AccScience Publishing / ESAM / Online First / DOI: 10.36922/ESAM025110006
REVIEW ARTICLE

Generative artificial intelligence in lattice structure design for additive manufacturing: A critical review

Jinlong Su1* Yang Mo1 Swee Leong Sing1*
Show Less
1 Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore
ESAM 2025, 1(1), 025110006 https://doi.org/10.36922/ESAM025110006
Received: 8 February 2025 | Revised: 17 March 2025 | Accepted: 18 March 2025 | Published online: 21 March 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Lattice structures, characterized by their lightweight yet high-strength properties, energy absorption capabilities, and superior thermal management, have become integral in advanced additive manufacturing (AM) applications. However, designing optimized lattice structures that balance mechanical performance, manufacturability, and functional requirements remains a complex and computationally intensive challenge. Recently, generative artificial intelligence (Gen-AI) has emerged as a transformative approach, offering automated and efficient solutions for lattice structure design. This review explores the application of Gen-AI in lattice structure design and optimization for AM. Gen-AI enables automated inverse design, generating lattice structures that meet predefined functional and mechanical targets, reducing trial-and-error efforts. It supports performance optimization by enhancing mechanical strength, energy absorption, and thermal efficiency when minimizing material usage and weight. Besides, Gen-AI also facilitates process-aware design by integrating AM-oriented constraints, such as build orientation, support strategies, and residual stress, to improve manufacturability and reduce post-processing. In addition, it accelerates simulations by expediting performance prediction and reducing computational costs. Despite the growing importance of Gen-AI in AM lattice structure, comprehensive reviews on this topic remain limited. This work addresses this gap, providing critical insights into current advancements, key challenges, and future perspectives, aiming to guide the integration of Gen-AI into advanced lattice structure design for AM and support the development of next-generation high-performance structures.

Keywords
Generative artificial intelligence
Lattice structure
Additive manufacturing
Deep learning
Design and optimization
Funding
This work is fully supported by the Advanced Research and Technology Innovation Centre, the National University of Singapore under Grant (project number: ADT-RP1). Yang Mo acknowledges the sponsorship of the China Scholarship Council (No. 202306130143).
Conflict of interest
Dr. Swee Leong Sing is the Editor-in-Chief of this journal, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Pan C, Han Y, Lu J. Design and optimization of lattice structures: A review. Appl Sci. 2020;10(18):6374. doi: 10.3390/app10186374

 

  1. Chen LY, Liang SX, Liu Y, Zhang LC. Additive manufacturing of metallic lattice structures: Unconstrained design, accurate fabrication, fascinated performances, and challenges. Mater Sci Eng R Rep. 2021;146:100648. doi: 10.1016/j.mser.2021.100648

 

  1. Su J, Jiang F, Teng J, et al. Recent innovations in laser additive manufacturing of titanium alloys. Int J Extreme Manuf. 2024;6(3):ad2545. doi: 10.1088/2631-7990/ad2545

 

  1. Su J, Jiang F, Tan C, et al. Additive manufacturing of fine-grained high-strength titanium alloy via multi-eutectoid elements alloying. Composit Part B Eng. 2023;249:110399. doi: 10.1016/j.compositesb.2022.110399

 

  1. Su J, Li Q, Teng J, et al. Programmable mechanical properties of additively manufactured novel steel. Int J Extreme Manuf. 2024;7(1):ad88bc. doi: 10.1088/2631-7990/ad88bc

 

  1. Liu M, Lei C, Wang Y, Zhang B, Qu X. High‐throughput preparation for alloy composition design in additive manufacturing: A comprehensive review. Mater Genom Eng Adv. 2024;2(3):e55. doi: 10.1002/mgea.55

 

  1. Tan C, Li R, Su J, et al. Review on field assisted metal additive manufacturing. Int J Mach Tools Manuf. 2023;189:10403. doi: 10.1016/j.ijmachtools.2023.104032

 

  1. Luo JP, Huang YJ, Xu JY, et al. Additively manufactured biomedical Ti-Nb-Ta-Zr lattices with tunable Young’s modulus: Mechanical property, biocompatibility, and proteomics analysis. Mater Sci Eng C. 2020;114:110903. doi: 10.1016/j.msec.2020.110903

 

  1. Sing SL. Perspectives on additive manufacturing enabled beta-titanium alloys for biomedical applications. Int J Bioprint. 2021;8(1):478. doi: 10.18063/ijb.v8i1.478

 

  1. Liu YJ, Zhang JS, Liu XC, et al. Non-layer-wise fracture and deformation mechanism in beta titanium cubic lattice structure manufactured by selective laser melting. Mater Sci Eng A. 2021;822:141696. doi: 10.1016/j.msea.2021.141696

 

  1. Li Z, Luo Z, Zhang LC, Wang CH. Topological design of pentamode lattice metamaterials using a ground structure method. Mater Des. 2021;202:109523. doi: 10.1016/j.matdes.2021.109523

 

  1. Su JL, Jiang FL, Teng J, et al. Laser additive manufacturing of titanium alloys: Process, materials and post-processing. Rare Metals. 2024;43(12):6288-6328. doi: 10.1007/s12598-024-02685-x

 

  1. Nagesha BK, Dhinakaran V, Varsha Shree M, Manoj Kumar KP, Chalawadi D, Sathish T. Review on characterization and impacts of the lattice structure in additive manufacturing. Mater Today Proc. 2020;21:916-919. doi: 10.1016/j.matpr.2019.08.158

 

  1. Wang Y, Zhang L, Daynes S, Zhang H, Feih S, Wang MY. Design of graded lattice structure with optimized mesostructures for additive manufacturing. Mater Des. 2018;142:114-123. doi: 10.1016/j.matdes.2018.01.011

 

  1. Hussein A, Hao L, Yan C, Everson R, Young P. Advanced lattice support structures for metal additive manufacturing. J Mater Proc Technol. 2013;213(7):1019-1026. doi: 10.1016/j.jmatprotec.2013.01.020

 

  1. Su J, Tan C, Ng FL, et al. Chew, Additive manufacturing of novel heterostructured martensite-austenite dual-phase steel through in-situ alloying. Mater Today Commun. 2022;33:104724. doi: 10.1016/j.mtcomm.2022.104724

 

  1. Su J, Xie H, Tan C, et al. Microstructural characteristics and tribological behavior of an additively manufactured Ti-6Al-4V alloy under direct aging and solution-aging treatments. Tribol Int. 2022;175:107763. doi: 10.1016/j.triboint.2022.107763

 

  1. Su J, Jiang F, Li J, et al. Phase transformation mechanisms, microstructural characteristics and mechanical performances of an additively manufactured Ti-6Al-4V alloy under dual-stage heat treatment. Mater Des. 2022;223:111240. doi: 10.1016/j.matdes.2022.111240

 

  1. Tang S, Li L, Su J, Yuan Y, Han Y, Fan J. Unveiling micro-scale mechanisms of in-situ silicon alloying for tailoring mechanical properties in titanium alloys: Experiments and computational modeling. J Mater Sci Technol. 2025;220:150-163. doi: 10.1016/j.jmst.2024.08.064

 

  1. Wang S, Wang J, Xu Y, Zhang W, Zhu J. Compressive behavior and energy absorption of polymeric lattice structures made by additive manufacturing. Front Mech Eng. 2019;15:319-327. doi: 10.1007/s11465-019-0549-7

 

  1. Bogusz P, Poplawski A, Stankiewicz M, Kowalski B. Experimental research of selected lattice structures developed with 3D printing technology. Materials (Basel). 2022;15(1):378. doi: 10.3390/ma15010378

 

  1. Gongora AE, Friedman C, Newton DK, et al. Accelerating the design of lattice structures using machine learning. Sci Rep. 2024;14(1):13703. doi: 10.1038/s41598-024-63204-7

 

  1. Lee S, Zhang Z, Gu GX. Generative machine learning algorithm for lattice structures with superior mechanical properties. Mater Horiz. 2022;9(3):952-960. doi: 10.1039/d1mh01792f

 

  1. Hughes RT, Zhu L, Bednarz T. Generative adversarial networks-enabled human-artificial intelligence collaborative applications for creative and design industries: A systematic review of current approaches and trends. Front Artif Intell. 2021;4:604234. doi: 10.3389/frai.2021.604234

 

  1. Liu Y, Yang Z, Yu Z, et al. Generative artificial intelligence and its applications in materials science: Current situation and future perspectives. J Materiomics. 2023;9(4):798-816. doi: 10.1016/j.jmat.2023.05.001

 

  1. Koul P. A Review of generative design using machine learning for additive manufacturing. Adv Mech Mater Eng. 2024;41:145-159. doi: 10.7862/rm.2024.14

 

  1. Jiang Y, Li J, Yang X, Yuan R. Applications of generative adversarial networks in materials science. Mater Genome Eng Adv. 2024;2(1):e30. doi: 10.1002/mgea.30

 

  1. Geng X, Wang F, Wu HH, et al. Data‐driven and artificial intelligence accelerated steel material research and intelligent manufacturing technology. Mater Genome Eng Adv. 2023;1(1):e10. doi: 10.1002/mgea.10

 

  1. Xu D, Zhang Q, Huo X, Wang Y, Yang M. Advances in data‐assisted high‐throughput computations for material design. Mater Genome Eng Adv. 2023;1(1):e11. doi: 10.1002/mgea.11

 

  1. Viswanath A, Khalil M, Khan MK, Al Maskari F, Cantwell WJ, Khan KA. A novel design strategy to enhance buckling resistance of thin-walled single-cell lattice structures via topology optimisation. Virt Phys Prototyp. 2024;19(1):e2345390. doi: 10.1080/17452759.2024.2345390

 

  1. Zhang C, Liu J, Yuan Z, et al. A novel lattice structure topology optimization method with extreme anisotropic lattice properties. J Comput Des Eng. 2021;8(5):1367-1390. doi: 10.1093/jcde/qwab051

 

  1. Liu Y, Zheng G, Letov N, Zhao YF. A Survey of modeling and optimization methods for multi-scale heterogeneous lattice structures. J Mech Des. 2021;143(4):1-59. doi: 10.1115/1.4047917

 

  1. Lan T, Peng C, Fox K, Do T, Tran P. Triply periodic minimal surfaces lattice structures: Functional graded and hybrid designs for engineering applications. Mater Sci Addit Manuf. 2023;2(3):1753. doi: 10.36922/msam.1753

 

  1. Lai Z, Zhao M, Lim CH, Chua JW. Experimental and numerical studies on the acoustic performance of simple cubic structure lattices fabricated by digital light processing. Mater Sci Addit Manuf. 2022;1(4):e22. doi: 10.18063/msam.v1i4.22

 

  1. Jadhav Y, Berthel J, Hu C, Panat R, Beuth J, Barati Farimani A. Generative lattice units with 3D diffusion for inverse design: GLU3D. Adv Funct Mater. 2024;34(41):2404165. doi: 10.1002/adfm.202404165

 

  1. Peng C, Tran P, Rutz E. Accelerating hybrid lattice structures design with machine learning. Mater Sci Addit Manuf. 2024;3(2):3430. doi: 10.36922/msam.3430

 

  1. Su J, Ng WL, An J, Yeong WY, Chua CK, Sing SL. Achieving sustainability by additive manufacturing: A state-of-the-art review and perspectives. Virt Phys Prototyp. 2024;19(1):2438899. doi: 10.1080/17452759.2024.2438899

 

  1. Verma S, Kumar A, Lin SC, Jeng JY. A bio-inspired design strategy for easy powder removal in powder-bed based additive manufactured lattice structure. Virt Phys Prototyp. 2022;17(3):468-488. doi: 10.1080/17452759.2022.2039071

 

  1. Lu P, Shi X, Ye X, et al. Mechanical performance and flow heat transfer characteristics of topologically optimised Ti-6Al-4 V lattice structures. Virt Phys Prototyp. 2024;19(1):2429526. doi: 10.1080/17452759.2024.2429526

 

  1. Zhang Y, Aiyiti W, Du S, Jia R, Jiang H. Design and mechanical behaviours of a novel tantalum lattice structure fabricated by SLM. Virt Phys Prototyp. 2023;18(1):2192702. doi: 10.1080/17452759.2023.2192702

 

  1. Chua C, Sing SL, Chua CK. Characterisation of in-situ alloyed titanium-tantalum lattice structures by laser powder bed fusion using finite element analysis. Virt Phys Prototyp. 2022;18(1):2138463. doi: 10.1080/17452759.2022.2138463

 

  1. Ren Y, Li Y, Yang L, et al. Compressive properties and fatigue performance of NiTi lattice structures optimized by TPMS. Mater Sci Addit Manuf. 2024;3(2):e3380. doi: 10.36922/msam.3380

 

  1. Liu Y, Sing SL. A review of advances in additive manufacturing and the integration of high-performance polymers, alloys, and their composites. Mater Sci Addit Manuf. 2023;2(3):1587. doi: 10.36922/msam.1587

 

  1. Ahmed Qureshi Z, Addin Burhan Al-Omari S, Elnajjar E, Al-Ketan O, Abu Al-Rub R. Architected lattices embedded with phase change materials for thermal management of high-power electronics: A numerical study. Appl Therm Eng. 2023;219:119420. doi: 10.1016/j.applthermaleng.2022.119420

 

  1. Balthazar M, Baudin N, Soto J, Edelin D, Guéroult S, Sobotka V. Improvement of thermal management of composites forming process tooling using lattice structures. Int J Adv Manuf Technol. 2024;134(5-6):2705-2723. doi: 10.1007/s00170-024-14264-6

 

  1. Liu J, Xu M, Zhang R, Zhang X, Xi W. Progress of porous/ lattice structures applied in thermal management technology of aerospace applications. Aerospace. 2022;9(12):827. doi: 10.3390/aerospace9120827

 

  1. Banh L, Strobel G. Generative artificial intelligence. Elect Mark. 2023;33(1):63. doi: 10.1007/s12525-023-00680-1

 

  1. Ooi KB, Tan GW, Al-Emran M, et al. The Potential of generative artificial intelligence across disciplines: Perspectives and future directions. J Comput Inform Syst. 2023;65(1):76-107. doi: 10.1080/08874417.2023.2261010

 

  1. Peng XL, Xu BX. Data-driven inverse design of composite triangular lattice structures. Int J Mech Sci. 2024;265:108900. doi: 10.1016/j.ijmecsci.2023.108900

 

  1. Zhang K, Guo Y, Liu X, Hong F, Hou X, Deng Z. Deep learning-based inverse design of lattice metamaterials for tuning bandgap. Extreme Mech Lett. 2024;69:102165. doi: 10.1016/j.eml.2024.102165

 

  1. Yang Z, Guo Y, Sun Z, et al. GraphDGM: A Generative data-driven design approach for frame and lattice structures. J Mech Des. 2025;147:101701. doi: 10.1115/1.4068106

 

  1. Li Z, Li J, Tian J, et al. Inverse design of cellular structures with the geometry of triply periodic minimal surfaces using generative artificial intelligence algorithms. Eng Struct. 2024;321:118988. doi: 10.1016/j.engstruct.2024.118988

 

  1. Challapalli A, Patel D, Li G. Inverse machine learning framework for optimizing lightweight metamaterials. Mater Des. 2021;208:109937. doi: 10.1016/j.matdes.2021.109937

 

  1. Eren O, Yüksel N, Börklü HR, Sezer HK, Canyurt OE. Deep learning-enabled design for tailored mechanical properties of SLM-manufactured metallic lattice structures. Eng Appl Artif Intell. 2024;130:107685. doi: 10.1016/j.engappai.2023.107685

 

  1. Yüksel N, Eren O, Börklü HR, Sezer HK. Mechanical properties of additively manufactured lattice structures designed by deep learning. Thin Walled Struct. 2024;196:111475. doi: 10.1016/j.tws.2023.111475

 

  1. Duan C, Wu D. Inverse design of lattice structures with target mechanical performance via generative adversarial networks considering the effect of process parameters. Adv Eng Inform. 2025;65:103221. doi: 10.1016/j.aei.2025.103221

 

  1. Pawlowski JM, Urban JM. Reducing autocorrelation times in lattice simulations with generative adversarial networks. Mach Learn Sci Technol. 2020;1(4):045011. doi: 10.1088/2632-2153/abae73

 

  1. Bernardi ML, Casciani A, Cimitile M, Marrella A. Conversing with business process-aware large language models: The BPLLM framework. J Intell Inform Syst. 2024;62(6):1607-1629. doi: 10.1007/s10844-024-00898-1

 

  1. Parsa-Pajouh A. Application of generative AI to automate numerical analysis and synthetic data generation in geotechnical engineering. Mach Learn Data Sci Geotechn. 2025;1(1):46-55. doi: 10.1108/mlag-09-2024-0008

 

  1. Gebreab S, Musamih A, Salah K, Jayaraman R, Boscovic D. Accelerating digital twin development with generative AI: A framework for 3D modeling and data integration. IEEE Access. 2024;12:185918-185936. doi: 10.1109/access.2024.3514175

 

  1. Wei X, Kumar N, Zhang H. Addressing bias in generative AI: Challenges and research opportunities in information management. Inform Manag. 2025;62(2):104103. doi: 10.1016/j.im.2025.104103

 

  1. Satyadhar J. Review of Gen AI models for financial risk management. Int J Sci Res Comput Sci Eng Inform Technol. 2025;11(1):709-723. doi: 10.32628/cseit2511114

 

  1. Yu H, Guo Y. Generative artificial intelligence empowers educational reform: Current Status, issues, and prospects. Front Educ. 2023;8:1183162. doi: 10.3389/feduc.2023.1183162

 

  1. Gong Y, Zhang Q, Ren Y, Liu Z, Abu Seman MT. Research on Fuzzy Control of methanol distillation based on SHAP (SHapley Additive exPlanations) interpretability and generative artificial intelligence. Sensors. 2025;25(5):1308. doi: 10.3390/s25051308

 

  1. Shi B, Lookman T, Xue D. Multi‐objective optimization and its application in materials science. Mater Genom Eng Adv. 2023;1(2):e14. doi: 10.1002/mgea.14

 

  1. Gou W, Shi ZZ, Zhu Y, Gu XF, et al. Multi‐objective optimization of three mechanical properties of Mg alloys through machine learning. Mater Genome Eng Adv. 2024;2(3):e54. doi: 10.1002/mgea.54

 

  1. Raj R, Tsai JT, Prajapati MJ, Jeng JY. Lattice-based interpenetrating phase composite metamaterial fabricated with hybrid material extrusion process for tunable mechanical properties. J Mater Res Technol. 2025;35: 2955-2972. doi: 10.1016/j.jmrt.2025.01.217

 

  1. Leclercq A, Brailovski V. Improving laser powder bed fusion printability of tungsten powders using simulation-driven process optimization algorithms. Materials (Basel). 2024;17(8):1865. doi: 10.3390/ma17081865

 

  1. Venugopal V, McConaha M, Anand S. Integration of design for additive manufacturing constraints with multimaterial topology optimization of lattice structures for optimized thermal and mechanical properties. J Manuf Sci Eng. 2022;144(4):041003. doi: 10.1115/1.4052193

 

  1. Jam A, du Plessis A, Lora C, Raghavendra S, Pellizzari M, Benedetti M. Manufacturability of lattice structures fabricated by laser powder bed fusion: A novel biomedical application of the beta Ti-21S alloy. Addit Manuf. 2022;50:102556. doi: 10.1016/j.addma.2021.102556

 

  1. Tyagi SA, Manjaiah M. Additive manufacturing of titanium-based lattice structures for medical applications – A review. Bioprinting. 2023;30:e00267. doi: 10.1016/j.bprint.2023.e00267

 

  1. Khan N, Riccio A. A systematic review of design for additive manufacturing of aerospace lattice structures: Current trends and future directions. Prog Aerospace Sci. 2024;149:101021. doi: 10.1016/j.paerosci.2024.101021
Share
Back to top
Engineering Science in Additive Manufacturing, Published by AccScience Publishing