Machine learning in image-based metal additive manufacturing process monitoring and control: A review

Metal additive manufacturing (MAM) has transformed the fabrication of intricate, high-performing components for sectors such as aerospace, automotive, and healthcare. However, maintaining consistent quality remains a significant challenge due to the process’s intrinsic complexity and susceptibility to defects. Recent advances in machine learning (ML), particularly in combination with image-based monitoring and control, have demonstrated significant potential to address these limitations by enabling real-time defect detection, process optimization, and adaptive control. By leveraging techniques such as deep learning and computer vision, ML can extract actionable insights from the vast amounts of image data generated during MAM processes. This allows for the accurate identification of defects ranging from porosity and cracking to thermal distortions while simultaneously predicting anomalies and optimizing process parameters such as laser power, scanning speed, and feed rate. These developments pave the way for closed-loop control systems capable of dynamically adjusting process conditions to mitigate defects, improve part quality, and enhance overall process stability. However, significant challenges remain, including the need for high-quality labeled datasets, computationally efficient algorithms, and robust generalization across different materials, geometries, and process conditions. Addressing these challenges will require the integration of domain knowledge, physics-based models, and advanced ML techniques, alongside the establishment of standardized datasets and evaluation protocols. This review synthesizes current progress and identifies future research directions, emphasizing the transformative role of ML in advancing MAM toward fully autonomous, intelligent manufacturing systems.
- Frazier WE. Metal additive manufacturing: A review. J Mater Eng Performance. 2014;23(6):1917-1928. doi: 10.1007/s11665-014-0958-z
- Sun C, Wang Y, McMurtrey MD, Jerred ND, Liou F, Li J. Additive manufacturing for energy: A review. Appl Energy. 2021;282:116041. doi: 10.1016/j.apenergy.2020.116041
- DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components-process, structure and properties. Prog Mater Sci. 2018;92:112-224. doi: 10.1016/j.pmatsci.2017.10.001
- Gu DD, Meiners W, Wissenbach K, Poprawe R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int Mater Rev. 2012;57(3):133-164. doi: 10.1179/1743280411Y.0000000014
- Blakey-Milner B, Gradl P, Snedden G, et al. Metal additive manufacturing in aerospace: A review. Mater Des. 2021;209:110008. doi: 10.1016/j.matdes.2021.110008
- Lin X, Zhu K, Fuh JYH, Duan X. Metal-based additive manufacturing condition monitoring methods: From measurement to control. ISA Trans. 2022;120:147-166. doi: 10.1016/j.isatra.2021.03.001
- Herzog T, Brandt M, Trinchi A, Sola A, Molotnikov A. Process monitoring and machine learning for defect detection in laser-based metal additive manufacturing. J Intell Manuf. 2024;35(4):1407-1437. doi: 10.1007/s10845-023-02119-y
- Mostafaei A, Zhao C, He Y, et al. Defects and anomalies in powder bed fusion metal additive manufacturing. Curr Opin Solid State Mater Sci. 2022;26(2):100974. doi: 10.1016/j.cossms.2021.100974
- Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review. Prog Mater Sci. 2021;117:100724. doi: 10.1016/j.pmatsci.2020.100724
- Guo L, Xu W, Qi C, et al. Research progress of monitoring and control technology for metal additive manufacturing. J Nanjing Univ Aeronautics Astronautics. 2022;54(3):365-377. doi: 10.16356/j.1005-2615.2022.03.002
- Das A, Ghosh D, Lau SF, Srivastava P, Ghosh A, Ding CF. A critical review of process monitoring for laser-based additive manufacturing. Adv Eng Inform. 2024;62:102932. doi: 10.1016/j.aei.2024.102932
- Zhang Y, Shen S, Li H, Hu Y. Review of in situ and real-time monitoring of metal additive manufacturing based on image processing. Int J Adv Manuf Technol. 2022;123(1-2):1-20. doi: 10.1007/s00170-022-10178-3
- Zhang Y, Soon HG, Ye D, Fuh JYH, Zhu K. Powder-bed fusion process monitoring by machine vision with hybrid convolutional neural networks. Article. IEEE Trans Ind Inform. 2020;16(9):5769-5779. doi: 10.1109/tii.2019.2956078
- Wang Z, Iquebal AS, Bukkapatnam STS. A vision-based monitoring approach for real-time control of laser origami cybermanufacturing processes. Proc Manuf. 2018;???:1307-1317. doi: 10.1016/j.promfg.2018.07.135
- Hossain MS, Taheri H. In-situ process monitoring for metal additive manufacturing through acoustic techniques using wavelet and convolutional neural network (CNN). Int J Adv Manuf Technol. 2021;116(11-12):3473-3488. doi: 10.1007/s00170-021-07721-z
- Zhu K, Fuh JYH, Lin X. Metal-based additive manufacturing condition monitoring: A review on machine learning based approaches. IEEE ASME Trans Mechatronics. 2022;27(5):2495-2510. doi: 10.1109/tmech.2021.3110818
- Bisheh MN, Chang SI, Lei S. A layer-by-layer quality monitoring framework for 3D printing. Proceedings Paper. Comput Ind Eng. 2021;157:107314. doi: 10.1016/j.cie.2021.107314
- Qi X, Chen G, Li Y, Cheng X, Li C. Applying neural-network-based machine learning to additive manufacturing: Current applications, challenges, and future perspectives. Engineering. 2019;5(4):721-729. doi: 10.1016/j.eng.2019.04.012
- Zhao T, Yan Z, Zhang B, et al. A comprehensive review of process planning and trajectory optimization in arc-based directed energy deposition. J Manuf Process. 2024;119:235-254. doi: 10.1016/j.jmapro.2024.03.093
- Ng WL, Goh GL, Goh GD, Ten JSJ, Yeong WY. Progress and opportunities for machine learning in materials and processes of additive manufacturing. Adv Mater. 2024;36(34):e202310006. doi: 10.1002/adma.202310006
- Khorasani M, Gibson I, Ghasemi AH, Hadavi E, Rolfe B. Laser subtractive and laser powder bed fusion of metals: Review of process and production features. Rapid Prototyp J. 2023;29(5):935-958. doi: 10.1108/rpj-03-2021-0055
- Karkaria V, Goeckner A, Zha RJ, et al. Towards a digital twin framework in additive manufacturing: Machine learning and bayesian optimization for time series process optimization. J Manuf Syst. 2024;75:322-332. doi: 10.1016/j.jmsy.2024.04.023
- Cao XK, Duan CH, Luo XP, et al. Deep learning-based rapid prediction of temperature field and intelligent control of molten pool during directed energy deposition process. Addit Manuf. 2024;94:104501. doi: 10.1016/j.addma.2024.104501
- Hu KX, Guo K, Li WD, Wang YH. Temperature evolution prediction for laser directed energy deposition enabled by finite element modelling and bi-directional gated recurrent unit. Adv Manuf. 2024. doi: 10.1007/s40436-024-00511-2
- Xia C, Pan Z, Polden J, et al. A review on wire arc additive manufacturing: Monitoring, control and a framework of automated system. J Manuf Syst. 2020;57:31-45. doi: 10.1016/j.jmsy.2020.08.008
- Grasso M, Remani A, Dickins A, Colosimo BM, Leach RK. In-situ measurement and monitoring methods for metal powder bed fusion: An updated review. Measur Sci Technol. 2021;32(11):112001. doi: 10.1088/1361-6501/ac0b6b
- AbouelNour Y, Gupta N. In-situ monitoring of sub-surface and internal defects in additive manufacturing: A review. Mater Des. 2022;222:111063. doi: 10.1016/j.matdes.2022.111063
- Wang P, Yang Y, Moghaddam NS. Process modeling in laser powder bed fusion towards defect detection and quality control via machine learning: The state-of-the-art and research challenges. J Manuf Process. 2022;73:961-984. doi: 10.1016/j.jmapro.2021.11.037
- Qin J, Hu F, Liu Y, et al. Research and application of machine learning for additive manufacturing. Addit Manuf. 2022;52:102691. doi: 10.1016/j.addma.2022.102691
- Cai Y, Xiong J, Chen H, Zhang G. A review of in-situ monitoring and process control system in metal-based laser additive manufacturing. J Manuf Syst. 2023;70:309-326. doi: 10.1016/j.jmsy.2023.07.018
- Mu H, He F, Yuan L, Commins P, Wang H, Pan Z. Toward a smart wire arc additive manufacturing system: A review on current developments and a framework of digital twin. J Manuf Syst. 2023;67:174-189. doi: 10.1016/j.jmsy.2023.01.012
- Everton SK, Hirsch M, Stravroulakis P, Leach RK, Clare AT. Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des. 2016;95:431-445. doi: 10.1016/j.matdes.2016.01.099
- Chua ZY, Ahn IH, Moon SK. Process monitoring and inspection systems in metal additive manufacturing: Status and applications. Int J Precis Eng Manuf Green Technol. 2017;4(2):235-245. doi: 10.1007/s40684-017-0029-7
- Tang ZJ, Liu WW, Wang YW, et al. A review on in situ monitoring technology for directed energy deposition of metals. Int J Adv Manuf Technol. 2020;108(11-12):3437-3463. doi: 10.1007/s00170-020-05569-3
- Wu B, Ji XY, Zhou JX, et al. In situ monitoring methods for selective laser melting additive manufacturing process based on images-A review. China Foundry. 2021;18(4):265-285. doi: 10.1007/s41230-021-1111-x
- McCann R, Obeidi MA, Hughes C, et al. In-situ sensing, process monitoring and machine control in Laser Powder Bed Fusion: A review. Addit Manuf. 2021;45:102058. doi: 10.1016/j.addma.2021.102058
- Keaveney S, Shmeliov A, Nicolosi V, Dowling DP. Investigation of process by-products during the Selective Laser Melting of Ti6AL4V powder. Addit Manuf. 2020;36:101514. doi: 10.1016/j.addma.2020.101514
- Wang MJ, Kashaev N. On the maintenance of processing stability and consistency in laser-directed energy deposition via machine learning. J Manuf Syst. 2024;73:126-142. doi: 10.1016/j.jmsy.2024.01.005
- Aggarwal A, Pandiyan V, Leinenbach C, Leparoux M. Investigating laser beam shadowing and powder particle dynamics in directed energy deposition through high-fidelity modelling and high-speed imaging. Addit Manuf. 2024;91:104344. doi: 10.1016/j.addma.2024.104344
- Myers AJ, Quirarte G, Ogoke F, et al. High-resolution melt pool thermal imaging for metals additive manufacturing using the two-color method with a color camera. Addit Manuf. 2023;73:103663. doi: 10.1016/j.addma.2023.103663
- Hooper PA. Melt pool temperature and cooling rates in laser powder bed fusion. Addit Manuf. 2018;22:548-559. doi: 10.1016/j.addma.2018.05.032
- Calta NP, Martin AA, Hammons JA, et al. Pressure dependence of the laser-metal interaction under laser powder bed fusion conditions probed by in situ X-ray imaging. Addit Manufa. 2020;32:101084. doi: 10.1016/j.addma.2020.101084
- Leung CLA, Marussi S, Towrie M, et al. Laser-matter interactions in additive manufacturing of stainless steel SS316L and 13-93 bioactive glass revealed by in situ X-ray imaging. Addit Manuf. 2018;24:647-657. doi: 10.1016/j.addma.2018.08.025
- Esmaeilzadeh R, Pandiyan V, Van Petegem S, et al. Acoustic emission signature of martensitic transformation in laser powder bed fusion of Ti6Al4V-Fe, supported by operando X-ray diffraction. Addit Manuf. 2024;96:104562. doi: 10.1016/j.addma.2024.104562
- Ansari MJ, Arcondoulis EJG, Roccisano A, Schulz C, Schlaefer T, Hall C. Optimized analytical approach for the detection of process-induced defects using acoustic emission during directed energy deposition process. Addit Manuf. 2024;86:104218. doi: 10.1016/j.addma.2024.104218
- Li JC, Cao LC, Xu J, Wang SY, Zhou Q. In situ porosity intelligent classification of selective laser melting based on coaxial monitoring and image processing. Measurement. 2022;187:110232. doi: 10.1016/j.measurement.2021.110232
- Cannizzaro D, Varrella AG, Paradisot S, et al. Image analytics and machine learning for in-situ defects detection in Additive Manufacturing. In: Conference: 2021 Design, Automation & Test in Europe Conference & Exhibition; 2021. p. 603-608. doi: 10.23919/DATE51398.2021.9474175
- Iravani-Tabrizipour M, Toyserkani E. An image-based feature tracking algorithm for real-time measurement of clad height. Machine Vision Appl. 2007;18(6):343-354. doi: 10.1007/s00138-006-0066-7
- Pandiyan V, Cui D, Le-Quang T, Deshpande P, Wasmer K, Shevchik S. In situ quality monitoring in direct energy deposition process using co-axial process zone imaging and deep contrastive learning. J Manuf Process. 2022;81:1064-1075. doi: 10.1016/j.jmapro.2022.07.033
- Asadi R, Queguineur A, Wiikinkoski O, et al. Process monitoring by deep neural networks in directed energy deposition: CNN-based detection, segmentation, and statistical analysis of melt pools. Robot Comput Integr Manuf. 2024;87:102710. doi: 10.1016/j.rcim.2023.102710
- Li Y, Xiao W, Xiao H, et al. Enhanced molten-pool boundary stability for microstructure control using quasi-continuous-wave laser additive manufacturing. J Mater Res Technol. 2023;23:238-244. doi: 10.1016/j.jmrt.2022.12.172
- Gaikwad A, Chang T, Giera B, et al. In-process monitoring and prediction of droplet quality in droplet-on-demand liquid metal jetting additive manufacturing using machine learning. J Intell Manuf. 2022;33(7):2093-2117. doi: 10.1007/s10845-022-01977-2
- Kim S, Jeon I, Sohn H. Infrared thermographic imaging based real-time layer height estimation during directed energy deposition. Optics Lasers Eng. 2023;168:107661. doi: 10.1016/j.optlaseng.2023.107661
- Marshall GJ, Thompson SM, Shamsaei N. Data indicating temperature response of Ti–6Al–4V thin-walled structure during its additive manufacture via Laser Engineered Net Shaping. Data Brief. 2016;7:697-703. doi: 10.1016/j.dib.2016.02.084
- Zheng L, Zhang Q, Cao H, et al. Melt pool boundary extraction and its width prediction from infrared images in selective laser melting. Mater Des. 2019;183:108110. doi: 10.1016/j.matdes.2019.108110
- Yan DQ, Pasebani S, Fan ZY. Correlation study between the in-Situ Thermal Signatures and Surface Roughness Produced by Laser Powder Bed Fusion. In: Presented at: Proceedings of ASME 2024 19th International Manufacturing Science and Engineering Conference, MSEC2024. Vol. 1; 2024. doi: 10.1115/MSEC2024-124781
- Krauss H, Zeugner T, Zaeh MF. Layerwise monitoring of the selective laser melting process by thermography. Phys Proc. 2014;56:64-71. doi: 10.1016/j.phpro.2014.08.097
- Gould B, Wolff S, Parab N, et al. In situ analysis of laser powder bed fusion using simultaneous high-speed infrared and X-ray imaging. JOM. 2021;73(1):201-211. doi: 10.1007/s11837-020-04291-5
- Forien JB, Calta NP, DePond PJ, Guss GM, Roehling TT, Matthews MJ. Detecting keyhole pore defects and monitoring process signatures during laser powder bed fusion: A correlation between in situ pyrometry and ex situ X-ray radiography. Addit Manuf. 2020;35:101336. doi: 10.1016/j.addma.2020.101336
- Fleming TG, Rees DT, Marussi S, et al. In situ correlative observation of humping-induced cracking in directed energy deposition of nickel-based superalloys. Addit Manuf. 2023;71:103579. doi: 10.1016/j.addma.2023.103579
- Wolff SJ, Webster S, Parab ND, et al. In-situ observations of directed energy deposition additive manufacturing using high-speed X-ray imaging. JOM. 2021;73:189-200. doi: 10.1007/s11837-020-04469-x
- Silveira AC, Fechte-Heinen R, Epp J. Microstructure evolution during laser-directed energy deposition of tool steel by in situ synchrotron X-ray diffraction. Addit Manuf. 2023;63:103408. doi: 10.1016/j.addma.2023.103408
- Tempelman JR, Wachtor AJ, Flynn EB, et al. Detection of keyhole pore formations in laser powder-bed fusion using acoustic process monitoring measurements. Addit Manuf. 2022;55:102735. doi: 10.1016/j.addma.2022.102735
- Li ZW, Zhang ZF, Zhang S, et al. In-situ monitoring in laser powder bed fusion based on acoustic signal time-frequency synchrosqueezing transform and multi-scale spatially interactive fusion convolutional neural network. J Manuf Proces. 2024;126:471-486. doi: 10.1016/j.jmapro.2024.07.068
- Chen L, Yao X, Tan C, et al. In-situ crack and keyhole pore detection in laser directed energy deposition through acoustic signal and deep learning. Addit Manuf. 2023;69:103547. doi: 10.1016/j.addma.2023.103547
- Ito K, Kusano M, Demura M, Watanabe M. Detection and location of microdefects during selective laser melting by wireless acoustic emission measurement. Addit Manuf. 2021;40:101915. doi: 10.1016/j.addma.2021.101915
- Huang Y, Zhang F, Yuan J, Jia C, Ren X, Yang L. Investigation on surface morphology and microstructure of double-wire+arc additive manufactured aluminum alloys based on spectral analysis. J Manuf Process. 2022;84:639-651. doi: 10.1016/j.jmapro.2022.10.043
- Lough CS, Escano LI, Qu M, et al. In-situ optical emission spectroscopy of selective laser melting. J Manuf Process. 2020;53:336-341. doi: 10.1016/j.jmapro.2020.02.016
- Liu S, Liu W, Harooni M, Ma J, Kovacevic R. Real-time monitoring of laser hot-wire cladding of Inconel 625. Optics Laser Technol. 2014;62:124-134. doi: 10.1016/j.optlastec.2014.03.007
- Montazeri M, Nassar AR, Dunbar AJ, Rao P. In-process monitoring of porosity in additive manufacturing using optical emission spectroscopy. IISE Trans. 2020;52(5):500-515. doi: 10.1080/24725854.2019.1659525
- Pandiyan V, Drissi-Daoudi R, Shevchik S, et al. Deep transfer learning of additive manufacturing mechanisms across materials in metal-based laser powder bed fusion process. J Mater Process Technol. 2022;303:117531. doi: 10.1016/j.jmatprotec.2022.117531
- Smoqi Z, Gaikwad A, Bevans B, et al. Monitoring and prediction of porosity in laser powder bed fusion using physics-informed meltpool signatures and machine learning. J Mater Process Technol. 2022;304:117550. doi: 10.1016/j.jmatprotec.2022.117550
- Vallabh CKP, Zhao X. Melt pool temperature measurement and monitoring during laser powder bed fusion based additive manufacturing via single-camera two-wavelength imaging pyrometry (STWIP). J Manuf Process. 2022;79:486-500. doi: 10.1016/j.jmapro.2022.04.058
- Tempelman JR, Wachtor AJ, Flynn EB, et al. Sensor fusion of pyrometry and acoustic measurements for localized keyhole pore identification in laser powder bed fusion. J Mater Proces Technol. 2022;308:117656. doi: 10.1016/j.jmatprotec.2022.117656
- Mitchell JA, Ivanoff TA, Dagel D, Madison JD, Jared B. Linking pyrometry to porosity in additively manufactured metals. Addit Manuf. 2020;31:100946. doi: 10.1016/j.addma.2019.100946
- Kayacan MY, Yılmaz N. An investigation on the measurement of instantaneous temperatures in laser assisted additive manufacturing by thermal imagers. Measurement. 2020;160:107825. doi: 10.1016/j.measurement.2020.107825
- Rajaram Narayanan M, Nallusamy S. Experimental analysis of aluminium alloy metal matrix composite with tungsten carbide by in-situ method using sem. Rasayan J Chem. 2018;11(1):355-360. doi: 10.7324/RJC.2018.1112047
- Tian Q, Guo SH, Melder E, Bian L, Guo WH. Deep learning-based data fusion method for in situ porosity detection in laser-based additive manufacturing. J Manuf Sci Eng Trans ASME. 2021;143(4):041011. doi: 10.1115/1.4048957
- Mazzarisi M, Angelastro A, Latte M, Colucci T, Palano F, Campanelli SL. Thermal monitoring of laser metal deposition strategies using infrared thermography. J Manuf Process. 2023;85:594-611. doi: 10.1016/j.jmapro.2022.11.067
- Hu Y, Chen H, Liang X, Xie J. Monitoring molten pool temperature, grain size and molten pool plasma with integrated area of the spectrum during laser additive manufacturing. J Manuf Process. 2021;64:851-860. doi: 10.1016/j.jmapro.2021.01.040
- Escano LI, Clark SJ, Chuang AC, et al. An electron beam melting system for in-situ synchrotron X-ray monitoring. Addit Manuf Lett. 2022;3:100094. doi: 10.1016/j.addlet.2022.100094
- Yan Z, Liu S, Sun Z, Li K, Su N, Yang G. In situ X-ray imaging and quantitative analysis of balling during laser powder bed fusion of 316L at high layer thickness. Mater Des. 2024;248:113442. doi: 10.1016/j.matdes.2024.113442
- Li W, Lambert-Garcia R, Getley ACM, et al. AM-SegNet for additive manufacturing in situ X-ray image segmentation and feature quantification. Virtual Phys Prototyp. 2024;19(1):e2325572. doi: 10.1080/17452759.2024.2325572
- Rees DT, Leung CLA, Elambasseril J, et al. In situ X-ray imaging of hot cracking and porosity during LPBF of Al-2139 with TiB2 additions and varied process parameters. Mater Des. 2023;231:112031. doi: 10.1016/j.matdes.2023.112031
- Pandiyan V, Masinelli G, Claire N, et al. Deep learning-based monitoring of laser powder bed fusion process on variable time-scales using heterogeneous sensing and operando X-ray radiography guidance. Addit Manuf. 2022;58:103007. doi: 10.1016/j.addma.2022.103007
- Li J, Hughes AE, Yang YS, et al. Quantitative 3D characterization for kinetics of corrosion initiation and propagation in additively manufactured austenitic stainless steel. Adv Sci. 2022;9(36):e202201162. doi: 10.1002/advs.202201162
- Wu Y, Zhang D, Hou H, et al. In situ synchrotron X-ray diffraction study: Phase evolution in transition zone of TiAl/Ti2AlNb dual alloy fabricated by laser-directed energy deposition. Scripta Mater. 2025;255:116340. doi: 10.1016/j.scriptamat.2024.116340
- Wang H, Gould B, Haddad M, Wu Z, Wolff SJ. In situ X-ray imaging of directed energy deposition of metals: The comparisons of delivery performance between spherical and irregular powders. J Manuf Process. 2022;79:11-18. doi: 10.1016/j.jmapro.2022.04.037
- Ioannidou C, Konig HH, Semjatov N, et al. In-situ synchrotron X-ray analysis of metal additive manufacturing: Current state, opportunities and challenges. Mater Des. 2022;219:110790. doi: 10.1016/j.matdes.2022.110790
- Sun WB, Zhang ZH, Ren WJ, Mazumder J, Jin JH. In situ monitoring of optical emission spectra for microscopic pores in metal additive manufacturing. J Manuf Sci Eng Trans ASME. 2022;144(1):011006. doi: 10.1115/1.4051532
- Jayasinghe S, Paoletti P, Jones N, Green PL. Predicting gas pores from photodiode measurements in laser powder bed fusion builds. Prog Addit Manuf. 2024;9(4):885-888. doi: 10.1007/s40964-023-00489-6
- Luo QX, Shimanek JD, Simpson TW, Beese AM. An image-based transfer learning approach for using in situ processing data to predict laser powder bed fusion additively manufactured Ti-6Al-4V mechanical properties. 3D Print Addit Manuf. 2024;12. doi: 10.1089/3dp.2023.0186
- Kononenko DY, Nikonova V, Seleznev M, van den Brink J, Chernyavsky D. An in situ crack detection approach in additive manufacturing based on acoustic emission and machine learning. Addit Manuf Lett. 2023;5:100130. doi: 10.1016/j.addlet.2023.100130
- Chen Y, Jiang L, Peng Y, et al. Ultra-fast laser ultrasonic imaging method for online inspection of metal additive manufacturing. Optics Lasers Eng. 2023;160:107244. doi: 10.1016/j.optlaseng.2022.107244
- Rahman MA, Jamal S, Cruz MV, Silwal B, Taheri H. In situ process monitoring of multi-layer deposition in wire arc additive manufacturing (WAAM) process with acoustic data analysis and machine learning. Int J Adv Manuf Technol. 2024;132(9-10):5087-5101. doi: 10.1007/s00170-024-13641-5
- Chen L, Bi G, Yao X, et al. Multisensor fusion-based digital twin for localized quality prediction in robotic laser-directed energy deposition. Robot Comput Integr Manuf. 2023;84:102581. doi: 10.1016/j.rcim.2023.102581
- Li K, Li T, Ma M, Wang D, Deng W, Lu H. Laser cladding state recognition and crack defect diagnosis by acoustic emission signal and neural network. Optics Laser Technol. 2021;142:107161. doi: 10.1016/j.optlastec.2021.107161
- Imani F, Chen R, Diewald E, Reutzel E, Yang H. Deep learning of variant geometry in layerwise imaging profiles for additive manufacturing quality control. J Manuf Sci Eng. 2019;141(11):11101. doi: 10.1115/1.4044420
- Gobert C, Reutzel EW, Petrich J, Nassar AR, Phoha S. Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging. Addit Manuf. 2018;21:517-528. doi: 10.1016/j.addma.2018.04.005
- Niu ZY, Zhong GQ, Yu H. A review on the attention mechanism of deep learning. Neurocomputing. 2021;452:48-62. doi: 10.1016/j.neucom.2021.03.091
- Shevchik S, Le-Quang T, Meylan B, et al. Supervised deep learning for real-time quality monitoring of laser welding with X-ray radiographic guidance. Sci Rep. 2020;10(1)3389. doi: 10.1038/s41598-020-60294-x
- Zhang S, Li X, Zong M, Zhu X, Cheng D. Learning k for kNN classification. ACM Trans Intell Syst Technol. 2017;8(3):43. doi: 10.1145/2990508
- Guo Z, Yang C, Wang D, Liu H. A novel deep learning model integrating CNN and GRU to predict particulate matter concentrations. Process Saf Environ Protect. 2023;173:604-613. doi: 10.1016/j.psep.2023.03.052
- Guo S, Agarwal M, Cooper C, et al. Machine learning for metal additive manufacturing: Towards a physics-informed data-driven paradigm. J Manuf Syst. 2022;62:145-163. doi: 10.1016/j.jmsy.2021.11.003
- Zhou T, Li Q, Lu H, Cheng Q, Zhang X. GAN review: Models and medical image fusion applications. Inform Fusion. 2023;91:134-148. doi: 10.1016/j.inffus.2022.10.017
- Deng W, Liu H, Xu J, Zhao H, Song Y. An improved quantum-inspired differential evolution algorithm for deep belief network. IEEE Trans Instrum Measur. 2020;69(10):7319-7327. doi: 10.1109/tim.2020.2983233
- Wang S, Liu H, Gomes PH, Krishnamachari B. Deep reinforcement learning for dynamic multichannel access in wireless networks. IEEE Trans Cogn Commun Netw. 2018;4(2):257-265. doi: 10.1109/tccn.2018.2809722
- Zhu Q, Liu Z, Yan J. Machine learning for metal additive manufacturing: Predicting temperature and melt pool fluid dynamics using physics-informed neural networks. Computat Mechan. 2021;67(2):619-635. doi: 10.1007/s00466-020-01952-9
- Zhu T, Zheng Q, Lu Y. Physics-informed fully convolutional networks for forward prediction of temperature field and inverse estimation of thermal diffusivity. J Comput Inform Sci Eng. 2024;24(11):111004. doi: 10.1115/1.4064555
- Lu Y, Wang Y. Monitoring temperature in additive manufacturing with physics-based compressive sensing. J Manuf Syst. 2018;48:60-70. doi: 10.1016/j.jmsy.2018.05.010
- Lu Y, Shevtshenko E, Wang Y. Physics-based compressive sensing to enable digital twins of additive manufacturing processes. J Comput Inform Sci Eng. 2021;21(3):031009. doi: 10.1115/1.4050377
- Lu Y, Wang Y. An efficient transient temperature monitoring of fused filament fabrication process with physics-based compressive sensing. IISE Trans. 2019;51(2):168-180. doi: 10.1080/24725854.2018.1499054
- Lu Y, Wang Y, Pan L. A feature-based physics-constrained active dictionary learning scheme for image-based additive manufacturing process monitoring. J Manuf Process. 2023;103:261-273. doi: 10.1016/j.jmapro.2023.08.040
- Lu Y, Wang Y. Machine fault diagnosis of fused filament fabrication process with physics-constrained dictionary learning. Proc Manuf. 2021;53:726-734. doi: 10.1016/j.promfg.2021.06.071
- Lu Y, Wang Y. Active physics-constrained dictionary learning to diagnose nozzle conditions in fused filament fabrication process. Manuf Lett. 2023;35:973-982. doi: 10.1016/j.mfglet.2023.08.043
- Lin X, Shen AC, Ni DW, Fuh JYH, Zhu KP. In situ defect detection in selective laser melting using a multi-feature fusion method. IFAC PapersOnLine. 2023;56:4725-4732. doi: 10.1016/j.ifacol.2023.10.1234
- Xie J, Jiang TY, Chen X. An Image Segmentation Framework for in-Situ Monitoring in Laser Powder Bed Fusion Additive Manufacturing. In: IFAC-PapersOnLine Proceedings of 2nd Modeling, Estimation and Control Conference (MECC); 2022. p. 800-806. doi: 10.1016/j.ifacol.2022.11.280
- Feng S, Chen ZE, Bircher B, Ji Z, Nyborg L, Bigot S. Predicting laser powder bed fusion defects through in-process monitoring data and machine learning. Mater Des. 2022;222:111115. doi: 10.1016/j.matdes.2022.111115
- Li JC, Zhou Q, Huang XF, Li ML, Cao LC. In situ quality inspection with layer-wise visual images based on deep transfer learning during selective laser melting. J Intell Manuf. 2023;34(2):853-867. doi: 10.1007/s10845-021-01829-5
- Kaji F, Nguyen-Huu H, Budhwani A, Narayanan JA, Zimny M, Toyserkani E. A deep-learning-based in-situ surface anomaly detection methodology for laser directed energy deposition via powder feeding. J Manuf Process. 2022;81:624-637. doi: 10.1016/j.jmapro.2022.06.046
- Akbari P, Ogoke F, Kao NY, et al. MeltpoolNet: Melt pool characteristic prediction in metal additive manufacturing using machine learning. Addit Manuf. 2022;55:102817. doi: 10.1016/j.addma.2022.102817
- Anand N, Chang KC, Yeh AC, Chen YB, Lee MT. Development of a comprehensive model for predicting melt pool characteristics with dissimilar materials in selective laser melting processes. J Mater Process Technol. 2023;319:118069. doi: 10.1016/j.jmatprotec.2023.118069
- Kan WH, Chiu LNS, Lim CVS, et al. A critical review on the effects of process-induced porosity on the mechanical properties of alloys fabricated by laser powder bed fusion. J Mater Sci. 2022;57(21):9818-9865. doi: 10.1007/s10853-022-06990-7
- Cooke S, Ahmadi K, Willerth S, Herring R. Metal additive manufacturing: Technology, metallurgy and modelling. J Manuf Process. 2020;57:978-1003. doi: 10.1016/j.jmapro.2020.07.025
- Wu J, Huang C, Li ZL, Li RS, Wang GL, Zhang HO. An in situ surface defect detection method based on improved you only look once algorithm for wire and arc additive manufacturing. Rapid Prototyp J. 2023;29(5):910-920. doi: 10.1108/rpj-06-2022-0211
- Jamnikar ND, Liu S, Brice C, Zhang XL. In-process comprehensive prediction of bead geometry for laser wire-feed DED system using molten pool sensing data and multi-modality CNN. Int J Adv Manuf Technol. 2022;121(1- 2):903-917. doi: 10.1007/s00170-022-09248-3
- Lu Y, Wang Y. Physics-constrained dictionary learning for selective laser melting process monitoring. In: Proceedings of the 2021 IISE Annual Conference; May 2021. p. 265-270.
- Zhu YH, Wu XF, Gotawala N, Higdon DM, Yu HZ. Thermal prediction of additive friction stir deposition through Bayesian learning- enabled explainable artificial intelligence. J Manuf Syst. 2024;72:1-15. doi: 10.1016/j.jmsy.2023.10.015
- Lu Y, Wang Y. Physics based compressive sensing to monitor temperature and melt flow in laser powder bed fusion. Addit Manuf. 2021;47:102304. doi: 10.1016/j.addma.2021.102304
- Repossini G, Laguzza V, Grasso M, Colosimo BM. On the use of spatter signature for in-situ monitoring of Laser Powder Bed Fusion. Addit Manuf. 2017;16:35-48. doi: 10.1016/j.addma.2017.05.004
- Yin J, Wang D, Yang L, et al. Correlation between forming quality and spatter dynamics in laser powder bed fusion. Addit Manuf. 2020;31:100958. doi: 10.1016/j.addma.2019.100958
- Ye D, Hsi Fuh JY, Zhang Y, Hong GS, Zhu K. In situ monitoring of selective laser melting using plume and spatter signatures by deep belief networks. ISA Trans. 2018;81:96-104. doi: 10.1016/j.isatra.2018.07.021
- Li JC, Zhou Q, Cao LC, Wang YZ, Hu JX. A convolutional neural network-based multi-sensor fusion approach for in-situ quality monitoring of selective laser melting. J Manuf Syst. 2022;64:429-442. doi: 10.1016/j.jmsy.2022.07.007
- Li JC, Hu JX, Zhou Q, Zhang YH. Transfer learning-based quality monitoring of laser powder bed fusion across materials. Expert Syst Appl. 2024;252:124150. doi: 10.1016/j.eswa.2024.124150
- Terry BS, Baucher B, Chaudhary AB, Chakraborty S. Active monitoring of powder bed fusion process by training an artificial neural net classifier on layer-by-layer surface laser profilometry data. Int J Adv Manuf Technol. 2022;119(11- 12):7765-7786. doi: 10.1007/s00170-022-08722-2
- Jiang ZM, Zhang AM, Chen ZD, et al. A deep convolutional network combining layerwise images and defect parameter vectors for laser powder bed fusion process anomalies classification. J Intell Manuf. 2024;35(6):2929-2959. doi: 10.1007/s10845-023-02183-4
- Ogoke F, Pak P, Myers A, et al. Deep learning for melt pool depth contour prediction from surface thermal images via vision transformers. Addit Manuf Lett. 2024;11:100243. doi: 10.1016/j.addlet.2024.100243
- Snow Z, Reutzel EW, Petrich J. Correlating in-situ sensor data to defect locations and part quality for additively manufactured parts using machine learning. J Mater Process Technol. 2022;302:117476. doi: 10.1016/j.jmatprotec.2021.117476
- Cho HW, Shin SJ, Seo GJ, Kim DB, Lee DH. Real-time anomaly detection using convolutional neural network in wire arc additive manufacturing: Molybdenum material. J Mater Process Technol. 2022;302:117495. doi: 10.1016/j.jmatprotec.2022.117495
- Chen R, Sodhi M, Imani M, Khanzadeh M, Yadollahi A, Imani F. Brain-inspired computing for in-process melt pool characterization in additive manufacturing. Cirp J Manuf Sci Technol. 2023;41:380-390. doi: 10.1016/j.cirpj.2022.12.009
- Vallabh CKP, Sridar S, Xiong W, Zhao X. Predicting melt pool depth and grain length using multiple signatures from in-situ single camera two-wavelength imaging pyrometry for laser powder bed fusion. J Mater Process Technol. 2022;308:117724. doi: 10.1016/j.jmatprotec.2022.117724
- Zhang HL, Vallabh CKP, Zhao XY. Influence of spattering on in-process layer surface roughness during laser powder bed fusion. J Manuf Process. 2023;104:289-306. doi: 10.1016/j.jmapro.2023.08.058
- Hespeler S, Dehghan-Niri E, Juhasz M, Luo K, Halliday HS. Deep learning for in-situ layer quality monitoring during laser-based directed energy deposition (LB-DED) additive manufacturing process. Appl Sci Basel. 2022;12(18):8974. doi: 10.3390/app12188974
- Shin H, Lee J, Choi SK, Lee SW. Development of multi-defect diagnosis algorithm for the directed energy deposition (DED) process with in situ melt-pool monitoring. Int J Adv Manuf Technol. 2023;125(1-2):357-368. doi: 10.1007/s00170-022-10711-4
- Chen RM, Sodhi M, Imani M, Khanzadeh M, Yadollahi A, Imani F. Brain-inspired computing for in-process melt pool characterization in additive manufacturing. CIRP J Manuf Sci Technol. 2023;41:380-390. doi: 10.1016/j.cirpj.2022.12.009
- Balaraman RK, Hussain S, Ong JK, Tan QY, Raghavan N. Feature-driven density prediction of maraging steel additively manufactured samples using pyrometer sensor and supervised machine learning. IEEE Access. 2024;12:172892- 172909. doi: 10.1109/access.2024.3486731
- Yang Z, Zhu L, Dun Y, et al. In-situ monitoring of the melt pool dynamics in ultrasound-assisted metal 3D printing using machine learning. Virtual Phys Prototyp. 2023;18(1):e2251453. doi: 10.1080/17452759.2023.2251453
- Chen L, Yao X, Xu P, Moon SK, Bi G. Rapid surface defect identification for additive manufacturing with in-situ point cloud processing and machine learning. Virtual Phys Prototyp. 2021;16(1):50-67. doi: 10.1080/17452759.2020.1832695
- Li H, Yan SH, Fu Y. Data-fusion for in-situ monitoring and molten state identification during LPBF of NiCoCr medium-entropy alloy. Sci Rep. 2024;14(1):14697. doi: 10.1038/s41598-024-65545-9
- Behnke M, Guo S, Guo WG. Comparison of early stopping neural network and random forest for in-situ quality prediction in laser based additive manufacturing. Proc Manuf. 2021;53:656-663. doi: 10.1016/j.promfg.2021.06.065
- Ren W, Mazumder J. In-situ porosity recognition for laser additive manufacturing of 7075-Al alloy using plasma emission spectroscopy. Sci Rep. 2020;10(1):19493. doi: 10.1038/s41598-020-75131-4
- Kumar A, Sarma R, Bag S, Srivastava VC, Kapil S. Physics-informed machine learning models for the prediction of transient temperature distribution of ferritic steel in directed energy deposition by cold metal transfer. Sci Technol Weld Join. 2023;28(9):914-922. doi: 10.1080/13621718.2023.2247242
- Cao X, Duan C, Luo X, et al. Physics-informed machine learning approach for molten pool morphology prediction and process evaluation in directed energy deposition of 12CrNi2 alloy steel. J Manuf Process. 2024;119:806-826. doi: 10.1016/j.jmapro.2024.04.023
- Rawat D, Gupta MK, Sharma A. Intelligent control of robotic manipulators: A comprehensive review. Spatial Inform Res. 2023;31(3):345-357. doi: 10.1007/s41324-022-00500-2
- Rezaeifar H, Elbestawi M. Minimizing the surface roughness in L-PBF additive manufacturing process using a combined feedforward plus feedback control system. Int J Adv Manuf Technol. 2022;121(11-12):7811-7831. doi: 10.1007/s00170-022-09902-w
- Devesse W, De Baere D, Hinderdael M, Guillaume P. Hardware-in-the-loop control of additive manufacturing processes using temperature feedback. J Laser Appl. 2016;28(2):022302. doi: 10.2351/1.4943911
- Miao L, Xing F, Chai Y. Closed loop control of melt pool width in laser directed energy deposition process based on PSO-LQR. IEEE Access. 2023;11:78170-78181. doi: 10.1109/ACCESS.2023.3292789
- Gibson BT, Bandari YK, Richardson BS, et al. Melt pool size control through multiple closed-loop modalities in laser-wire directed energy deposition of Ti-6Al-4V. Addit Manuf. 2020;32:100993. doi: 10.1016/j.addma.2019.100993
- Bernauer C, Zapata A, Zaeh MF. Toward defect-free components in laser metal deposition with coaxial wire feeding through closed-loop control of the melt pool temperature. J Laser Appl. 2022;34(4):042044. doi: 10.2351/7.0000773
- Smoqi Z, Bevans BD, Gaikwad A, et al. Closed-loop control of meltpool temperature in directed energy deposition. Mater Des. 2022;215:110508. doi: 10.1016/j.matdes.2022.110508
- Cruz JG, Torres EM, Absi Alfaro SC. A methodology for modeling and control of weld bead width in the GMAW process. J Braz Soc Mechan Sci Eng. 2015;37(5):1529-1541. doi: 10.1007/s40430-014-0299-8
- Kershaw J, Yu R, Zhang Y, Wang P. Hybrid machine learning-enabled adaptive welding speed control. J Manuf Process. 2021;71:374-383. doi: 10.1016/j.jmapro.2021.09.023
- Zhang YY, Xiong J, Li DY, Zhang GJ. Height control in GMA-AM using external wire as controlling variable. Mater Manuf Process. 2023;38(8):971-979. doi: 10.1080/10426914.2022.2089892
- Tang SY, Wang GL, Zhang HO. In situ 3D monitoring and control of geometric signatures in wire and arc additive manufacturing. Topography Metrol Properties. 2019;7(2):025013. doi: 10.1088/2051-672X/ab1c98
- Dharmawan AG, Xiong Y, Foong SH, Soh GS. A Model-based Reinforcement Learning and Correction Framework for Process Control of Robotic Wire Arc Additive Manufacturing. In: Conference: 2020 IEEE International Conference on Robotics and Automation (ICRA); 2020. p. 4030-4036. doi: 10.1109/icra40945.2020.9197222
- Mireles J, Terrazas C, Gaytan SM, Roberson DA, Wicker RB. Closed-loop automatic feedback control in electron beam melting. Int J Adv Manuf Technol. 2015;78(5-8):1193-1199. doi: 10.1007/s00170-014-6708-4
- Imani F, Yao B, Chen RM, Rao P, Yang H. Joint multifractal and lacunarity analysis of image profiles for manufacturing quality control. J Manuf Sci Eng Trans ASME. 2019;141(4):044501. doi: 10.1115/1.4042579
- Wang R, Standfield B, Dou C, Law AC, Kong ZJ. Real-time process monitoring and closed-loop control on laser power via a customized laser powder bed fusion platform. Addit Manuf. 2023;66:103449. doi: 10.1016/j.addma.2023.103449
- Su Y, Wang Z, Xu X, Luo K, Lu J. Effect of closed-loop controlled melt pool width on microstructure and tensile property for Fe-Ni-Cr alloy in directed energy deposition. J Manuf Process. 2022;82:708-721. doi: 10.1016/j.jmapro.2022.08.049
- Farshidianfar MH, Khodabakhshi F, Khajepour A, Gerlich AP. Closed-loop control of microstructure and mechanical properties in additive manufacturing by directed energy deposition. Mater Sci Eng A. 2021;803:140483. doi: 10.1016/j.msea.2020.140483
- Tyralla D, Seefeld T. Temperature field based closed-loop control of laser hot wire cladding for low dilution. Procedia CIRP. 2020;94:451-455. doi: 10.1016/j.procir.2020.09.163
- Rezaeifar H, Elbestawi MA. On-line melt pool temperature control in L-PBF additive manufacturing. Int J Adv Manuf Technol. 2021;112(9-10):2789-2804. doi: 10.1007/s00170-020-06441-0
- Iordanou HN, Surgenor BW. Experimental evaluation of the robustness of discrete sliding mode control versus linear quadratic control. IEEE Trans Control Syst Technol. 1997;5(2):254-260. doi: 10.1109/87.556029
- Regulin D, Barucci R. A benchmark of approaches for closed loop control of melt pool shape in DED. Int J Adv Manuf Technol. 2023;126:1-15. doi: 10.1007/s00170-023-11042-8
- Riensche A, Bevans B, Sions J, et al. Toward Rapid Process Qualification of Laser Powder Bed Fusion: Model Predictive Control of Part Thermal History. In: Conference: ASME 2024 19th International Manufacturing Science and Engineering Conference; 2024. doi: 10.1115/MSEC2024-125241
- Kozjek D, Porter C, Carter FM 3rd, Mogonye JE, Cao J. Data-driven prediction of geometry- and toolpath sequence-dependent intra-layer process conditions variations in laser powder bed fusion. J Manuf Process. 2023;100:34-46. doi: 10.1016/j.jmapro.2023.05.021
- Huang XQ, Seede R, Karayagiz K, et al. Predictive microstructure distribution and printability maps in laser powder bed fusion for a Ni-Cu alloy. Computat Mater Sci. 2024;231:112605. doi: 10.1016/j.commatsci.2023.112605
- Favero G, Berti G, Bonesso M, et al. Experimental and numerical analyses of fluid flow inside additively manufactured and smoothed cooling channels. Int Commun Heat Mass Transfer. 2022;135:106128. doi: 10.1016/j.icheatmasstransfer.2022.106128
- Liu Y, Wang L, Brandt M. Model predictive control of laser metal deposition. Int J Adv Manuf Technol. 2019;105:1055-1067. doi: 10.1007/s00170-019-04279-9
- Zhu XB, Jiang FC, Guo CH, Wang Z, Dong T, Li HX. Prediction of melt pool shape in additive manufacturing based on machine learning methods. Optics Laser Technol. 2023;159:108964. doi: 10.1016/j.optlastec.2022.108964
- Wang Q, Michaleris P, Nassar AR, Irwin JE, Ren Y, Stutzman CB. Model-based feedforward control of laser powder bed fusion additive manufacturing. Addit Manuf. 2020;31:100985. doi: 10.1016/j.addma.2019.100985
- Zhong Q, Tian X, Huang X, Huo C, Li D. Using feedback control of thermal history to improve quality consistency of parts fabricated via large-scale powder bed fusion. Addit Manuf. 2021;42:101986. doi: 10.1016/j.addma.2021.101986
- Zeinali M, Khajepour A. Height control in laser cladding using adaptive sliding mode technique: Theory and experiment. J Manuf Sci Eng. 2010;132(4):041016. doi: 10.1115/1.4002023
- Chen L, Yao X, Chew Y, Weng F, Moon SK, Bi G. Data-driven adaptive control for laser-based additive manufacturing with automatic controller tuning. Appl Sci. 2020;10(22):7967. doi: 10.3390/app10227967
- Yeung H, Lane B, Fox J. Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing. Addit Manuf. 2019;30:100844. doi: 10.1016/j.addma.2019.100844
- Gunasegaram DR, Barnard AS, Matthews MJ, et al. Machine learning-assisted in-situ adaptive strategies for the control of defects and anomalies in metal additive manufacturing. Addit Manuf. 2024;81:104013. doi: 10.1016/j.addma.2024.104013
- Freeman F, Chechik L, Thomas B, Todd I. Calibrated closed-loop control to reduce the effect of geometry on mechanical behaviour in directed energy deposition. J Mater Process Technol. 2023;311:117823. doi: 10.1016/j.jmatprotec.2022.117823
- Lam CT, Hoang TN, Low BKH, Jaillet P. Model Fusion for Personalized Learning. In: Proceedings of the 38th International Conference on Machine Learning; 2021.
- Roca JB, Vaishnav P, Fuchs ERH, Morgan MG. Policy needed for additive manufacturing. Nat Mater. 2016;15(8):815-818. doi: 10.1038/nmat4658
- Xie XY, Wang HD, Dong LH, et al. An RFID smart structure using inkjet-printed additive manufacturing technology for metal crack characterization. Smart Mater Struct. 2024;33(11):115042. doi: 10.1088/1361-665X/ad8798
- Mehta M, Shao CH. Federated learning-based semantic segmentation for pixel-wise defect detection in additive manufacturing. J Manuf Syst. 2022;64:197-210. doi: 10.1016/j.jmsy.2022.06.010
- Wang JM, Kim ES, Kim HS, Lee BJ. A machine learning approach for predicting evaporation-induced composition variability in directed energy deposition in-situ alloying. Addit Manuf. 2024;92:104384. doi: 10.1016/j.addma.2024.104384
- Tang YF, Dehaghani MR, Sajadi P, Wang GG. Selecting subsets of source data for transfer learning with applications in metal additive manufacturing. J Intell Manuf. 2024. doi: 10.1007/s10845-024-02402-6
- Danry V, Guzelis C, Huang LD, Gershenfeld N, Maes P. From words to worlds: Exploring generative 3D models in design and fabrication. 3D Print Addit Manuf. 2024;12. doi: 10.1089/3dp.2023.0309