AccScience Publishing / JCBP / Volume 2 / Issue 3 / DOI: 10.36922/jcbp.2596
REVIEW

The neurobiological mechanism underlying ketamine’s rapid-acting antidepressant effect

Yingying Yin1,2* Yonggui Yuan1,2*
Show Less
1 Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Jiangsu Provincial Key Laboratory of Brain Science and Medicine, Southeast University, Nanjing, China
2 Institute of Psychosomatics, Medical School of Southeast University, Nanjing, Jiangsu Province, China
Submitted: 31 December 2023 | Accepted: 24 May 2024 | Published: 15 July 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Depression is one of the most common disabling mental disorders. However, first-line treatments for depression are typically slow-acting. Ketamine, a glutamatergic modulator with rapid antidepressant effects, has proven effective in treating both refractory depression and suicidal tendencies. The neurobiological mechanisms underlying the effects of antidepressants have become a research hotspot; yet, the exact processes remain unclear. Brain imaging studies have provided important evidence from macroscopic perspectives, such as brain structure and function, while biochemical studies have made significant discoveries from microscopic perspectives, including proteomics and genomics. Previous reviews have summarized a broad range of biomarkers related to the ketamine response, encompassing studies in imaging, electrophysiology, metabolism, immunology, genetics, and neurotrophy. In this review, we systematically summarize a number of potential biomarkers for predicting and modulating the efficacy of ketamine, from both macroperspectives (such as neuroimaging and neuroelectrophysiological markers) and microperspectives (such as neurobiochemical and genetic markers). Although research in this area is still in its infancy, these biomarkers can help clinicians identify whether ketamine intervention is needed for treatment-resistant depression, thereby reducing the burden on patients and society. However, the majority of biomarkers are still in the preclinical exploratory stage, and existing findings are limited. To realize the clinical application of these biomarkers, future studies should combine biomarkers of different types to investigate the relationships and interactions between them. This approach aims to optimize clinical outcomes by enhancing the involvement of biological targets in new models.

Keywords
Depression
Ketamine
Rapid-acting
Biomarker
Funding
This work was supported by the National Natural Science Foundation of China (grant number: 81971570 awarded to Yonggui Yuan; 81801349 awarded to Yingying Yin) for literature search, and the Natural Science Foundation of Jiangsu Province (grant number: BK20180373 awarded to Yingying Yin) for the analysis and interpretation of data for the paper’s publication.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Berman RM, Cappiello A, Anand A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47(4):351-354. doi: 10.1016/s0006-3223(99)00230-9

 

  1. Wan LB, Levitch CF, Perez AM, et al. Ketamine safety and tolerability in clinical trials for treatment-resistant depression. J Clin Psychiatry. 2015;76(3):247-252. doi: 10.4088/JCP.13m08852

 

  1. Murrough JW, Perez AM, Pillemer S, et al. Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol Psychiatry. 2013;74(4):250-256. doi: 10.1016/j.biopsych.2012.06.022

 

  1. Wilkinson ST, Ballard ED, Bloch MH, et al. The effect of a single dose of intravenous ketamine on suicidal ideation: A systematic review and individual participant data meta-analysis. Am J Psychiatry. 2018;175(2):150-158. doi: 10.1176/appi.ajp.2017.17040472

 

  1. Zhou YL, Wu FC, Wang CY, et al. Relationship between hippocampal volume and inflammatory markers following six infusions of ketamine in major depressive disorder. J Affect Disord. 2020;276:608-615. doi: 10.1016/j.jad.2020.06.068

 

  1. Abdallah CG, Jackowski A, Salas R, et al. The nucleus accumbens and ketamine treatment in major depressive disorder. Neuropsychopharmacology. 2017;42(8):1739-1746. doi: 10.1038/npp.2017.49

 

  1. Li WC, Chen LF, Su TP, et al. Right dorsolateral prefrontal cortex volumetric reduction is associated with antidepressant effect of low-dose ketamine infusion: A randomized, double-blind, midazolam-controlled PET-MRI clinical trial. J Affect Disord. 2023;335:105-110. doi: 10.1016/j.jad.2023.05.024

 

  1. Zhuo C, Ji F, Tian H, et al. Transient effects of multi-infusion ketamine augmentation on treatment-resistant depressive symptoms in patients with treatment-resistant bipolar depression - An open-label three-week pilot study. Brain Behav. 2020;10(8):e01674. doi: 10.1002/brb3.1674

 

  1. Sydnor VJ, Lyall AE, Cetin-Karayumak S, et al. Studying pre-treatment and ketamine-induced changes in white matter microstructure in the context of ketamine’s antidepressant effects. Transl Psychiatry. 2020;10(1):432. doi: 10.1038/s41398-020-01122-8

 

  1. Vasavada MM, Leaver AM, Espinoza RT, et al. Structural connectivity and response to ketamine therapy in major depression: A preliminary study. J Affect Disord. 2016;190:836-841. doi: 10.1016/j.jad.2015.11.018

 

  1. Carlson PJ, Diazgranados N, Nugent AC, et al. Neural correlates of rapid antidepressant response to ketamine in treatment-resistant unipolar depression: A preliminary positron emission tomography study. Biol Psychiatry. 2013;73(12):1213-1221. doi: 10.1016/j.biopsych.2013.02.008

 

  1. Nugent AC, Diazgranados N, Carlson PJ, et al. Neural correlates of rapid antidepressant response to ketamine in bipolar disorder. Bipolar Disord. 2014;16(2):119-128. doi: 10.1111/bdi.12118

 

  1. Li CT, Chen MH, Lin WC, et al. The effects of low-dose ketamine on the prefrontal cortex and amygdala in treatment-resistant depression: A randomized controlled study. Hum Brain Mapp. 2016;37(3):1080-1090. doi: 10.1002/hbm.23085

 

  1. Chen MH, Li CT, Lin WC, et al. Persistent antidepressant effect of low-dose ketamine and activation in the supplementary motor area and anterior cingulate cortex in treatment-resistant depression: A randomized control study. J Affect Disord. 2018;225:709-714. doi: 10.1016/j.jad.2017.09.008

 

  1. Sahib AK, Loureiro JRA, Vasavada MM, et al. Single and repeated ketamine treatment induces perfusion changes in sensory and limbic networks in major depressive disorder. Eur Neuropsychopharmacol. 2020;33:89-100. doi: 10.1016/j.euroneuro.2020.01.017

 

  1. Gartner M, de Rover M, Vaclavu L, Scheidegger M, van Osch MJP, Grimm S. Increase in thalamic cerebral blood flow is associated with antidepressant effects of ketamine in major depressive disorder. World J Biol Psychiatry. 2022;23(8):643-652. doi: 10.1080/15622975.2021.2020900

 

  1. Siegel JS, Palanca BJA, Ances BM, et al. Prolonged ketamine infusion modulates limbic connectivity and induces sustained remission of treatment-resistant depression. Psychopharmacology (Berl). 2021;238(4):1157-1169. doi: 10.1007/s00213-021-05762-6

 

  1. Evans JW, Szczepanik J, Brutsche N, Park LT, Nugent AC, Zarate CA Jr. Default mode connectivity in major depressive disorder measured Up to 10 Days after ketamine administration. Biol Psychiatry. 2018;84(8):582-590. doi: 10.1016/j.biopsych.2018.01.027

 

  1. Chen MH, Lin WC, Tu PC, et al. Antidepressant and antisuicidal effects of ketamine on the functional connectivity of prefrontal cortex-related circuits in treatment-resistant depression: A double-blind, placebo-controlled, randomized, longitudinal resting fMRI study. J Affect Disord. 2019;259:15-20. doi: 10.1016/j.jad.2019.08.022

 

  1. Vasavada MM, Loureiro J, Kubicki A, et al. Effects of serial ketamine infusions on corticolimbic functional connectivity in major depression. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6(7):735-744. doi: 10.1016/j.bpsc.2020.06.015

 

  1. Abdallah CG, Dutta A, Averill CL, et al. Ketamine, but Not the NMDAR antagonist lanicemine, increases prefrontal global connectivity in depressed patients. Chronic Stress (Thousand Oaks). 2018;2. doi: 10.1177/2470547018796102

 

  1. Abdallah CG, Averill CL, Salas R, et al. Prefrontal connectivity and glutamate transmission: Relevance to depression pathophysiology and ketamine treatment. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2(7):566-574. doi: 10.1016/j.bpsc.2017.04.006

 

  1. Gartner M, Aust S, Bajbouj M, et al. Functional connectivity between prefrontal cortex and subgenual cingulate predicts antidepressant effects of ketamine. Eur Neuropsychopharmacol. 2019;29(4):501-508. doi: 10.1016/j.euroneuro.2019.02.008

 

  1. Nakamura T, Tomita M, Horikawa N, et al. Functional connectivity between the amygdala and subgenual cingulate gyrus predicts the antidepressant effects of ketamine in patients with treatment-resistant depression. Neuropsychopharmacol Rep. 2021;41(2):168-178. doi: 10.1002/npr2.12165

 

  1. Burrows M, Kotoula V, Dipasquale O, Stringaris A, Mehta MA. Ketamine-induced changes in resting state connectivity, 2 h after the drug administration in patients with remitted depression. J Psychopharmacol. 2023;37(8):784-794. doi: 10.1177/02698811231189432

 

  1. Nugent AC, Robinson SE, Coppola R, Zarate CA Jr. Preliminary differences in resting state MEG functional connectivity pre- and post-ketamine in major depressive disorder. Psychiatry Res Neuroimaging. 2016;254:56-66. doi: 10.1016/j.pscychresns.2016.06.006

 

  1. Chen MH, Chang WC, Lin WC, et al. Functional dysconnectivity of frontal cortex to striatum predicts ketamine infusion response in treatment-resistant depression. Int J Neuropsychopharmacol. 2020;23(12):791-798. doi: 10.1093/ijnp/pyaa056

 

  1. Mkrtchian A, Evans JW, Kraus C, et al. Ketamine modulates fronto-striatal circuitry in depressed and healthy individuals. Mol Psychiatry. 2021;26(7):3292-3301. doi: 10.1038/s41380-020-00878-1

 

  1. Snaith RP, Hamilton M, Morley S, Humayan A, Hargreaves D, Trigwell P. A scale for the assessment of hedonic tone the Snaith-Hamilton Pleasure Scale. Br J Psychiatry. 1995;167(1):99-103. doi: 10.1192/bjp.167.1.99

 

  1. Rush AJ, Trivedi MH, Ibrahim HM, et al. The 16-item Quick Inventory of Depressive Symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): A psychometric evaluation in patients with chronic major depression. Biol Psychiatry. 2003;54(5):573-583. doi: 10.1016/s0006-3223(02)01866-8

 

  1. Rivas-Grajales AM, Salas R, Robinson ME, Qi K, Murrough JW, Mathew SJ. Habenula connectivity and intravenous ketamine in treatment-resistant depression. Int J Neuropsychopharmacol. 2021;24(5):383-391. doi: 10.1093/ijnp/pyaa089

 

  1. Reed JL, Nugent AC, Furey ML, Szczepanik JE, Evans JW, Zarate CA Jr. Ketamine normalizes brain activity during emotionally valenced attentional processing in depression. Neuroimage Clin. 2018;20:92-101. doi: 10.1016/j.nicl.2018.07.006

 

  1. Anijarv TE, Can AT, Gallay CC, et al. Spectral changes of EEG following a 6-Week low-dose oral ketamine treatment in adults with major depressive disorder and chronic suicidality. Int J Neuropsychopharmacol. 2023;26(4):259-267. doi: 10.1093/ijnp/pyad006

 

  1. McMillan R, Sumner R, Forsyth A, et al. Simultaneous EEG/ fMRI recorded during ketamine infusion in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2020;99:109838. doi: 10.1016/j.pnpbp.2019.109838

 

  1. Sumner RL, McMillan R, Spriggs MJ, et al. Ketamine enhances visual sensory evoked potential long-term potentiation in patients with major depressive disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5(1):45-55. doi: 10.1016/j.bpsc.2019.07.002

 

  1. Armitage R, Hoffmann R, Trivedi M, Rush AJ. Slow-wave activity in NREM sleep: Sex and age effects in depressed outpatients and healthy controls. Psychiatry Res. 2000;95(3):201-213. doi: 10.1016/s0165-1781(00)00178-5

 

  1. Duncan WC, Sarasso S, Ferrarelli F, et al. Concomitant BDNF and sleep slow wave changes indicate ketamine-induced plasticity in major depressive disorder. Int J Neuropsychopharmacol. 2013;16(2):301-311. doi: 10.1017/S1461145712000545

 

  1. Duncan WC Jr., Selter J, Brutsche N, Sarasso S, Zarate CA Jr. Baseline delta sleep ratio predicts acute ketamine mood response in major depressive disorder. J Affect Disord. 2013;145(1):115-119. doi: 10.1016/j.jad.2012.05.042

 

  1. Rantamaki T, Kohtala S. Encoding, consolidation, and renormalization in depression: Synaptic homeostasis, plasticity, and sleep integrate rapid antidepressant effects. Pharmacol Rev. 2020;72(2):439-465. doi: 10.1124/pr.119.018697

 

  1. De Diego-Adelino J, Portella MJ, Gomez-Anson B, et al. Hippocampal abnormalities of glutamate/glutamine, N-acetylaspartate and choline in patients with depression are related to past illness burden. J Psychiatry Neurosci. 2013;38(2):107-116. doi: 10.1503/jpn.110185

 

  1. Draganov M, Vives-Gilabert Y, de Diego-Adelino J, Vicent- Gil M, Puigdemont D, Portella MJ. Glutamatergic and GABA-ergic abnormalities in First-episode depression. A 1-year follow-up 1H-MR spectroscopic study. J Affect Disord. 2020;266:572-577. doi: 10.1016/j.jad.2020.01.138

 

  1. Benson KL, Bottary R, Schoerning L, et al. 1H MRS measurement of cortical GABA and glutamate in primary insomnia and major depressive disorder: Relationship to sleep quality and depression severity. J Affect Disord. 2020;274:624-631. doi: 10.1016/j.jad.2020.05.026

 

  1. Wang KL, Liang K, Wang LJ, et al. The association of glutamate level in pregenual anterior cingulate, anhedonia, and emotion-behavior decoupling in patients with major depressive disorder. Asian J Psychiatr. 2022;78:103306. doi: 10.1016/j.ajp.2022.103306

 

  1. Milak MS, Proper CJ, Mulhern ST, et al. A pilot in vivo proton magnetic resonance spectroscopy study of amino acid neurotransmitter response to ketamine treatment of major depressive disorder. Mol Psychiatry. 2016;21(3):320-327. doi: 10.1038/mp.2015.83

 

  1. Chowdhury GM, Behar KL, Cho W, Thomas MA, Rothman DL, Sanacora G. 1H-[13C]-nuclear magnetic resonance spectroscopy measures of ketamine’s effect on amino acid neurotransmitter metabolism. Biol Psychiatry. 2012;71(11):1022-1025. doi: 10.1016/j.biopsych.2011.11.006

 

  1. Milak MS, Rashid R, Dong Z, et al. Assessment of relationship of ketamine dose with magnetic resonance spectroscopy of Glx and GABA responses in adults with major depression: A randomized clinical Trial. JAMA Netw Open. 2020;3(8):e2013211. doi: 10.1001/jamanetworkopen.2020.13211

 

  1. Evans JW, Lally N, An L, et al. 7T 1H-MRS in major depressive disorder: A Ketamine treatment study. Neuropsychopharmacology. 2018;43(9):1908-1914. doi: 10.1038/s41386-018-0057-1

 

  1. Pothula S, Kato T, Liu RJ, et al. Cell-type specific modulation of NMDA receptors triggers antidepressant actions. Mol Psychiatry. 2021;26(9):5097-5111. doi: 10.1038/s41380-020-0796-3

 

  1. Miller OH, Moran JT, Hall BJ. Two cellular hypotheses explaining the initiation of ketamine’s antidepressant actions: Direct inhibition and disinhibition. Neuropharmacology. 2016;100:17-26. doi: 10.1016/j.neuropharm.2015.07.028

 

  1. Moaddel R, Luckenbaugh DA, Xie Y, et al. D-serine plasma concentration is a potential biomarker of (R,S)-ketamine antidepressant response in subjects with treatment-resistant depression. Psychopharmacology (Berl). 2015;232(2):399-409. doi: 10.1007/s00213-014-3669-0

 

  1. Ortiz R, Niciu MJ, Lukkahati N, et al. Shank3 as a potential biomarker of antidepressant response to ketamine and its neural correlates in bipolar depression. J Affect Disord. 2015;172:307-311. doi: 10.1016/j.jad.2014.09.015

 

  1. Tizabi Y, Bhatti BH, Manaye KF, Das JR, Akinfiresoye L. Antidepressant-like effects of low ketamine dose is associated with increased hippocampal AMPA/NMDA receptor density ratio in female Wistar-Kyoto rats. Neuroscience. 2012;213:72-80. doi: 10.1016/j.neuroscience.2012.03.052

 

  1. Li N, Lee B, Liu RJ, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329(5994):959-964. doi: 10.1126/science.1190287

 

  1. Koike H, Iijima M, Chaki S. Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression. Behav Brain Res. 2011;224(1):107-111. doi: 10.1016/j.bbr.2011.05.035

 

  1. Esterlis I, DellaGioia N, Pietrzak RH, et al. Ketamine-induced reduction in mGluR5 availability is associated with an antidepressant response: An [11C]ABP688 and PET imaging study in depression. Mol Psychiatry. 2018;23(4):824-832. doi: 10.1038/mp.2017.58

 

  1. Elhussiny MEA, Carini G, Mingardi J, et al. Modulation by chronic stress and ketamine of ionotropic AMPA/ NMDA and metabotropic glutamate receptors in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry. 2021;104:110033. doi: 10.1016/j.pnpbp.2020.110033

 

  1. Du Jardin KG, Liebenberg N, Cajina M, et al. S-Ketamine mediates its acute and sustained antidepressant-like activity through a 5-HT1B receptor dependent mechanism in a genetic rat model of depression. Front Pharmacol. 2017;8:978. doi: 10.3389/fphar.2017.00978

 

  1. Ago Y, Tanabe W, Higuchi M, et al. (R)-Ketamine induces a greater increase in prefrontal 5-HT release than (S)-Ketamine and ketamine metabolites via an AMPA receptor-independent mechanism. Int J Neuropsychopharmacol. 2019;22(10):665-674. doi: 10.1093/ijnp/pyz041

 

  1. Tiger M, Veldman ER, Ekman CJ, Halldin C, Svenningsson P, Lundberg J. A randomized placebo-controlled PET study of ketamine´s effect on serotonin1B receptor binding in patients with SSRI-resistant depression. Transl Psychiatry. 2020;10(1):159. doi: 10.1038/s41398-020-0844-4

 

  1. Zhang K, Dong C, Fujita Y, Fujita A, Hashimoto K. 5-Hydroxytryptamine-independent antidepressant actions of (R)-Ketamine in a chronic social defeat stress model. Int J Neuropsychopharmacol. 2018;21(2):157-163. doi: 10.1093/ijnp/pyx100

 

  1. Hare BD, Shinohara R, Liu RJ, Pothula S, DiLeone RJ, Duman RS. Optogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and long-lasting antidepressant effects. Nat Commun. 2019;10(1):223. doi: 10.1038/s41467-018-08168-9

 

  1. Wu M, Minkowicz S, Dumrongprechachan V, Hamilton P, Kozorovitskiy Y. Ketamine rapidly enhances glutamate-evoked dendritic spinogenesis in medial prefrontal cortex through dopaminergic mechanisms. Biol Psychiatry. 2021;89(11):1096-1105. doi: 10.1016/j.biopsych.2020.12.022

 

  1. Iro CM, Hamati R, El Mansari M, Blier P. Corrigendum to: Repeated but not single administration of ketamine prolongs increases of the firing activity of norepinephrine and dopamine neurons. Int J Neuropsychopharmacol. 2021;24(8):677. doi: 10.1093/ijnp/pyab029

 

  1. Chang L, Zhang K, Pu Y, et al. Lack of dopamine D1 receptors in the antidepressant actions of (R)-ketamine in a chronic social defeat stress model. Eur Arch Psychiatry Clin Neurosci. 2020;270(2):271-275. doi: 10.1007/s00406-019-01012-1

 

  1. Kohler CA, Freitas TH, Maes M, et al. Peripheral cytokine and chemokine alterations in depression: A meta-analysis of 82 studies. Acta Psychiatr Scand. 2017;135(5):373-387. doi: 10.1111/acps.12698

 

  1. Kubera M, Obuchowicz E, Goehler L, Brzeszcz J, Maes M. In animal models, psychosocial stress-induced (neuro) inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(3):744-759. doi: 10.1016/j.pnpbp.2010.08.026

 

  1. Fujita Y, Hashimoto Y, Hashimoto H, Chang L, Hashimoto K. Dextran sulfate sodium-induced inflammation and colitis in mice are ameliorated by (R)-ketamine, but not (S)-ketamine: A role of TrkB signaling. Eur J Pharmacol. 2021;897:173954. doi: 10.1016/j.ejphar.2021.173954

 

  1. Zhang J, Ma L, Wan X, Shan J, Qu Y, Hashimoto K. (R)-Ketamine attenuates LPS-induced endotoxin-derived delirium through inhibition of neuroinflammation. Psychopharmacology (Berl). 2021;238(10):2743-2753. doi: 10.1007/s00213-021-05889-6

 

  1. Abelaira HM, Rosa T, de Moura AB, et al. Combination of electroconvulsive stimulation with ketamine or escitalopram protects the brain against inflammation and oxidative stress induced by maternal deprivation and is critical for associated behaviors in male and female rats. Mol Neurobiol. 2022;59(3):1452-1475. doi: 10.1007/s12035-021-02718-x

 

  1. Kruse JL, Vasavada MM, Olmstead R, et al. Depression treatment response to ketamine: Sex-specific role of interleukin-8, but not other inflammatory markers. Transl Psychiatry. 2021;11(1):167. doi: 10.1038/s41398-021-01268-z

 

  1. Kido K, Toda S, Shindo Y, Miyashita H, Sugino S, Masaki E. Effects of low-dose ketamine infusion on remifentanil-induced acute opioid tolerance and the inflammatory response in patients undergoing orthognathic surgery. J Pain Res. 2019;12:377-385. doi: 10.2147/JPR.S177098

 

  1. Park M, Newman LE, Gold PW, et al. Change in cytokine levels is not associated with rapid antidepressant response to ketamine in treatment-resistant depression. J Psychiatr Res. 2017;84:113-118. doi: 10.1016/j.jpsychires.2016.09.025

 

  1. Orozco-Solis R, Montellier E, Aguilar-Arnal L, et al. A circadian genomic signature common to ketamine and sleep deprivation in the anterior cingulate cortex. Biol Psychiatry. 2017;82(5):351-360. doi: 10.1016/j.biopsych.2017.02.1176

 

  1. Bellet MM, Vawter MP, Bunney BG, Bunney WE, Sassone- Corsi P. Ketamine influences CLOCK: BMAL1 function leading to altered circadian gene expression. PLoS One. 2011;6(8):e23982. doi: 10.1371/journal.pone.0023982

 

  1. Laje G, Lally N, Mathews D, et al. Brain-derived neurotrophic factor Val66Met polymorphism and antidepressant efficacy of ketamine in depressed patients. Biol Psychiatry. 2012;72(11):e27-e28. doi: 10.1016/j.biopsych.2012.05.031

 

  1. Niciu MJ, Iadarola ND, Banerjee D, et al. The antidepressant efficacy of subanesthetic-dose ketamine does not correlate with baseline subcortical volumes in a replication sample with major depressive disorder. J Psychopharmacol. 2017;31(12):1570-1577. doi: 10.1177/0269881117732514

 

  1. Ficek J, Zygmunt M, Piechota M, et al. Molecular profile of dissociative drug ketamine in relation to its rapid antidepressant action. BMC Genomics. 2016;17:362. doi: 10.1186/s12864-016-2713-3

 

  1. ACNP 58th Annual Meeting: Poster Session II. Neuropsychopharmacology. 2019;44(Suppl 1):230-384. doi: 10.1038/s41386-019-0546-x

 

  1. Zarate CA Jr., Brutsche N, Laje G, et al. Relationship of ketamine’s plasma metabolites with response, diagnosis, and side effects in major depression. Biol Psychiatry. 2012;72(4):331-338. doi: 10.1016/j.biopsych.2012.03.004

 

  1. Beanes G, Caliman-Fontes AT, Souza-Marques B, et al. Effects of GRIN2B, GRIA1, and BDNF polymorphisms on the therapeutic action of ketamine and esketamine in treatment-resistant depression patients: Secondary analysis from a randomized clinical trial. Clin Neuropharmacol. 2022;45(6):151-156. doi: 10.1097/WNF.0000000000000517

 

  1. Haile CN, Murrough JW, Iosifescu DV, et al. Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression. Int J Neuropsychopharmacol. 2014;17(2):331-336. doi: 10.1017/S1461145713001119

 

  1. Woelfer M, Li M, Colic L, et al. Ketamine-induced changes in plasma brain-derived neurotrophic factor (BDNF) levels are associated with the resting-state functional connectivity of the prefrontal cortex. World J Biol Psychiatry. 2020;21(9):696-710. doi: 10.1080/15622975.2019.1679391

 

  1. Zheng W, Gu L, Zhou Y, et al. Baseline plasma BDNF levelsare associated with antianhedonic effects of repeated-dose intravenous ketamine in major depressive disorder. Curr Neuropharmacol. 2023;21(4):1013-1021. doi: 10.2174/1570159X20666220927085706

 

  1. Kowalczyk M, Szemraj J, Blizniewska K, et al. An immune gate of depression - Early neuroimmune development in the formation of the underlying depressive disorder. Pharmacol Rep. 2019;71(6):1299-1307. doi: 10.1016/j.pharep.2019.05.022

 

  1. Moaddel R, Shardell M, Khadeer M, et al. Plasma metabolomic profiling of a ketamine and placebo crossover trial of major depressive disorder and healthy control subjects. Psychopharmacology (Berl). 2018;235(10):3017-3030. doi: 10.1007/s00213-018-4992-7

 

  1. Kadriu B, Farmer CA, Yuan P, et al. The kynurenine pathway and bipolar disorder: Intersection of the monoaminergic and glutamatergic systems and immune response. Mol Psychiatry. 2021;26(8):4085-4095. doi: 10.1038/s41380-019-0589-8

 

  1. Zhou Y, Zheng W, Liu W, et al. Antidepressant effect of repeated ketamine administration on kynurenine pathway metabolites in patients with unipolar and bipolar depression. Brain Behav Immun. 2018;74:205-212. doi: 10.1016/j.bbi.2018.09.007

 

  1. Chen MH, Bai YM, Wu HJ, et al. Role of klotho on antidepressant and antisuicidal effects of low-dose ketamine infusion among patients with treatment-resistant depression and suicidal ideation. J Affect Disord. 2023;340:471-475. doi: 10.1016/j.jad.2023.08.061

 

  1. Chen MH, Lin WC, Li CT, et al. Effects of low-dose ketamine infusion on vascular endothelial growth factor and matrix metalloproteinase-9 among patients with treatment-resistant depression and suicidal ideation. J Psychiatr Res. 2023;165:91-95. doi: 10.1016/j.jpsychires.2023.07.022

 

  1. Huang C, Wu Z, Wang D, et al. Myelin-associated oligodendrocytic basic protein-dependent myelin repair confers the long-lasting antidepressant effect of ketamine. Mol Psychiatry. 2023. doi: 10.1038/s41380-023-02288-5

 

  1. Ma S, Chen M, Jiang Y, et al. Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb. Nature. 2023;622(7984):802-809. doi: 10.1038/s41586-023-06624-1

 

  1. Peloso GM, Tcheandjieu C, McGeary JE, et al. Genetic loci associated with COVID-19 positivity and hospitalization in white, black, and hispanic veterans of the VA million veteran program. Front Genet. 2021;12:777076. doi: 10.3389/fgene.2021.777076
Share
Back to top
Journal of Clinical and Basic Psychosomatics, Electronic ISSN: 2972-4414 Published by AccScience Publishing