AccScience Publishing / ESAM / Volume 1 / Issue 1 / DOI: 10.36922/ESAM025060005
REVIEW ARTICLE

Additive manufacturing techniques for EH36 steels: Challenges and future directions

Lin Jie Justin Ang1 Jiazhao Huang1 Mui Ling Sharon Nai1 Pan Wang1*
Show Less
1 Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore
ESAM 2025, 1(1), 025060005 https://doi.org/10.36922/ESAM025060005
Received: 5 February 2025 | Revised: 16 March 2025 | Accepted: 17 March 2025 | Published online: 25 March 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Additive manufacturing (AM) has revolutionized the fabrication of metallic components, offering significant advantages in design flexibility, material efficiency, and process customization. EH36 steel, a high-strength, low-alloy material, is widely used in the marine and offshore industries due to its excellent mechanical properties and corrosion resistance. While AM presents a promising avenue for advancing the application of EH36 steel, several research gaps persist. This review provides a comprehensive overview of AM techniques applicable to EH36 steel, including powder bed fusion using a laser beam, direct energy deposition using a laser beam, and direct energy deposition using an electric arc. Key challenges in integrating additive manufactured (AMed) components with traditionally manufactured parts, such as optimizing interfaces in hybrid components and applying AM for in situ repair of large-scale marine structures, are examined, emphasizing their potential to significantly reduce costs and downtime. The review further addresses the critical need for standardization and certification of AMed EH36 steel components while proposing future research directions focused on advanced numerical simulations, digital twin technologies, and machine learning-driven process optimization to enhance their performance and reliability.

Keywords
Additive manufacturing
PBF-LB
DED-LB
DED-Arc
EH36
Marine and offshore
Funding
This research was supported by the Manufacturing, Trade, and Connectivity Programmatic Grant “Advanced Models for Additive Manufacturing (AM2)” (grant no.: M22L2b0111).
Conflict of interest
The authors have no conflicts of interest to disclose.
References
  1. Cagirici M, Guo S, Ding J, Ramamurty U, Wang P. Additive manufacturing of high-entropy alloys: Current status and challenges. Smart Mater Manuf. 2024;2:100058. doi: 10.1016/j.smmf.2024.100058

 

  1. Mehrpouya M, Dehghanghadikolaei A, Fotovvati B, Vosooghnia A, Emamian SS, Gisario A. The potential of additive manufacturing in the smart factory industrial 4.0: A review. Appl Sci. 2019;9:3865. doi: 10.3390/app9183865

 

  1. Emelogu A, Marufuzzaman M, Thompson SM, Shamsaei N, Bian L. Additive manufacturing of biomedical implants: A feasibility assessment via supply-chain cost analysis. Addit Manuf. 2016;11:97-113. doi: 10.1016/j.addma.2016.04.006

 

  1. Galarraga H, Lados DA, Dehoff RR, Kirka MM, Nandwana P. Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Addit Manuf. 2016;10:47-57. doi: 10.1016/j.addma.2016.02.003

 

  1. Gokcekaya O, Ishimoto T, Todo T, Wang P, Nakano T. Influence of powder characteristics on densification via crystallographic texture formation: Pure tungsten prepared by laser powder bed fusion. Addit Manuf Lett. 2021;1:100016. doi: 10.1016/j.addlet.2021.100016

 

  1. Wolff S, Lee T, Faierson E, Ehmann K, Cao J. Anisotropic properties of directed energy deposition (DED)-processed Ti-6Al-4V. J Manuf Proc. 2016;24:397-405. doi: 10.1016/j.jmapro.2016.06.020

 

  1. Elton ES, Traxel KD, Pascall AJ, Jeffries JR. Jeffries, Jet on demand-A pneumatically driven molten metal jetting method for printing crack-free aluminum components. Addit Manuf Lett. 2024;11:100240. doi: 10.1016/j.addlet.2024.100240

 

  1. Do T, Kwon P, Shin CS. Process development toward full-density stainless steel parts with binder jetting printing. Int J Mach Tools Manuf. 2017;121:50-60. doi: 10.1016/j.ijmachtools.2017.04.006

 

  1. Fayazfar H, Salarian M, Rogalsky A, et al. A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties. Mater Des. 2018;144:98-128. doi: 10.1016/j.matdes.2018.02.018

 

  1. Wang P, Nai MLS, Tan X, et al. Recent Progress of Additive Manufactured Ti-6Al-4V by Electron Beam Melting. In: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium-an Additive Manufacturing Conference, University of Texas at Austin; 2016. Available from: https://hdl.handle.net/2152/89622 [Last accessed on 2024 Dec 19].

 

  1. Wang P, Song J, Nai MLS, Wei J. Experimental analysis of additively manufactured component and design guidelines for lightweight structures: A case study using electron beam melting. Addit Manuf. 2020;33:101088. doi: 10.1016/j.addma.2020.101088

 

  1. Mohanavel V, Ashraff Ali KS, Ranganathan K, Allen Jeffrey J, Ravikumar MM, Rajkumar S. The roles and applications of additive manufacturing in the aerospace and automobile sector. Mater Today Proc. 2021;47:405-409. doi: 10.1016/j.matpr.2021.04.596

 

  1. Wang P, Li X, Luo S, Nai MLS, Ding J, Wei J. Additively manufactured heterogeneously porous metallic bone with biostructural functions and bone-like mechanical properties. J Mater Sci Technol. 2021;62:173-179. doi: 10.1016/j.jmst.2020.05.056

 

  1. Ng WL, An J, Chua CK. Process, material, and regulatory considerations for 3D printed medical devices and tissue constructs. Engineering. 2024;36:146-166. doi: 10.1016/j.eng.2024.01.028

 

  1. Shapira A, Dvir T. 3D Tissue and organ printing-hope and reality. Adv Sci. 2021;8:2003751. doi: 10.1002/advs.202003751

 

  1. Wang P, Nai MLS, Ng FL, et al. Revealing mechanisms underlying powder reusability of Ti-48Al-2Cr-2Nb intermetallic in electron beam powder bed fusion process. Addit Manuf. 2022;59:103155. doi: 10.1016/j.addma.2022.103155

 

  1. Zhang H, Wu B, Yi J, Rao Z, Wang P, Wang S. Elucidating the mechanism for high-temperature heat treatment induced embrittlement of laser-powder-based fusion manufactured NiTi alloy. J Mater Sci Technol. 2025;216:52-65. doi: 10.1016/j.jmst.2024.07.043

 

  1. Cobbinah PV, Matsunaga S, Toda Y, et al. Peculiar microstructural evolution and hardness variation depending on laser powder bed fusion-manufacturing condition in Ti-6Al-2Sn-4Zr-6Mo. Smart Mater Manuf. 2024;2:100050. doi: 10.1016/j.smmf.2024.100050

 

  1. Wang P, Tan X, Nai MLS, Wu J, Wei J. Deformation induced nanoscale twinning improves strength and ductility in additively manufactured titanium alloys. Mater Sci Eng A. 2022;833:142568. doi: 10.1016/j.msea.2021.142568

 

  1. Ekubaru Y, Gokcekaya O, Ishimoto T, et al. Excellent strength-ductility balance of Sc-Zr-modified Al-Mg alloy by tuning bimodal microstructure via hatch spacing in laser powder bed fusion. Mater Des. 2022;221:110976. doi: 10.1016/j.matdes.2022.110976

 

  1. Easton M, Beer A, Barnett M, et al. Magnesium alloy applications in automotive structures. JOM. 2008;60:57-62. doi: 10.1007/s11837-008-0150-8

 

  1. Wang D, Zhang P, Peng X, Yan L, Li G. Comparison of microstructure and mechanical properties of high strength and toughness ship plate steel. Materials. 2021;14:5886. doi: 10.3390/ma14195886

 

  1. Qiao K, Liu ZJ, Sun Z, Wang X. Experimental study on impact toughness of EH36 ship steel in Arctic areas. Ships Offshore Struct. 2024;19:874-881. doi: 10.1080/17445302.2023.2214494

 

  1. Mardare L, Benea L. Marine corrosion behavior of EH 36 steel in the black sea. IOP Conf Ser Mater Sci Eng. 2019;572:012007. doi: 10.1088/1757-899X/572/1/012007

 

  1. Wen P, Wang J, Jiao Z, Fu K, Li L, Guo J. Numerical simulation of temperature evolution, solid phase transformation, and residual stress distribution during multi-pass welding process of EH36 marine steel. Metals. 2024;14:476. doi: 10.3390/met14040476

 

  1. Tsay L. Microstructures and fatigue crack growth of EH36 TMCP steel weldments. Int J Fatigue. 1999;21:857-864. doi: 10.1016/S0142-1123(99)00021-3

 

  1. Wang C, Sun CN, Zhang L, Feih S, Wang P. Improving component dimensional accuracy in electron beam powder bed fusion by addressing nonlinear deformations with 3D compensation strategies. Virtual Phys Prototyp. 2024;19:e2430319. doi: 10.1080/17452759.2024.2430319

 

  1. Wu W, Tor SB, Chua CK, Leong KF, Merchant A. Investigation on processing of ASTM A131 Eh36 high tensile strength steel using selective laser melting. Virtual Phys Prototyp. 2015;10:187-193. doi: 10.1080/17452759.2015.1106091

 

  1. Wang J, Zhang M, Wang B, et al. Influence of surface porosity on fatigue life of additively manufactured ASTM A131 EH36 steel. Int J Fatigue. 2021;142:105894. doi: 10.1016/j.ijfatigue.2020.105894

 

  1. Wang J, Chew YX, Wu WJ, et al. Microstructure and mechanical properties of ASTM A131 EH36 steel fabricated by laser aided additive manufacturing. Mater Character. 2021;174:110949. doi: 10.1016/j.matchar.2021.110949

 

  1. Vahedi Nemani A, Ghaffari M, Nasiri A. Comparison of microstructural characteristics and mechanical properties of shipbuilding steel plates fabricated by conventional rolling versus wire arc additive manufacturing. Addit Manuf. 2020;32:101086. doi: 10.1016/j.addma.2020.101086

 

  1. Wang J, Wu WJ, Jing W, et al. Improvement of densification and microstructure of ASTM A131 EH36 steel samples additively manufactured via selective laser melting with varying laser scanning speed and hatch spacing. Mater Sci Eng A. 2019;746:300-313. doi: 10.1016/j.msea.2019.01.019

 

  1. Wenjin W, Beng TS, Merchant AA. Tensile properties of ASTM A131 EH36 Shipbuilding Steel Processed by Selective Laser Melting. In: Proceedings of Third International Conference on Progress in Additive Manufacturing, Nanyang Technological University, Singapore, NTU; 2018. doi: 10.25341/D4ZW26

 

  1. Wang J, Zhang M, Tan X, et al. Fatigue behavior of ASTM A131 EH36 steel samples additively manufactured with selective laser melting. Mater Sci Eng A. 2020;777:139049. doi: 10.1016/j.msea.2020.139049

 

  1. Bai Y, Chaudhari A, Wang H. Investigation on the microstructure and machinability of ASTM A131 steel manufactured by directed energy deposition. J Mater Process Technol. 2020;276:116410. doi: 10.1016/j.jmatprotec.2019.116410

 

  1. Su M, Yang S, Xu L, Zhao L, Han Y. Investigation of corrosion behavior, tensile and cyclic fracture mechanism of EH36 steel welded joints. J Mater Res Technol. 2023;27:2007-2019. doi: 10.1016/j.jmrt.2023.10.056

 

  1. Peng J, Liu J, Xiao W, Zhang X, Wu K, Zhang T. Comparative study on the corrosion behavior of two arc spraying coatings in simulated marine environments. Surf Coat Technol. 2024;486:130945. doi: 10.1016/j.surfcoat.2024.130945

 

  1. ASTM/ISO. Additive Manufacturing-General Principles- Fundamentals and Vocabulary 52900-21. Philadelphia, PA: ASTM/ISO; 2021. doi: 10.1520/F3177-21

 

  1. Ponnusamy P, Rahman Rashid RA, Masood SH, Ruan D, Palanisamy S. Mechanical properties of SLM-printed aluminium alloys: A review. Materials. 2020;13:4301. doi: 10.3390/ma13194301

 

  1. Brown B, Lough C, Wilson D, Newkirk J, Liou F. Atmosphere effects in laser powder bed fusion: A review. Materials. 2024;17:5549. doi: 10.3390/ma17225549

 

  1. Lee H, Lim CHJ, Low MJ, Tham N, Murukeshan VM, Kim YJ. Lasers in additive manufacturing: A review. Int J Precis Eng Manuf Green Tech. 2017;4:307-322. doi: 10.1007/s40684-017-0037-7

 

  1. Amano H, Ishimoto T, Hagihara K, et al. Impact of gas flow direction on the crystallographic texture evolution in laser beam powder bed fusion. Virtual Phys Prototyp. 2023;18:e2169172. doi: 10.1080/17452759.2023.2169172

 

  1. Elambasseril J, Rogers J, Wallbrink C, Munk D, Leary M, Qian M. Laser powder bed fusion additive manufacturing (LPBF-AM): the influence of design features and LPBF variables on surface topography and effect on fatigue properties. Crit Rev Solid State Mater Sci. 2023;48:132-168. doi: 10.1080/10408436.2022.2041396

 

  1. Ahn DG. Directed energy deposition (DED) process: State of the art. Int J Precis Eng Manuf Green Tech. 2021;8:703-742. doi: 10.1007/s40684-020-00302-7

 

  1. Svetlizky D, Zheng B, Vyatskikh A, et al. Laser-based directed energy deposition (DED-LB) of advanced materials. Mater Sci Eng A. 2022;840:142967. doi: 10.1016/j.msea.2022.142967

 

  1. Blinn B, Lion P, Jordan O, et al. Process-influenced fatigue behavior of AISI 316L manufactured by powder- and wire-based Laser Direct Energy Deposition. Mater Sci Eng A. 2021;818:141383. doi: 10.1016/j.msea.2021.141383

 

  1. Selema A, Ibrahim MN, Sergeant P. Metal additive manufacturing for electrical machines: Technology review and latest advancements. Energies. 2022;15:1076. doi: 10.3390/en15031076

 

  1. Caiazzo F, Alfieri V, Argenio P, Sergi V. Additive manufacturing by means of laser-aided directed metal deposition of 2024 aluminium powder: Investigation and optimization. Adv Mech Eng. 2017;9:168781401771498. doi: 10.1177/1687814017714982

 

  1. Chew YX, Ang JH, Sastry KY, Xu DQ, Kuik S, Bi GJ. Feasibility Study on Fabrication of Large-Scale Offshore Structural Steel Component Using LAAM Technology. In: Proceedings of ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, Virtual, Online; 2020. p. V003T03A001. doi: 10.1115/OMAE2020-18266

 

  1. Ríos S, Colegrove PA, Martina F, Williams SW. Analytical process model for wire + arc additive manufacturing. Addit Manuf. 2018;21:651-657. doi: 10.1016/j.addma.2018.04.003

 

  1. Williams SW, Martina F, Addison AC, Ding J, Pardal G, Colegrove P. Colegrove, wire + arc additive manufacturing. Mater Sci Technol. 2016;32:641-647. doi: 10.1179/1743284715Y.0000000073

 

  1. Ding D, Pan Z, Cuiuri D, Li H. Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol. 2015;81:465-481. doi: 10.1007/s00170-015-7077-3

 

  1. Wang F, Williams S, Colegrove P, Antonysamy AA. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V. Metal Mater Trans A. 2013;44:968-977. doi: 10.1007/s11661-012-1444-6

 

  1. Lipiäinen K, Afkhami S, Lund H, et al. Manufacturing and mechanical performance of a large-scale stainless steel vessel fabricated by wire-arc direct energy deposition. Mater Des. 2024;243:113044. doi: 10.1016/j.matdes.2024.113044

 

  1. Shi G, Zhang R, Cao Y, Yang G. A review of the vaporization behavior of some metal elements in the LPBF process. Micromachines. 2024;15:846. doi: 10.3390/mi15070846

 

  1. Vakifahmetoglu C, Hasdemir B, Biasetto L. Spreadability of metal powders for laser-powder bed fusion via simple image processing steps. Materials. 2021;15:205. doi: 10.3390/ma15010205

 

  1. Li W, Yan L, Chen X, Zhang J, Zhang X, Liou F. Directed energy depositing a new Fe-Cr-Ni alloy with gradually changing composition with elemental powder mixes and particle size’ effect in fabrication process. J Mater Process Technol. 2018;255:96-104. doi: 10.1016/j.jmatprotec.2017.12.010

 

  1. Ghoncheh MH, Shahriari A, Birbilis N, Mohammadi M. Process-microstructure-corrosion of additively manufactured steels: A review. Crit Rev Solid State Mater Sci. 2024;49:607-717. doi: 10.1080/10408436.2023.2255616

 

  1. Zheng D, Li R, Yuan T, et al. Microstructure and mechanical property of additively manufactured NiTi alloys: A comparison between selective laser melting and directed energy deposition. J Central South Univ. 2021;28:1028-1042. doi: 10.1007/s11771-021-4677-y

 

  1. Cerezo PM, Aguilera JA, Garcia-Gonzalez A, Lopez-Crespo P. Microhardness and microstructure analysis of the LPBF additively manufactured 18Ni300. Materials. 2024;17:661. doi: 10.3390/ma17030661

 

  1. Lyu T, Keshavarz MK, Patel S, et al. Melting mode driven tuning of local microstructure and hardness in laser powder bed fusion of 18Ni-300 maraging steel. Materialia. 2024;35:102113. doi: 10.1016/j.mtla.2024.102113

 

  1. Wang P, Huang P, Ng FL, et al. Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder. Mater Des. 2019;168:107576. doi: 10.1016/j.matdes.2018.107576

 

  1. Wang P, Lei Y, Ma J, et al. Influence of Mo micro-particles on crack formation, microstructure, and mechanical behaviour of laser powder bed fusion fabricated CuZrAl bulk metallic glass composites. Virtual Phys Prototyp. 2023;18:e2224307. doi: 10.1080/17452759.2023.2224307

 

  1. Meng LX, Ben DD, Yang HJ, et al. Effects of embedded spherical pore on the tensile properties of a selective laser melted Ti6Al4V alloy. Mater Sci Eng A. 2021;815:141254. doi: 10.1016/j.msea.2021.141254

 

  1. Wolff SJ, Wang H, Gould B, et al. In situ X-ray imaging of pore formation mechanisms and dynamics in laser powder-blown directed energy deposition additive manufacturing. Int J Mach Tools Manuf. 2021;166:103743. doi: 10.1016/j.ijmachtools.2021.103743

 

  1. Wang H, Pfefferkorn FE, Wolff SJ. Investigation of pore formation mechanisms induced by spherical-powder delivery in directed energy deposition using in situ high-speed X-ray imaging. Addit Manuf Lett. 2022;3:100050. doi: 10.1016/j.addlet.2022.100050

 

  1. Nagalingam AP, Shamir M, Tureyen EB, et al. Recent progress in wire-arc and wire-laser directed energy deposition (DED) of titanium and aluminium alloys. Int J Adv Manuf Technol. 2025;136:2035-2073. doi: 10.1007/s00170-024-14967-w

 

  1. Fang Q, Zhao L, Chen C, Zhu Y, Peng Y, Yin F. Effect of heat input on microstructural and mechanical properties of high strength low alloy steel block parts fabricated by wire arc additive manufacturing. Mater Today Commun. 2023;34:105146. doi: 10.1016/j.mtcomm.2022.105146

 

  1. Liu L, Wang D, Yang Y, et al. Effect of scanning strategies on the microstructure and mechanical properties of inconel 718 alloy fabricated by laser powder bed fusion. Adv Eng Mater. 2023;25:2200492. doi: 10.1002/adem.202200492

 

  1. Eichler F, Balc N, Bremen S, Nink P. Investigation of laser powder bed fusion parameters with respect to their influence on the thermal conductivity of 316L samples. J Manuf Mater Process. 2024;8:166. doi: 10.3390/jmmp8040166

 

  1. Eo DR, Park SH, Cho JW. Controlling inclusion evolution behavior by adjusting flow rate of shielding gas during direct energy deposition of AISI 316 L. Addit Manuf. 2020;33:101119. doi: 10.1016/j.addma.2020.101119

 

  1. Brennan MC, Keist JS, Palmer TA. Defects in metal additive manufacturing processes. J Materi Eng Perform. 2021;30:4808-4818. doi: 10.1007/s11665-021-05919-6

 

  1. Yao S, Wang J, Li M, et al. LPBF-Formed 2024Al alloys: Process, microstructure, properties, and thermal cracking behavior. Metals. 2023;13:268. doi: 10.3390/met13020268

 

  1. Liu X, Hu R, Zou H, et al. Investigation of cracking mechanism and yield strength associated with scanning strategy for an additively manufactured nickel-based superalloy. J Alloys Compd. 2023;938:168532. doi: 10.1016/j.jallcom.2022.168532

 

  1. Uddin SZ, Murr LE, Terrazas CA, Morton P, Roberson DA, Wicker RB. Processing and characterization of crack-free aluminum 6061 using high-temperature heating in laser powder bed fusion additive manufacturing. Addit Manuf. 2018;22:405-415. doi: 10.1016/j.addma.2018.05.047

 

  1. Svetlizky D, Das M, Zheng B, et al. Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Mater Today. 2021;49:271-295. doi: 10.1016/j.mattod.2021.03.020

 

  1. Gurmesa FD, Lemu HG, Adugna YW, Harsibo MD. Residual stresses in wire arc additive manufacturing products and their measurement techniques: A systematic review. Appl Mech. 2024;5:420-449. doi: 10.3390/applmech5030025

 

  1. Bai Y, Wang D, Li C. Research on A131 EH36 AISI 1045 bimetallic material fabricated by laser directed energy deposition. Chin J Lasers. 2022;49:1402304. doi: 10.3788/CJL202249.1402304

 

  1. Shin HS, Park KT, Lee CH, Chang KH, Van Do VN. Low temperature impact toughness of structural steel welds with different welding processes. KSCE J Civil Eng. 2015;19: 1431-1437. doi: 10.1007/s12205-015-0042-8

 

  1. ASTM. Specification for Structural Steel for Ships, A131/ A131M-19. Philadelphia, PA: ASTM; 2019. doi: 10.1520/A0131_A0131M-19

 

  1. Sun SH, Hagihara K, Nakano T. Effect of scanning strategy on texture formation in Ni-25 at.%Mo alloys fabricated by selective laser melting. Mater Des. 2018;140:307-316. doi: 10.1016/j.matdes.2017.11.060

 

  1. Ishimoto T, Morita N, Ozasa R, et al. Superimpositional design of crystallographic textures and macroscopic shapes via metal additive manufacturing-Game-change in component design. Acta Mater. 2025;286:120709. doi: 10.1016/j.actamat.2025.120709

 

  1. Sun SH, Ishimoto T, Hagihara K, Tsutsumi Y, Hanawa T, Nakano T. Excellent mechanical and corrosion properties of austenitic stainless steel with a unique crystallographic lamellar microstructure via selective laser melting. Scripta Mater. 2019;159:89-93. doi: 10.1016/j.scriptamat.2018.09.017

 

  1. Xu Z, Zhu Z, Wang P, Meenashisundaram GK, Nai SML, Wei J. Fabrication of porous CoCrFeMnNi high entropy alloy using binder jetting additive manufacturing. Addit Manuf. 2020;35:101441. doi: 10.1016/j.addma.2020.101441

 

  1. Jones R, Kovarik O, Bagherifard S, Cizek J, Lang J. Damage tolerance assessment of AM 304L and cold spray fabricated 316L steels and its implications for attritable aircraft. Eng Fract Mech. 2021;254:107916. doi: 10.1016/j.engfracmech.2021.107916

 

  1. Guo J, Goh MH, Wang P, et al. Investigation on surface integrity of electron beam melted Ti-6Al-4 V by precision grinding and electropolishing. Chin J Aeronautics. 2021;34:28-38. doi: 10.1016/j.cja.2020.08.014

 

  1. Liang Z, Qi J, Gokuldoss Prashanth K, Kang N, Wang P. Microstructure and mechanical properties of TiB2/Al-5Cu composites fabricated by multi-material laser powder bed fusion. Optics Laser Technol. 2025;181:111922. doi: 10.1016/j.optlastec.2024.111922

 

  1. Xiong XX, Liang ZX, Wang P, et al. Mechanical and thermal properties of in situ AlN/Al-12Si composite fabricated by laser powder bed fusion. Mater Character. 2024;210:113825. doi: 10.1016/j.matchar.2024.113825

 

  1. Chen M, Yang K, Wang Z, et al. Underwater laser directed energy deposition of NV E690 steel. Adv Powder Mater. 2023;2:100095. doi: 10.1016/j.apmate.2022.100095

 

  1. Zhai W, Wang P, Ng FL, Zhou W, Nai SML, Wei J. Hybrid manufacturing of γ-TiAl and Ti-6Al-4V bimetal component with enhanced strength using electron beam melting. Compos B Eng. 2021;207:108587. doi: 10.1016/j.compositesb.2020.108587

 

  1. Wang P, Nai MLS, Lu S, Bai J, Zhang B, Wei J. Study of direct fabrication of a Ti-6Al-4V impeller on a wrought Ti-6Al-4V plate by electron beam melting. JOM. 2017;69:2738-2744. doi: 10.1007/s11837-017-2610-5

 

  1. Vinoth V, Sekar T, Kumaran M. Investigations on the mechanical characteristics of the stainless steel 316L alloy fabricated by directed energy deposition for repairing application. J Mater Eng Perform. 2023;32:4138-4150. doi: 10.1007/s11665-023-07884-8

 

  1. Wang ZD, Yang K, Chen MZ, et al. High-quality remanufacturing of HSLA-100 steel through the underwater laser directed energy deposition in an underwater hyperbaric environment. Surf Coat Technol. 2022;437:128370. doi: 10.1016/j.surfcoat.2022.128370

 

  1. Kokare S, Shen J, Fonseca PP, et al. Wire arc additive manufacturing of a high-strength low-alloy steel part: Environmental impacts, costs, and mechanical properties. Int J Adv Manuf Technol. 2024;134:453-475. doi: 10.1007/s00170-024-14144-z

 

  1. Marya M, Singh V, Hascoet JY, Marya S. A metallurgical investigation of the direct energy deposition surface repair of ferrous alloys. J Mater Eng Perform. 2018;27:813-824. doi: 10.1007/s11665-017-3117-5

 

  1. Barragan De Los Rios GA, Ferreira R, Mariani FE, Da Silva EJ, Coelho RT. Study of the surface roughness of a remanufactured bimetallic AISI 1045 and 316L SS part obtained by hybrid manufacturing (DED/HSM). Int J Adv Manuf Technol. 2023;124:3185-3199. doi: 10.1007/s00170-022-09179-z

 

  1. Aprameya CR, Joladarashi S, Ramesh MR. Dry linear reciprocating wear behavior of molybdenum-reinforced SS316 laser claddings deposited by laser directed energy deposition. Results Surf Interfaces. 2025;18:100407. doi: 10.1016/j.rsurfi.2024.100407

 

  1. Li C, Peng C, Li X, et al. Initial corrosion behavior of EH36 marine steel in simulated polar marine environment. Int J Electrochem Sci. 2022;17:22126. doi: 10.20964/2022.12.10

 

  1. Guo Z, Liu E, Wang Q, et al. Effect of Mg-Ce treatment on inclusion characteristics and pitting corrosion behavior in EH420 marine steel. Metals. 2023;13:1244. doi: 10.3390/met13071244

 

  1. Seifi M, Gorelik M, Waller J, et al. Progress towards metal additive manufacturing standardization to support qualification and certification. JOM. 2017;69:439-455. doi: 10.1007/s11837-017-2265-2

 

  1. Kawalkar R, Dubey HK, Lokhande SP. A review for advancements in standardization for additive manufacturing. Mater Today Proc. 2022;50:1983-1990. doi: 10.1016/j.matpr.2021.09.333

 

  1. Shen T, Li B. Digital twins in additive manufacturing: a state-of-the-art review. Int J Adv Manuf Technol. 2024;131:63-92. doi: 10.1007/s00170-024-13092-y

 

  1. Herzog T, Brandt M, Trinchi A, Sola A, Molotnikov A. Process monitoring and machine learning for defect detection in laser-based metal additive manufacturing. J Intel Manuf. 2024;35:1407-1437. doi: 10.1007/s10845-023-02119-y

 

  1. Vastola G, Pei, QX Zhang YW. Predictive model for porosity in powder-bed fusion additive manufacturing at high beam energy regime. Addit Manuf. 2018;22:817-822. doi: 10.1016/j.addma.2018.05.042

 

  1. Vastola G, Zhang G, Pei QX, Zhang YW. Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling. Addit Manuf. 2016;12:231-239. doi: 10.1016/j.addma.2016.05.010

 

  1. Ali MH, Han YS. A finite element analysis on the effect of scanning pattern and energy on residual stress and deformation in wire arc additive manufacturing of EH36 steel. Materials. 2023;16:4698. doi: 10.3390/ma16134698

 

  1. Dharmadhikari S, Menon N, Basak A. A reinforcement learning approach for process parameter optimization in additive manufacturing. Addit Manuf. 2023;71:103556. doi: 10.1016/j.addma.2023.103556

 

  1. Nguyen DS, Park HS, Lee CM. Optimization of selective laser melting process parameters for Ti-6Al-4V alloy manufacturing using deep learning. J Manuf Process. 2020;55:230-235. doi: 10.1016/j.jmapro.2020.04.014

 

  1. Karkaria V, Goeckner A, Zha R, et al. Towards a digital twin framework in additive manufacturing: Machine learning and bayesian optimization for time series process optimization. J Manuf Syst. 2024;75:322-332. doi: 10.1016/j.jmsy.2024.04.023

 

  1. Mondal S, Gwynn D, Ray A, Basak A. Investigation of melt pool geometry control in additive manufacturing using hybrid modeling. Metals. 2020;10:683. doi: 10.3390/met10050683

 

  1. Li X, Wang P, Zhao M, Su X, Tan YH, Ding J. Customizable anisotropic microlattices for additive manufacturing: Machine learning accelerated design, mechanical properties and structural-property relationships. Addit Manuf. 2024;89:104248. doi: 10.1016/j.addma.2024.104248

 

  1. Schmitt AM, Sauer C, Höfflin D, Schiffler A. Powder bed monitoring using semantic image segmentation to detect failures during 3D metal printing. Sensors (Basel). 2023;23:4183. doi: 10.3390/s23094183

 

  1. Herzog T, Brandt M, Trinchi A, Sola A, Hagenlocher C, Molotnikov A. Defect detection by multi-axis infrared process monitoring of laser beam directed energy deposition. Sci Rep. 2024;14:3861. doi: 10.1038/s41598-024-53931-2

 

  1. Chen L, Yao X, Xu P, Moon SK, Bi G. Rapid surface defect identification for additive manufacturing with in-situ point cloud processing and machine learning. Virtual Phys Prototyp. 2021;16:50-67. doi: 10.1080/17452759.2020.1832695

 

  1. Ng WL, Goh GL, Goh GD, Ten JSJ, Yeong WY. Progress and opportunities for machine learning in materials and processes of additive manufacturing. Adv Mater. 2024;36:2310006. doi: 10.1002/adma.202310006

 

  1. Jin Z, Zhang Z, Demir K, Gu GX. Machine learning for advanced additive manufacturing. Matter. 2020;3:1541-1556. doi: 10.1016/j.matt.2020.08.023

 

Share
Back to top
Engineering Science in Additive Manufacturing, Published by AccScience Publishing