AccScience Publishing / ESAM / Online First / DOI: 10.36922/ESAM025260016
REVIEW ARTICLE

Recent advances in thermal management via additive manufacturing

Sooyeon Ji1 Junyeol Choi1 Myounggi Hong1 Jeongwoo Lee1 Yong Choi1 Jiheon Kim1 Jaemin Lee1* Wonjoon Choi1*
Show Less
1 School of Mechanical Engineering, Korea University, Seongbuk-Gu, Seoul, Republic of Korea
Received: 24 June 2025 | Revised: 22 July 2025 | Accepted: 28 July 2025 | Published online: 18 August 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Additive manufacturing (AM) has emerged as a transformative approach for advancing thermal management technologies, providing unprecedented freedom in design, material customization, and the implementation of novel thermal control strategies. This review presents a comprehensive overview of recent progress in AM-enabled thermal management, with an emphasis on enhancements in conductive, convective, boiling, and radiative heat transfer. AM facilitates the fabrication of complex architectures and composite materials with tailored thermal conductivities, substantially improving heat dissipation in diverse applications, including electronics, automotive systems, aerospace structures, and building technologies. Notably, recent developments in thermal metamaterials—such as structures capable of thermal cloaking and directional heat conduction—highlight the considerable potential of AM for manipulating complex thermal fields. Furthermore, the integration of phase change materials within AM-fabricated structures offers improved energy storage capacity and efficient thermal regulation. Future research should focus on the development of advanced composite materials, the integration of artificial intelligence for design optimization, the exploration of multifunctional metamaterials, and the advancement of sustainable and scalable AM processes. Hybrid and multimaterial AM techniques are particularly promising, enabling the fabrication of complex, functionally graded structures with precisely tailored thermal and mechanical properties. Addressing critical challenges—including structural integrity, microstructural control, material scalability, cost-effective production, and environmental sustainability—will further strengthen the role of AM in thermal management. In addition, the continued incorporation of high-fidelity computational simulations and real-time monitoring into AM workflows is expected to enhance process reliability and reproducibility. Expanding the range of AM applications to encompass lightweight and optically transparent polymer-based devices could unlock new avenues for thermal management in sensitive electronic and photonic systems.

Keywords
Thermal management
Conduction heat transfer
Convection heat transfer
Boiling heat transfer
Radiative cooling
Phase change material
Thermal metamaterial
Funding
This work was supported by an Agency for Defense Development of Korea (ADD) grant (915050201), National Research Foundation of Korea (NRF) funded by the Korean government (Ministry of Science and ICT) (2023R1A2C2006407, 2020R1A5A1018153), and Korea Evaluation Institute of Industrial Technology (KEIT) grant funded by the Korea government (MOTIE) (No. RS-2024- 00433288).
Conflict of interest
Wonjoon Choi is an Editorial Board Member of this journal, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Hamilton I, Kennard H, Rapf O, et al. Global Status Report for Buildings and Construction-Beyond Foundations: Mainstreaming Sustainable Solutions to Cut Emissions from the Buildings Sector; 2024.

 

  1. Hwang FS, Confrey T, Reidy C, et al. Review of battery thermal management systems in electric vehicles. Renew Sustain Energy Rev. 2024;192:114171. doi: 10.1016/j.rser.2023.114171

 

  1. Rakshith BL, Asirvatham LG, Angeline AA, et al. Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview. Renew Sustain Energy Rev. 2022;170:112956. doi: 10.1016/j.rser.2022.112956

 

  1. Nair V, Baby A, Anoop MB, Indrajith S, Murali M, Nair MB. A comprehensive review of air-cooled heat sinks for thermal management of electronic devices. Int Commun Heat Mass Transfer. 2024;159:108055. doi: 10.1016/j.icheatmasstransfer.2024.108055

 

  1. Careri F, Khan RHU, Todd C, Attallah MM. Additive manufacturing of heat exchangers in aerospace applications: A review. Appl Thermal Eng. 2023;235:121387. doi: 10.1016/j.applthermaleng.2023.121387

 

  1. Khan N, Riccio A. A systematic review of design for additive manufacturing of aerospace lattice structures: Current trends and future directions. Prog Aerospace Sci. 2024;149:101021. doi: 10.1016/j.paerosci.2024.101021

 

  1. Lim DD, Lee J, Park J, Choi W. High-resolution and electrically conductive three-dimensional printing of carbon nanotube-based polymer composites enabled by solution intercalation. Carbon. 2022;194:1-9.

 

  1. Yadav S, Liu S, Singh RK, Sharma AK, Rawat P. A state-of-art review on functionally graded materials (FGMs) manufactured by 3D printing techniques: Advantages, existing challenges, and future scope. J Manuf Processes. 2024;131:2051-2072. doi: 10.1016/j.jmapro.2024.10.026

 

  1. Lim DD, Park J, Lee J, et al. Broadband mechanical metamaterial absorber enabled by fused filament fabrication 3D printing. Addit Manuf. 2022;55:102856. doi: 10.1016/j.addma.2022.102856

 

  1. Kruzel M, Dutkowski K, Bohdal T, Litwin A, Sawicki J, Kępa E. A new approach for heat transfer coefficient determination in triply periodic minimal surface-based heat exchangers. Int Commun Heat Mass Transfer. 2024;157:107778. doi: 10.1016/j.icheatmasstransfer.2024.107778

 

  1. Tang W, Zou C, Zhou H, et al. A novel convective heat transfer enhancement method based on precise control of gyroid-type TPMS lattice structure. Appl Thermal Eng. 2023;230:120797. doi: 10.1016/j.applthermaleng.2023.120797

 

  1. Chandra S, Wang C, Tor SB, Ramamurty U, Tan X. Powder-size driven facile microstructure control in powder-fusion metal additive manufacturing processes. Nat Commun. 2024;15(1):3094. doi: 10.1038/s41467-024-47257-w

 

  1. Ghasemi A, Fereiduni E, Elbestawi M, et al. Influence of the graphene incorporation on nanostructure and thermal properties of the laser powder bed fusion processed AlSi12 matrix composites. J Alloys Compds. 2025;1010:177075. doi: 10.1016/j.jallcom.2024.177075

 

  1. Lin Y, Qin C, Fang L, Wang J, Li D. Colored polymeric films with a bilayer porous design for efficient subambient radiative cooling. ACS Appl Polym Mater. 2024;6(1):722-731. doi: 10.1021/acsapm.3c02318

 

  1. Oh SH, An CH, Seo B, Kim J, Park CY, Park K. Functional morphology change of TPMS structures for design and additive manufacturing of compact heat exchangers. Addit Manuf. 2023;76:103778. doi: 10.1016/j.addma.2023.103778

 

  1. Peng YG, Li Y, Cao PC, Zhu XF, Qiu CW. 3D printed meta-helmet for wide-angle thermal camouflages. Adv Funct Mater. 2020;30(28):2002061. doi: 10.1002/adfm.202002061

 

  1. Ahmad MJ, Tian X, Dai X, et al. Non-conformal thermal cloak metamaterial by continuous metal fiber embedded 3D printing. Int J Heat Mass Transfer. 2025;242:126796. doi: 10.1016/j.ijheatmasstransfer.2025.126796

 

  1. ISO/ASTM 52900. Additive Manufacturing-General Principles - Fundamentals and Vocabulary. United States: ISO/ASTM; 2021.

 

  1. Xiao Z, Chen C, Zhu H, et al. Study of residual stress in selective laser melting of Ti6Al4V. Mater Design. 2020;193:108846. doi: 10.1016/j.matdes.2020.108846

 

  1. Panwisawas C, Gong Y, Tang YT, Reed RC, Shinjo J. Additive manufacturability of superalloys: Process-induced porosity, cooling rate and metal vapour. Addit Manuf. 2021;47:102339. doi: 10.1016/j.addma.2021.102339

 

  1. Foteinopoulos P, Papacharalampopoulos A, Stavropoulos P. Additive manufacturing simulations: An approach based on space partitioning and dynamic 3D mesh adaptation. Addit Manuf Lett. 2024;11:100256. doi: 10.1016/j.addlet.2024.100256

 

  1. Jiong S, Yun J, Lee J, et al. Nanosized boron nitride-incorporated polyvinyl alcohol composites with TEMPO-oxidized cellulose nanofibers as ultrathin thermal interface materials. Chem Eng J. 2024;500:157243.

 

  1. Yun J, Lee J, Kim J, Lee J, Choi W. Hexagonal boron nitride nanosheets/graphene nanoplatelets/cellulose nanofibers-based multifunctional thermal interface materials enabling electromagnetic interference shielding and electrical insulation. Carbon. 2024;228:119397.

 

  1. Hu H, Xu C, Zhao Y, Ziegler KJ, Chung JN. Boiling and quenching heat transfer advancement by nanoscale surface modification. Sci Rep. 2017;7(1):6117. doi: 10.1038/s41598-017-06050-0

 

  1. Lee J, Kyeong D, Kim J, Choi W. Layer-by-layer self-assembled functional coatings of carbon nanotube-polyethylenimine for enhanced heat transfer of heat sinks. Int J Heat Mass Transfer. 2022;184:122344. doi: 10.1016/j.ijheatmasstransfer.2021.122344

 

  1. Lee J, Kim J, Seo B, Shin D, Hwang S, Choi W. Layer-by-layer solution-processed two-dimensional graphene oxide-polyethylenimine thin-film coatings for enhanced pool boiling heat transfer. Int J Heat Mass Transfer. 2023;209:124067.

 

  1. Hossain MM, Gu M. Radiative cooling: Principles, progress, and potentials. Adv Sci. 2016;3(7):1500360. doi: 10.1002/advs.201500360

 

  1. Radhakrishnan M, Sharma S, Palaniappan S, et al. Influence of thermal conductivity on evolution of grain morphology during laser-based directed energy deposition of CoCrxFeNi high entropy alloys. Addit Manuf. 2024;92:104387. doi: 10.1016/j.addma.2024.104387

 

  1. Lin K, Tian H, Gu D, Wang C, Yuan L, Sun J. Laser powder bed fusion of Cu–Al–Ni–Mn shape-memory alloy for the application of active heat sinks: Processability, microstructures, and shape-memory effect. Adv Eng Mater. 2024;26(4):2301224. doi: 10.1002/adem.202301224

 

  1. Fereiduni E, Ghasemi A, Sargent N, et al. Synergy of laser powder bed fusion (LPBF) and heat treatment for CuNi2SiCr alloy enhancement. Mater Design. 2025;255:114189. doi: 10.1016/j.matdes.2025.114189

 

  1. Gao J, Hao M, Wang Y, et al. 3D printing boron nitride nanosheets filled thermoplastic polyurethane composites with enhanced mechanical and thermal conductive properties. Addit Manuf. 2022;56:102897. doi: 10.1016/j.addma.2022.102897

 

  1. Zhang C, Deng K, Li X, Fu KK, Ni C. Thermally conductive 3D-printed carbon-nanotube-filled polymer nanocomposites for scalable thermal management. ACS Appl Nano Mater. 2023;6(14):13400-13408. doi: 10.1021/acsanm.3c02067

 

  1. Olcun S, Ibrahim Y, Isaacs C, Karam M, Elkholy A, Kempers R. Thermal conductivity of 3D-printed continuous pitch carbon fiber composites. Addit Manuf Lett. 2023;4:100106. doi: 10.1016/j.addlet.2022.100106

 

  1. Cai Z, Zhang J, Zhang L, et al. Fluid-assisted fused deposition modeling 3D printing of anisotropically thermally conductive polymer composites with precisely tunable heat transfer pathways. Compos Commun. 2024;46:101835. doi: 10.1016/j.coco.2024.101835

 

  1. Guo Y, Wang S, Zhang H, et al. Consistent thermal conductivities of spring-like structured polydimethylsiloxane composites under large deformation. Adv Mater. 2024;36(39):2404648. doi: 10.1002/adma.202404648

 

  1. Hou L, Ji JC, Cui GP, et al. 3D printable phase change based thermal interface material with lower total thermal resistance at operating temperature. J Energy Storage. 2024;99:113303. doi: 10.1016/j.est.2024.113303

 

  1. Fang B, Zhang G, Zou F, et al. 3D printing interconnected segregated composites to simultaneously enhance thermal conductivity and mechanical properties. ACS Appl Polym Mater. 2024;6(8):4904-4911. doi: 10.1021/acsapm.4c00654

 

  1. Peng Z, Lv Q, Jing J, Pei H, Chen Y, Ivanov E. FDM-3D printing LLDPE/BN@GNPs composites with double network structures for high-efficiency thermal conductivity and electromagnetic interference shielding. Compos Part B Eng. 2023;251:110491. doi: 10.1016/j.compositesb.2022.110491

 

  1. Kang Z, Xi M, Li N, Zhang S, Wang Z. Anisotropic thermal conductivity of 3D printed graphene enhanced thermoplastic polyurethanes structure toward photothermal conversion. Carbon. 2025;234:120023. doi: 10.1016/j.carbon.2025.120023

 

  1. Xia R, Zhu S, Zhen F, et al. Vertical 3D printing of rGO/ CNTs arrays for thermal interface materials with in-situ local temperature monitoring function. Chem Eng J. 2024;496:153643. doi: 10.1016/j.cej.2024.153643

 

  1. Qiu L, Wang X, Feng G, Feng Y. Tailorable thermal conduction and thermal energy storage behaviors in 3D printed hierarchical cellular structure-based phase change materials. Small Methods. 2025;9:2402089. doi: 10.1002/smtd.202402089

 

  1. Taleb O, Jutkofsky M, Measel R, et al. Thermal conductivity of 3D-printed block-copolymer-inspired structures. Int J Heat Mass Transfer. 2024;235:126186. doi: 10.1016/j.ijheatmasstransfer.2024.126186

 

  1. Wang L, Feng J, Luo Y, et al. Three-dimensional-printed silica aerogels for thermal insulation by directly writing temperature-induced solidifiable inks. ACS Appl Mater Interfaces. 2021;13(34):40964-40975. doi: 10.1021/acsami.1c12020

 

  1. Zhu T, Ren Z, Wang D, et al. Reactive 3D printed silanized cellulose nanofiber aerogels for solar-thermal regulatory cooling. Compos Part A Appl Sci Manuf. 2025;192:108761. doi: 10.1016/j.compositesa.2025.108761

 

  1. Liu C, Li MC, Liu X, Zhou G, Liu C, Mei C. 3D printing of customized lignocellulose nanofibril aerogels for efficient thermal insulation. Addit Manuf. 2023;78:103841. doi: 10.1016/j.addma.2023.103841

 

  1. Fu Z, Yu D, Xue T, Zhang X, Fan W. 3D printed polyimide-based composite aerogels with shape memory and thermal insulation properties. Compos Commun. 2025;56:102335. doi: 10.1016/j.coco.2025.102335

 

  1. Pei Y, Shen Z, Zhou J, Yang B. Experimental and theoretical thermal performance analysis of additively manufactured polymer vacuum insulation panels. Appl Thermal Eng. 2024;256:123957. doi: 10.1016/j.applthermaleng.2024.123957

 

  1. Sha W, Xiao M, Zhang J, et al. Robustly printable freeform thermal metamaterials. Nat Commun. 2021;12(1):7228. doi: 10.1038/s41467-021-27543-7

 

  1. Rao Y, Yan Y, Mei H, et al. 3D-printed lattice structures with SiC whiskers to strengthen thermal metamaterials. Ceramics Int. 2022;48(21):32283-32289. doi: 10.1016/j.ceramint.2022.07.170

 

  1. Freeman TB, Foster KEO, Troxler CJ, et al. Advanced materials and additive manufacturing for phase change thermal energy storage and management: A review. Adv Energy Mater. 2023;13(24):2204208. doi: 10.1002/aenm.202204208

 

  1. Yu D, Chi G, Mao X, et al. Volume-metallization 3D-printed polymer composites. Adv Mater. 2024;36(35):2403088. doi: 10.1002/adma.202403088

 

  1. Lee J, Han H, Noh D, et al. Multiscale porous architecture consisting of graphene aerogels and metastructures enabling robust thermal and mechanical functionalities of phase change materials. Adv Funct Mater. 2024;34(42):2405625.

 

  1. Song C, Lee J, Lim DD, Choi W. Rationally tunable phase change material thermal properties enabled by three‐dimensionally printed structural materials and carbon‐based functional additives. Int J Energy Res. 2023;2023(1):6658082.

 

  1. Liu C, Liu X, Shi X, et al. 3D printing of phase change material-based Pickering emulsion gel for solar-thermal-electric conversion. Chem Eng J. 2024;499:155940. doi: 10.1016/j.cej.2024.155940

 

  1. Er Y, Güler O, Hekimoğlu G, et al. Thermophysical properties and solar thermal energy storage performance of phase change composites manufactured by vat photopolymerization 3D printing technique. J Energy Storage. 2023;73:109124. doi: 10.1016/j.est.2023.109124

 

  1. Er Y, Güler O, Ustaoğlu A, et al. Characterisation and energy storage performance of 3D printed-photocurable resin/microencapsulated phase change material composite. Thermal Sci Eng Prog. 2024;48:102381. doi: 10.1016/j.tsep.2023.102381

 

  1. Bender J, Dubil K, Korn F, Wetzel T, Dietrich B. Modelling of heat transfer and pressure drop during flow boiling of CO2 in a horizontal tube with periodic open cellular inserts. Chem Eng Process Process Intensification. 2024;203:109891. doi: 10.1016/j.cep.2024.109891

 

  1. Righetti G, Savio G, Meneghello R, Doretti L, Mancin S. Experimental study of phase change material (PCM) embedded in 3D periodic structures realized via additive manufacturing. Int J Thermal Sci. 2020;153:106376. doi: 10.1016/j.ijthermalsci.2020.106376

 

  1. Diani A, Nonino C, Rossetto L. Melting of phase change materials inside periodic cellular structures fabricated by additive manufacturing: Experimental results and numerical simulations. Appl Thermal Eng. 2022;215:118969. doi: 10.1016/j.applthermaleng.2022.118969

 

  1. Wang C, Liu C, Li C. Additive manufacturing of shape-stabilized composite phase change materials via ultraviolet curing. Addit Manuf. 2023;61:103341. doi: 10.1016/j.addma.2022.103341

 

  1. Piacquadio S, Schirp-Schoenen M, Mameli M, Filippeschi S, Schröder KU. Experimental analysis of the thermal energy storage potential of a phase change material embedded in additively manufactured lattice structures. Appl Thermal Eng. 2022;216:119091. doi: 10.1016/j.applthermaleng.2022.119091

 

  1. Kim J, Lee J, Song C, Yun J, Choi W. Enhanced thermal performances of PCM heat sinks enabled by layer-by-layer-assembled carbon nanotube–polyethylenimine functional interfaces. Energy Convers Manage. 2022;266:115853.

 

  1. Shamvedi D, Mccarthy OJ, Eoghan OD, Cyril D, Paul OL, Raghavendra R. 3D Metal printed heat sinks with longitudinally varying lattice structure sizes using direct metal laser sintering. Virtual Phys Prototyp. 2018;13(4):301-310. doi: 10.1080/17452759.2018.1479528

 

  1. Lorenzon A, Vaglio E, Casarsa L, Totis G. Effects of different cross-sections of body centered cubic cells on pressure drop and heat transfer of additively manufactured heat sinks. Int J Heat Mass Transfer. 2024;222:125170. doi: 10.1016/j.ijheatmasstransfer.2024.125170

 

  1. Tseng PH, Tsai KT, Chen AL, Wang CC. Performance of novel liquid-cooled porous heat sink via 3-D laser additive manufacturing. Int J Heat Mass Transfer. 2019;137:558-564. doi: 10.1016/j.ijheatmasstransfer.2019.03.116

 

  1. Lazarov BS, Sigmund O, Meyer KE, Alexandersen J. Experimental validation of additively manufactured optimized shapes for passive cooling. Appl Energy. 2018;226:330-339. doi: 10.1016/j.apenergy.2018.05.106

 

  1. Ho TYK, Ng AYR, Ye P, et al. Realization of vat photopolymerisation of dense SiC ceramics with SiO2/ MgSO4 coated sub-micron powders for efficient heat dissipation. Addit Manuf. 2023;73:103664. doi: 10.1016/j.addma.2023.103664

 

  1. Sheng P, Nie G, Li Y, et al. Enhanced curing behavior, mechanical and thermal properties of 3D printed aluminum nitride ceramics using a powder coating strategy. Addit Manuf. 2023;74:103732. doi: 10.1016/j.addma.2023.103732

 

  1. Song C, Lee J, Seo B, Shim JH, Hu R, Choi W. Enhanced cooling performance of three‐dimensional printed heat sink via solution‐processed layer‐by‐layer CNT coatings. Adv Eng Mater. 2023;25(20):2300669.

 

  1. Huttunen E, Nykänen MT, Alexandersen J. Material extrusion additive manufacturing and experimental testing of topology-optimised passive heat sinks using a thermally-conductive plastic filament. Addit Manuf. 2022;59:103123. doi: 10.1016/j.addma.2022.103123

 

  1. Timbs K, Khatamifar M, Antunes E, Lin W. Experimental study on the heat dissipation performance of straight and oblique fin heat sinks made of thermal conductive composite polymers. Thermal Sci Eng Prog. 2021;22:100848. doi: 10.1016/j.tsep.2021.100848

 

  1. Ventola L, Robotti F, Dialameh M, et al. Rough surfaces with enhanced heat transfer for electronics cooling by direct metal laser sintering. Int J Heat Mass Transfer. 2014;75:58-74. doi: 10.1016/j.ijheatmasstransfer.2014.03.037

 

  1. Kirsch KL, Thole KA. Pressure loss and heat transfer performance for additively and conventionally manufactured pin fin arrays. Int J Heat Mass Transfer. 2017;108:2502-2513. doi: 10.1016/j.ijheatmasstransfer.2017.01.095

 

  1. Collins IL, Weibel JA, Pan L, Garimella SV. A permeable-membrane microchannel heat sink made by additive manufacturing. Int J Heat Mass Transfer. 2019;131:1174-1183. doi: 10.1016/j.ijheatmasstransfer.2018.11.126

 

  1. Kempers R, Colenbrander J, Tan W, Chen R, Robinson AJ. Experimental characterization of a hybrid impinging microjet-microchannel heat sink fabricated using high-volume metal additive manufacturing. Int J Thermofluids. 2020;5-6:100029. doi: 10.1016/j.ijft.2020.100029

 

  1. Xu C, Xu S, Wang Z, Feng D. Experimental investigation of flow and heat transfer characteristics of pulsating flows driven by wave signals in a microchannel heat sink. Int Commun Heat Mass Transfer. 2021;125:105343. doi: 10.1016/j.icheatmasstransfer.2021.105343

 

  1. Santos S, Matos C, Duarte I, Olhero S, Miranda G. Effect of TPMS reinforcement on the mechanical properties of aluminium–alumina interpenetrating phase composites. Prog Addit Manuf. 2025;10(2):1187-1199.

 

  1. Yan K, Deng H, Xiao Y, Wang J, Luo Y, Yan J. Influence of polishing process on surface morphology and thermo-hydraulic performance of additively manufactured Gyroid-structured heat exchanger. Appl Thermal Eng. 2024;253:123828. doi: 10.1016/j.applthermaleng.2024.123828

 

  1. Raafat A, Alteneiji M, Kamra M, Al Nuaimi S. Hydrothermal performance of microchannel heat sink integrating pin fins based on triply periodic minimal surfaces. Case Stud Thermal Eng. 2025;66:105773. doi: 10.1016/j.csite.2025.105773

 

  1. Ning J, Wang X, Sun Y, et al. Experimental and numerical investigation of additively manufactured novel compact plate-fin heat exchanger. Int J Heat Mass Transfer. 2022;190:122818. doi: 10.1016/j.ijheatmasstransfer.2022.122818

 

  1. Ozguc S, Pan L, Weibel JA. Optimization of permeable membrane microchannel heat sinks for additive manufacturing. Appl Thermal Eng. 2021;198:117490. doi: 10.1016/j.applthermaleng.2021.117490

 

  1. Kong D, Jung E, Kim Y, et al. An additively manufactured manifold-microchannel heat sink for high-heat flux cooling. Int J Mechan Sci. 2023;248:108228. doi: 10.1016/j.ijmecsci.2023.108228

 

  1. Bacellar D, Aute V, Huang Z, Radermacher R. Design optimization and validation of high-performance heat exchangers using approximation assisted optimization and additive manufacturing. Sci Technol Built Environ. 2017;23(6):896-911. doi: 10.1080/23744731.2017.1333877

 

  1. Liu C, Zhang M, Bi G, et al. Research on comprehensive heat dissipation characteristics of AlSi7Mg TPMS heat sinks manufactured by laser powder bed fusion. Appl Thermal Eng. 2025;261:124941. doi: 10.1016/j.applthermaleng.2024.124941

 

  1. Tan H, Wu L, Wang M, Yang Z, Du P. Heat transfer improvement in microchannel heat sink by topology design and optimization for high heat flux chip cooling. Int J Heat Mass Transfer. 2019;129:681-689. doi: 10.1016/j.ijheatmasstransfer.2018.09.092

 

  1. Ozguc S, Teague TFG, Pan L, Weibel JA. Experimental study of topology optimized, additively manufactured microchannel heat sinks designed using a homogenization approach. Int J Heat Mass Transfer. 2023;209:124108. doi: 10.1016/j.ijheatmasstransfer.2023.124108

 

  1. Orakwe JN, Shahabad SI, Ibhadode O, Bonakdar A, Toyserkani E. An integration of topology optimization and conformal minimal surfaces for additively manufactured liquid-cooled heat sinks. Addit Manuf. 2025;107:104814. doi: 10.1016/j.addma.2025.104814

 

  1. Han XH, Liu HL, Xie G, Sang L, Zhou J. Topology optimization for spider web heat sinks for electronic cooling. Appl Thermal Eng. 2021;195:117154. doi: 10.1016/j.applthermaleng.2021.117154

 

  1. Robertson J, Carter E, Thompson M, White S. Multi-objective design of heat sink fins for thermal efficiency andmanufacturability. Int J Eng Adv. 2025;2(1):32-39. doi: 10.71222/1aqrg398

 

  1. Wang W, Zhu H, Zhang W, Xiao Z. A high heat transfer performance of inclined rib mini-channel heat sink designed by machine learning and laser powder bed fusion. Phys Fluids. 2025;37(1):012009. doi: 10.1063/5.0247582

 

  1. Wang W, Zhang W, Yang X, Zhang B, Zhu H. Performance optimization of discrete sidewall features mini-channel heat sinks via laser powder bed fusion and machine learning. Phys Fluids. 2025;37(5):052002. doi: 10.1063/5.0270757

 

  1. Aksoy B, Salman OKM, Özsoy K. The estimation of the thermal performance of heat sinks manufactured by direct metal laser sintering based on machine learning. Measurement. 2024;225:113625. doi: 10.1016/j.measurement.2023.113625

 

  1. Thakur S, Talla G, Verma P. Residual stress, distortion, and porosity analysis of LED heat sink printed by SLM process using machine learning. Eng Res Express. 2021;3(4):045043. doi: 10.1088/2631-8695/ac3dc6

 

  1. Yeranee K, Rao Y. A review of recent investigations on flow and heat transfer enhancement in cooling channels embedded with triply periodic minimal surfaces (TPMS). Energies. 2022;15(23):8994.

 

  1. Isenhart CR, Hayes AC, Whiting GL. Additive manufacturing of scalable jet impingement and radial taper enhancements for improved flow boiling performance. Appl Therm Eng. 2024;249:123355. doi: 10.1016/j.applthermaleng.2024.123355

 

  1. Liu H, Wang J, Gu Z, Fei X, Zhang L. Enhancement of pool boiling heat transfer using 3D-printed groove structure. Int J Heat Mass Transfer. 2022;183:122155. doi: 10.1016/j.ijheatmasstransfer.2021.122155

 

  1. Shim DI, Yun M, Kim YH, Lee D, Cho HH. 3D-Printed vapor guiding structures for enhanced pool boiling heat transfer. Int J Mechan Sci. 2025;286:109865. doi: 10.1016/j.ijmecsci.2024.109865

 

  1. Okwiri LA, Mochizuki T, Koito K, Fukui N, Enoki K. Enhanced pool boiling via binder-jetting 3D-printed porous copper structures: CHF and HTC investigation. Appl Sci. 2025;15(14):7892.

 

  1. Lum LYX, Liu P, Ye H, Ho JY. Revealing microstructured surface critical heat flux degradation mechanisms and synergistic pool boiling enhancement in fluorinated fluids. ACS Appl Mater Interfaces. 2025;17(18):27331-27350. doi: 10.1021/acsami.4c22543

 

  1. Pi G, Deng D, Chen L, Xu X, Zhao C. Pool boiling performance of 3D-printed reentrant microchannels structures. Int J Heat Mass Transfer. 2020;156:119920. doi: 10.1016/j.ijheatmasstransfer.2020.119920

 

  1. Hayes A, Raghupathi PA, Emery TS, Kandlikar SG. Regulating flow of vapor to enhance pool boiling. Appl Thermal Eng. 2019;149:1044-1051. doi: 10.1016/j.applthermaleng.2018.12.091

 

  1. Shvetsov DA, Zhukov VI, Pavlenko AN. Heat transfer enhancement during boiling in horizontal layers of HFE- 7100 on 2D modulated capillary-porous coatings. Appl Thermal Eng. 2025;263:125344. doi: 10.1016/j.applthermaleng.2024.125344

 

  1. Lee S, Yun S, Kwon J, Baek C, Lee D, Kim Y. Experimental investigation on boiling heat transfer performance of fractal microchannels for high heat dissipation applications. Case Stud Thermal Eng. 2023;52:103754. doi: 10.1016/j.csite.2023.103754

 

  1. Hasan M, Perna R, Elkholy A, Durfee J, Kempers R. A lightweight additively manufactured two-phase integrated natural convection heat sink. Appl Thermal Eng. 2025;266:125700. doi: 10.1016/j.applthermaleng.2025.125700

 

  1. Liu H, Gu Z, Liang J. Study on boiling heat transfer characteristics of composite porous structure fabricated by selective laser melting. Materials. 2023;16(19):6391.

 

  1. Lum LYX, Leong KC, Ho JY. Optimizing additively manufactured macro-fin structure designs for enhanced pool boiling of dielectric fluids. Int J Heat Mass Transfer. 2024;219:124883. doi: 10.1016/j.ijheatmasstransfer.2023.124883

 

  1. Rozati SA, Gupta A. Enhanced phase change heat transfer with fused deposition modeling (FDM) printed pit and pillar (Pi2) arrays. Exp Thermal Fluid Sci. 2025;161:111337. doi: 10.1016/j.expthermflusci.2024.111337

 

  1. Lum LYX, Liu P, Ho JY. Micro/nanostructuring of metal additively manufactured aluminum alloy for enhanced pool boiling of dielectric fluids. Int J Heat Mass Transfer. 2024;221:125090. doi: 10.1016/j.ijheatmasstransfer.2023.125090

 

  1. Elkholy A, Kempers R. Enhancement of pool boiling heat transfer using 3D-printed polymer fixtures. Exp Thermal Fluid Sci. 2020;114:110056. doi: 10.1016/j.expthermflusci.2020.110056

 

  1. Ozguc S, Pan L, Weibel JA. An approach for topology optimization of heat sinks for two-phase flow boiling: Part 2 – Model calibration and experimental validation. Appl Thermal Eng. 2024;249:123338. doi: 10.1016/j.applthermaleng.2024.123338

 

  1. Zhou J, Yin Z. An experimental investigation on the flow boiling heat transfer performance of nanofluid in 3D printing minichannel heat sinks: A comparative study. Nanomaterials (Basel). 2025;15(14):1054. doi: 10.3390/nano15141054

 

  1. Kneer A, Wirtz M, Bozkurt MC, et al. One-piece stainless-steel 3D printed minichannel evaporators using flow boiling carbon dioxide. Chem Eng Technol. 2020;43(5):923-932. doi: 10.1002/ceat.202000069

 

  1. Wong KK, Leong KC. Nucleate flow boiling enhancement on engineered three-dimensional porous metallic structures in FC-72. Appl Thermal Eng. 2019;159:113846. doi: 10.1016/j.applthermaleng.2019.113846

 

  1. Silvi LD, Shanmugam AR, Park KS. Numerical study of pool boiling heat transfer on pin-fin surface submerged in dielectric fluid. Thermal Sci Eng Prog. 2025;61:103507. doi: 10.1016/j.tsep.2025.103507

 

  1. Zhou J, Li Q, Chen X. Micro pin fins with topologically optimized configurations enhance flow boiling heat transfer in manifold microchannel heat sinks. Int J Heat Mass Transfer. 2023;206:123956. doi: 10.1016/j.ijheatmasstransfer.2023.123956

 

  1. Zhou J, Zhou F, Zhao Q, Lu M, Li Q, Chen X. Flow boiling heat transfer in manifold microchannels with topologically optimized configurations. Int Commun Heat Mass Transfer. 2025;161:108555. doi: 10.1016/j.icheatmasstransfer.2024.108555

 

  1. Septet C, El Achkar G, Le Metayer O, Hugo JM. Experimental investigation of two-phase liquid-vapor flows in additive manufactured heat exchanger. Appl Thermal Eng. 2020;179:115638. doi: 10.1016/j.applthermaleng.2020.115638

 

  1. El Achkar G, Septet C, Le Metayer O, Hugo JM. Experimental thermohydraulic characterisation of flow boiling and condensation in additive manufactured plate-fin heat exchanger. Int J Heat Mass Transfer. 2022;199:123465. doi: 10.1016/j.ijheatmasstransfer.2022.123465

 

  1. Ye H, Lum LYX, Kandasamy R, Zhao H, Ho JY. Flow boiling heat transfer enhancement of R134a in additively manufactured minichannels with microengineered surfaces. Appl Thermal Eng. 2024;256:124150. doi: 10.1016/j.applthermaleng.2024.124150

 

  1. Akizuki Y, Odagiri K, Sawada K, Yoshizaki H, Sairaiji M, Ogawa H. Heat transport characterization on different orientations of a loop heat pipe with an additive manufactured evaporator. Appl Thermal Eng. 2025;264:125455. doi: 10.1016/j.applthermaleng.2025.125455

 

  1. Kappe K, Bihler M, Morawietz K, Hügenell PPC, Pfaff A, Hoschke K. Design concepts and performance characterization of heat pipe wick structures by LPBF additive manufacturing. Materials. 2022;15(24):8930.

 

  1. Mezghani A, Dickman CJ, Reutzel EW, Nassar AR, Wolfe DE. Additively manufactured inconel 718 vapor chamber with conformal micro-pillar wicks: A low temperature concept demonstration. Int J Heat Mass Transfer. 2025;246:127056. doi: 10.1016/j.ijheatmasstransfer.2025.127056

 

  1. Robinson AJ, Colenbrander J, Deaville T, Durfee J, Kempers R. A wicked heat pipe fabricated using metal additive manufacturing. Int J Thermofluids. 2021;12:100117. doi: 10.1016/j.ijft.2021.100117

 

  1. Jafari D, Wits WW, Geurts BJ. Phase change heat transfer characteristics of an additively manufactured wick for heat pipe applications. Appl Thermal Eng. 2020;168:114890. doi: 10.1016/j.applthermaleng.2019.114890

 

  1. Meng X, Tan S, Yuan Z, Zhang Y, Chen L. Experimental study on the heat transfer performance of a vapour chamber with porous wick structures printed via metallic additive manufacturing. Int Commun Heat Mass Transfer. 2023;140:106496. doi: 10.1016/j.icheatmasstransfer.2022.106496

 

  1. Zhou J, Teng L, Shen Y, Jin Z. Simulation of, optimization of, and experimentation with small heat pipes produced using selective laser melting technology. Materials. 2023;16(21):6946.

 

  1. Park YY, Bang IC. Experimental study on 3D printed heat pipes with hybrid screen–groove combined capillary wick structure. Appl Thermal Eng. 2023;232:121037. doi: 10.1016/j.applthermaleng.2023.121037

 

  1. Kamata M, Hayashi K, Watanabe N, et al. Thermal performance of ammonia-based thin flat loop heat pipe fabricated by additive manufacturing. Int J Heat Mass Transfer. 2025;236:126382. doi: 10.1016/j.ijheatmasstransfer.2024.126382

 

  1. Hunter LW, Brackett D, Brierley N, Yang J, Attallah MM. Assessment of trapped powder removal and inspection strategies for powder bed fusion techniques. Int J Adv Manuf Technol. 2020;106(9):4521-4532. doi: 10.1007/s00170-020-04930-w

 

  1. Esarte J, Blanco JM, Bernardini A, Sancibrián R. Performance assessment of a three-dimensional printed porous media produced by selective laser melting technology for the optimization of loop heat pipe wicks. Appl Sci. 2019;9(14):2905.

 

  1. Yun M, Hsu WT, Shim DI, et al. Design and fabrication of heat pipes using additive manufacturing for thermal management. Appl Thermal Eng. 2024;236:121561. doi: 10.1016/j.applthermaleng.2023.121561

 

  1. Cui J, Hu Z, Xu W, Ma Y, Ling W, Zhou W. Selective laser melting manufacturing and heat transfer performance study of porous wick in loop heat pipe. J Manuf Process. 2024;124:1294-1305. doi: 10.1016/j.jmapro.2024.07.017

 

  1. Han Z, Chang C. Fabrication and thermal performance of a polymer-based flexible oscillating heat pipe via 3D printing technology. Polymers. 2023;15(2):414.

 

  1. Arai T, Kawaji M. Thermal performance and flow characteristics in additive manufactured polycarbonate pulsating heat pipes with Novec 7000. Appl Thermal Eng. 2021;197:117273. doi: 10.1016/j.applthermaleng.2021.117273

 

  1. Jacob DJ. Introduction to Atmospheric Chemistry. New Jersey: Princeton University Press; 1999.

 

  1. Zhao B, Hu M, Ao X, Chen N, Pei G. Radiative cooling: A review of fundamentals, materials, applications, and prospects. Appl Energy. 2019;236:489-513. doi: 10.1016/j.apenergy.2018.12.018

 

  1. Park S, Choi J, Lee J, et al. Gradient porous and carbon black-integrated cellulose acetate aerogel for scalable radiative cooling. Small. 2025;21(7):2409873. doi: 10.1002/smll.202409873

 

  1. Shi X, Liu C, Lin B, et al. 3D printed cellulose nanofiber/ silica nanoparticle scaffolds for daytime radiative cooling. Addit Manuf. 2024;92:104392. doi: 10.1016/j.addma.2024.104392

 

  1. Zhou K, Li W, Patel BB, et al. Three-dimensional printable nanoporous polymer matrix composites for daytime radiative cooling. Nano Lett. 2021;21(3):1493-1499. doi: 10.1021/acs.nanolett.0c04810

 

  1. Park SJ, Seo SB, Shim J, et al. Three-dimensionally printable hollow silica nanoparticles for subambient passive cooling. Nanophotonics. 2024;13(5):611-620. doi: 10.1515/nanoph-2023-0603

 

  1. Hazarika A, Deka BK, Park H, et al. Hierarchically designed 3-D printed porous nylon fabric-based personal thermoregulatory for radiative and directional wick-evaporative cooling. Chem Eng J. 2023;471:144536. doi: 10.1016/j.cej.2023.144536

 

  1. Hazarika A, Lee S, Park H, et al. 3D printed gradient porous fabric-based thermal and moisture regulating composite integrated triboelectric nanogenerator for human motion cognizance. Nano Energy. 2024;132:110350. doi: 10.1016/j.nanoen.2024.110350

 

  1. Wu WL, Tsai SY, Lo YC, et al. Design of a multifunctional resin-based outdoor spherical robot shell for ultrahigh visible to near-infrared transmittance and mid-infrared radiative cooling. ACS Omega. 2025;10(3):3080-3089. doi: 10.1021/acsomega.4c09954

 

  1. Zhang T, Zhang X, Zhang S, Wang L, Yu D, Wang W. 3D printing-assisted honeycomb-structured bricklike aerogels applied for infrared stealth with good thermal management. ACS Appl Polym Mater. 2024;6(22):13828-13840. doi: 10.1021/acsapm.4c02747

 

  1. Pelanconi M, Barbato M, Zavattoni S, Vignoles GL, Ortona A. Thermal design, optimization and additive manufacturing of ceramic regular structures to maximize the radiative heat transfer. Mater Design. 2019;163:107539. doi: 10.1016/j.matdes.2018.107539
Share
Back to top
Engineering Science in Additive Manufacturing, Electronic ISSN: 3082-849X Published by AccScience Publishing