, et al. Phosphorylation of caspases by a bacterial kinase inhibits host programmed cell death. Nat Commun. 2024;15(1):8464. doi: 10.1038/s41467-024-52817-1

 

  1. Albadari N, Li W. Survivin small molecules inhibitors: Recent advances and challenges. Molecules. 2023;28(3):1376. doi: 10.3390/molecules28031376

 

  1. Warrier NM, Agarwal P, Kumar P. Emerging importance of survivin in stem cells and cancer: The development of new cancer therapeutics. Stem Cell Rev Rep. 2020;16(5):828-852. doi: 10.1007/s12015-020-09995-4

 

  1. Aggarwal D, Shetty DC, Jain A, Gulati N, Juneja S. Pathogenetic model of survivin-dependent molecular signalling pathways in tumorigenesis of oral cancer and precursor lesions. J Oral Maxillofac Pathol. 2023;27(2): 287-294. doi: 10.4103/jomfp.jomfp_5_23

 

  1. Liu T, Brouha B, Grossman D. Rapid induction of mitochondrial events and caspase-independent apoptosis in Survivin-targeted melanoma cells. Oncogene. 2004;23(1): 39-48. doi: 10.1038/sj.onc.1206978

 

  1. Moffat JF, Greenblatt RJ. Effects of varicella-zoster virus on cell cycle regulatory pathways. Curr Top Microbiol Immunol. 2010;342:67-77. doi: 10.1007/82_2010_28

 

  1. Kovalishyn V, Severin O, Kachaeva M, et al. In silico design and experimental validation of novel oxazole derivatives against varicella zoster virus. Mol Biotechnol. 2024;66(4): 707-717. doi: 10.1007/s12033-023-00670-w

 

  1. Traves R, Opadchy T, Slobedman B, Abendroth A. Varicella zoster virus downregulates expression of the nonclassical antigen presentation molecule CD1d. J Infect Dis. 2024;230(2):e416-e426. doi: 10.1093/infdis/jiad512

 

  1. Radhakrishnan V, Golla U, Kudva AK. Role of immune cells and immunotherapy in multiple myeloma. Life (Basel). 2024;14(4):461. doi: 10.3390/life14040461

 

  1. Advani D, Kumar P. Uncovering cell cycle dysregulations and associated mechanisms in cancer and neurodegenerative disorders: A glimpse of hope for repurposed drugs. Mol Neurobiol. 2024;61(11):8600-8630. doi: 10.1007/s12035-024-04130-7

 

  1. Zerboni L, Sung P, Lee G, Arvin A. Age-associated differences in infection of human skin in the SCID mouse model of varicella-zoster virus pathogenesis. J Virol. 2018;92(11):e00002-18. doi: 10.1128/JVI.00002-18

 

  1. Oliver SL. The structures and functions of VZV glycoproteins. Curr Top Microbiol Immunol. 2023;438:25-58. doi: 10.1007/82_2021_243

 

  1. Kaufer BB, Smejkal B, Osterrieder N. The varicella-zoster virus ORFS/L (ORF0) gene is required for efficient viral replication and contains an element involved in DNA cleavage. J Virol. 2010;84(22):11661-11669. doi: 10.1128/JVI.00878-10

 

  1. Rossi L, Tiecco G, Venturini M, Castelli F, Quiros-Roldan E. Human orf with immune-mediated reactions: A systematic review. Microorganisms. 2023;11(5):1138. doi: 10.3390/microorganisms11051138

 

  1. Ouwendijk WJD, Depledge DP, Rajbhandari L, et al. Varicella-zoster virus VLT-ORF63 fusion transcript induces broad viral gene expression during reactivation from neuronal latency. Nat Commun. 2020;11(1):6324. doi: 10.1038/s41467-020-20031-4

 

  1. Eisfeld AJ, Turse SE, Jackson SA, Lerner EC, Kinchington PR. Phosphorylation of the varicella-zoster virus (VZV) major transcriptional regulatory protein IE62 by the VZV open reading frame 66 protein kinase. J Virol. 2006;80(4): 1710-1723. doi: 10.1128/JVI.80.4.1710-1723.2006

 

  1. Sen N, Sommer M, Che X, White K, Ruyechan WT, Arvin AM. Varicella-zoster virus immediate-early protein 62 blocks interferon regulatory factor 3 (IRF3) phosphorylation at key serine residues: a novel mechanism of IRF3 inhibition among herpesviruses. J Virol. 2010;84(18):9240-9253. doi: 10.1128/JVI.01147-10

 

  1. Borden EC. Interferons alpha and beta in cancer: Therapeutic opportunities from new insights. Nat Rev Drug Discov. 2019;18(3):219-234. doi: 10.1038/s41573-018-0011-2

 

  1. Gerada C, Campbell TM, Kennedy JJ, et al. Manipulation of the innate immune response by varicella zoster virus. Front Immunol. 2020;11:1. doi: 10.3389/fimmu.2020.00001

 

  1. Jacobsen C, Pluckebaum N, Ssebyatika G, et al. Viral modulation of type II interferon increases T cell adhesion and virus spread. Nat Commun. 2024;15(1):5318. doi: 10.1038/s41467-024-49657-4

 

  1. Molinier-Frenkel V, Prevost-Blondel A, Castellano F. The IL4I1 enzyme: A new player in the immunosuppressive tumor microenvironment. Cells. 2019;8(7):757. doi: 10.3390/cells8070757

 

  1. Cousin C, Aubatin A, Le Gouvello S, Apetoh L, Castellano F, Molinier-Frenkel V. The immunosuppressive enzyme IL4I1 promotes FoxP3(+) regulatory T lymphocyte differentiation. Eur J Immunol. 2015;45(6):1772-1782. doi: 10.1002/eji.201445000

 

  1. Romagnani S. IL4I1: Key immunoregulator at a crossroads of divergent T-cell functions. Eur J Immunol. 2016;46(10): 2302-2305. doi: 10.1002/eji.201646617

 

  1. Jiang J, Natarajan K, Margulies DH. MHC molecules, T cell receptors, natural killer cell receptors, and viral immunoevasins-key elements of adaptive and innate immunity. Adv Exp Med Biol. 2019;1172:21-62. doi: 10.1007/978-981-13-9367-9_2

 

  1. Wu Y, Zhang N, Hashimoto K, Xia C, Dijkstra JM. Structural comparison between MHC classes I and II; in evolution, a class-II-like molecule probably came first. Front Immunol. 2021;12:621153. doi: 10.3389/fimmu.2021.621153

 

  1. Ye Y, Li S, Yan X, et al. VZV IE4 downregulates cellular surface MHC-I via sequestering it to the Golgi complex. Cell Mol Life Sci. 2024;82(1):23. doi: 10.1007/s00018-024-05477-9

 

  1. Whitmer T, Malouli D, Uebelhoer LS, DeFilippis VR, Fruh K, Verweij MC. The ORF61 protein encoded by simian varicella virus and varicella-zoster virus inhibits NF-kappaB signaling by interfering with Ikappabalpha degradation. J Virol. 2015;89(17):8687-8700. doi: 10.1128/JVI.01149-15

 

  1. Abendroth A, Kinchington PR, Slobedman B. Varicella zoster virus immune evasion strategies. Curr Top Microbiol Immunol. 2010;342:155-171. doi: 10.1007/82_2010_41

 

  1. Abendroth A, Slobedman B. Modulation of MHC and MHC-like molecules by varicella zoster virus. Curr Top Microbiol Immunol. 2023;438:85-102. doi: 10.1007/82_2022_254

 

  1. Cornel AM, Mimpen IL, Nierkens S. MHC class I downregulation in cancer: Underlying mechanisms and potential targets for cancer immunotherapy. Cancers (Basel). 2020;12(7):1760. doi: 10.3390/cancers12071760

 

  1. Horiuchi Y. Th1 regulatory events by infectious pathogens, herpes zoster and herpes simplex viruses: Prospects for therapeutic options for atopic eczema. Postepy Dermatol Alergol. 2022;39(4):662-667. doi: 10.5114/ada.2022.118920

 

  1. Jankeel A, Coimbra-Ibraim I, Messaoudi I. Simian varicella virus: Molecular virology and mechanisms of pathogenesis. Curr Top Microbiol Immunol. 2023;438:163-188. doi: 10.1007/82_2021_241

 

  1. Grose C, Shaban A, Fullerton HJ. Common features between stroke following varicella in children and stroke following herpes zoster in adults: Varicella-zoster virus in trigeminal Ganglion. Curr Top Microbiol Immunol. 2023;438:247-272. doi: 10.1007/82_2021_236

 

  1. Lei B, Wang Z, Shu Q, et al. Observation of varicella zoster virus-induced acute retinal necrosis: Viral load detection and visual outcome. Eye (Lond). 2022;36(6):1209-1216. doi: 10.1038/s41433-021-01609-8

 

  1. Grahn A, Bergstrom T, Runesson J, Studahl M. Varicella-zoster virus (VZV) DNA in serum of patients with VZV central nervous system infections. J Infect. 2016;73(3): 254-260. doi: 10.1016/j.jinf.2016.04.035

 

  1. Richter ER, Dias JK, Gilbert JE 2nd, Atherton SS. Distribution of herpes simplex virus type 1 and varicella zoster virus in ganglia of the human head and neck. J Infect Dis. 2009;200(12):1901-1906. doi: 10.1086/648474

 

  1. Smith RL, Pizer LI, Johnson EM Jr., Wilcox CL. Activation of second-messenger pathways reactivates latent herpes simplex virus in neuronal cultures. Virology. 1992;188(1):311-318. doi: 10.1016/0042-6822(92)90760-m

 

  1. Thellman NM, Botting C, Madaj Z, Triezenberg SJ. An immortalized human dorsal root ganglion cell line provides a novel context to study herpes simplex virus 1 latency and reactivation. J Virol. 2017;91(12):e00080-17. doi: 10.1128/JVI.00080-17

 

  1. Cohrs RJ, Badani H, Baird NL, White TM, Sanford B, Gilden D. Induction of varicella zoster virus DNA replication in dissociated human trigeminal ganglia. J Neurovirol. 2017;23(1):152-157. doi: 10.1007/s13365-016-0480-1

 

  1. Sadaoka T, Depledge DP, Rajbhandari L, Venkatesan A, Breuer J, Cohen JI. In vitro system using human neurons demonstrates that varicella-zoster vaccine virus is impaired for reactivation, but not latency. Proc Natl Acad Sci U S A. 2016;113(17):E2403-E2412. doi: 10.1073/pnas.1522575113

 

  1. Saitoh H, Momma Y, Inoue H, Yajima D, Iwase H. Viable herpes simplex virus type 1 and varicella-zoster virus in the trigeminal ganglia of human cadavers. J Med Virol. 2013;85(5):833-838. doi: 10.1002/jmv.23527

 

  1. Rahaus M, Desloges N, Wolff MH. Varicella-zoster virus requires a functional PI3K/Akt/GSK-3alpha/beta signaling cascade for efficient replication. Cell Signal. 2007;19(2): 312-320. doi: 10.1016/j.cellsig.2006.07.003

 

  1. Liu X, Cohen JI. Varicella-zoster virus ORF12 protein activates the phosphatidylinositol 3-kinase/Akt pathway to regulate cell cycle progression. J Virol. 2013;87(3): 1842-1848. doi: 10.1128/JVI.02395-12

 

  1. Markus A, Lebenthal-Loinger I, Yang IH, Kinchington PR, Goldstein RS. An in vitro model of latency and reactivation of varicella zoster virus in human stem cell-derived neurons. PLoS Pathog. 2015;11(6):e1004885. doi: 10.1371/journal.ppat.1004885

 

  1. Karin M, Gallagher E. From JNK to pay dirt: Jun kinases, their biochemistry, physiology and clinical importance. IUBMB Life. 2005;57(4-5):283-295. doi: 10.1080/15216540500097111

 

  1. Zapata HJ, Nakatsugawa M, Moffat JF. Varicella-zoster virus infection of human fibroblast cells activates the c-Jun N-terminal kinase pathway. J Virol. 2007;81(2):977-990. doi: 10.1128/JVI.01470-06

 

  1. Kurapati S, Sadaoka T, Rajbhandari L, et al. Role of the JNK pathway in varicella-zoster virus lytic infection and reactivation. J Virol. 2017;91(17):e00640-17. doi: 10.1128/JVI.00640-17

 

  1. Kuper H, Adami HO, Trichopoulos D. Infections as a major preventable cause of human cancer. J Intern Med. 2000;248(3):171-183. doi: 10.1046/j.1365-2796.2000.00742.x

 

  1. Sen N, Che X, Rajamani J, et al. Signal transducer and activator of transcription 3 (STAT3) and survivin induction by varicella-zoster virus promote replication and skin pathogenesis. Proc Natl Acad Sci U S A. 2012;109(2): 600-605. doi: 10.1073/pnas.1114232109

 

  1. Ho JD, Xirasagar S, Lin HC. Increased risk of a cancer diagnosis after herpes zoster ophthalmicus: A nationwide population-based study. Ophthalmology. 2011;118(6): 1076-1081. doi: 10.1016/j.ophtha.2010.10.008

 

  1. Han Y, Liu D, Li L. PD-1/PD-L1 pathway: Current researches in cancer. Am J Cancer Res. 2020;10(3):727-742.

 

  1. Zhou H, Ye Z, Gao Z, et al. Construction of a pathological model of skin lesions in acute herpes zoster virus infection and its molecular mechanism. Mamm Genome. 2024;35(2):296-307. doi: 10.1007/s00335-024-10039-2

 

  1. Sorensen HT, Olsen JH, Jepsen P, Johnsen SP, Schonheyder HC, Mellemkjaer L. The risk and prognosis of cancer after hospitalisation for herpes zoster: A population-based follow-up study. Br J Cancer. 2004;91(7):1275-1279. doi: 10.1038/sj.bjc.6602120

 

  1. Mahale P, Yanik EL, Engels EA. Herpes zoster and risk of cancer in the elderly U.S. population. Cancer Epidemiol Biomarkers Prev. 2016;25(1):28-35. doi: 10.1158/1055-9965.EPI-15-1033

 

  1. Schmidt SA, Mor A, Schonheyder HC, Sorensen HT, Dekkers OM, Cronin-Fenton D. Herpes zoster as a marker of occult cancer: A systematic review and meta-analysis. J Infect. 2017;74(3):215-235. doi: 10.1016/j.jinf.2016.11.005

 

  1. Chiu HF, Chen BK, Yang CY. Herpes zoster and subsequent risk of cancer: A population-based study. J Epidemiol. 2013;23(3):205-210. doi: 10.2188/jea.je20120155

 

  1. Chen CH, Xirasagar S, Hung SH, Lin HC, Chen CS. Associations of head and neck cancers with herpes zoster in the preceding five years. Sci Rep. 2024;14(1):21541. doi: 10.1038/s41598-024-72893-z

 

  1. Wang YP, Liu CJ, Hu YW, Chen TJ, Lin YT, Fung CP. Risk of cancer among patients with herpes zoster infection: A population-based study. CMAJ. 2012;184(15):E804-E809. doi: 10.1503/cmaj.120518

 

  1. Sim JH, Cho HS, Kim YD, et al. The association between herpes zoster and increased cancer risk: A nationwide population-based matched control study. Curr Oncol. 2021;28(4):2720-2730. doi: 10.3390/curroncol28040237

 

  1. Choi HG, Zehnder JL, Lee YK, Lim H, Kim M. Increased risk of lymphoid malignancy in patients with herpes zoster: A longitudinal follow-up study using a national cohort. BMC Cancer. 2019;19(1):1148. doi: 10.1186/s12885-019-6349-y

 

  1. Liu YC, Yang YH, Hsiao HH, et al. Herpes zoster is associated with an increased risk of subsequent lymphoid malignancies - a nationwide population-based matched-control study in Taiwan. BMC Cancer. 2012;12:503. doi: 10.1186/1471-2407-12-503

 

  1. Buntinx F, Bartholomeeusen S, Belmans A, et al. Association between recent herpes zoster but not herpes simplex infection and subsequent risk of malignancy in women: A retrospective cohort study. Epidemiol Infect. 2014;142(5):1008-1017. doi: 10.1017/S0950268813001702

 

  1. Gershon M, Gershon A. Varicella-Zoster virus and the enteric nervous system. J Infect Dis. 2018;218(Suppl 2):S113-S119. doi: 10.1093/infdis/jiy407

 

  1. Ragozzino MW, Melton LJ 3rd, Kurland LT, Chu CP, Perry HO. Risk of cancer after herpes zoster: A population-based study. N Engl J Med. 1982;307(7):393-397. doi: 10.1056/NEJM198208123070701

 

  1. Leyh C, Roderburg C, Luedde T, Loosen SH, Kostev K. Herpes zoster is not associated with subsequent gastrointestinal cancer: Data from over 200,000 outpatients in Germany. J Cancer Res Clin Oncol. 2023;149(19): 17115-17121. doi: 10.1007/s00432-023-05432-4

 

  1. Kim M, Han K, Yoo SA, Lee JH. Herpes zoster and subsequent cancer risk: A nationwide population-based cohort study in Korea. Dermatology. 2021;237(1):73-78. doi: 10.1159/000505911

 

  1. Lee AW, Sou A, Patel M, Guzman S, Liu L. Early onset of nasopharyngeal cancer in Asian/Pacific Islander Americans revealed by age-specific analysis. Ann Epidemiol. 2023;80: 25-29. doi: 10.1016/j.annepidem.2023.02.006

 

  1. Zaha M, Hayashi I, Odashiro M, et al. Herpes zoster and malignancy. Masui. 1993;42(9):1343-1346.

 

  1. Yamamoto M, Mine H, Akazawa K, Maehara Y, Sugimachi K. Gastrointestinal cancer and herpes zoster in adults. Hepatogastroenterology. 2003;50(52):1043-1046.

 

Share
Back to top
Microbes & Immunity, Electronic ISSN: 3029-2883 Print ISSN: 3041-0886, Published by AccScience Publishing