Autonomic dysfunction and cardiovascular outcomes: Pathophysiological mechanisms and clinical implications
The autonomic nervous system is fundamental for maintaining cardiovascular homeostasis by integrating sympathetic and parasympathetic activity across central and peripheral circuits. Disruption of this finely tuned regulation, known as autonomic dysfunction, has emerged as a critical determinant of cardiovascular risk. Mechanistically, autonomic imbalance is characterized by reduced vagal activity, impaired baroreflex sensitivity, and heightened sympathetic drive, all of which contribute to hemodynamic instability, arrhythmogenesis, and adverse clinical outcomes. Baroreflex sensitivity and heart rate variability have been identified as independent predictors of mortality in post-myocardial infarction patients and individuals with chronic heart failure, providing incremental prognostic value beyond left ventricular function and conventional risk factors. Moreover, systemic diseases such as diabetes mellitus can precipitate cardiovascular autonomic neuropathy, a complication associated with silent myocardial ischemia, arrhythmias, and increased mortality. Wearable sensors and artificial intelligence-based analytic platforms enable continuous and non-invasive monitoring of autonomic function, facilitating earlier detection of subclinical abnormalities and supporting the integration of autonomic indices into prognostic models. Beyond conventional heart rate variability, advanced autonomic markers such as deceleration capacity and heart rate turbulence, supported by guideline-endorsed testing strategies and digital monitoring tools, provide incremental prognostic value. These advances represent a major step toward personalized cardiovascular medicine, in which autonomic dysfunction can serve not only as a mechanistic explanation of disease but also as a therapeutic and preventive target. Recognition of its mechanistic, diagnostic, and prognostic implications is essential for developing innovative strategies to reduce cardiovascular morbidity and mortality.
- Goldberger JJ, Arora R, Buckley U, Shivkumar K. Autonomic nervous system dysfunction: JACC focus seminar. J Am Coll Cardiol. 2019;73(10):1189-1206. doi: 10.1016/j.jacc.2018.12.064
- Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: Update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982-3021. doi: 10.1016/j.jacc.2020.11.010
- Freeman R. Clinical practice. Neurogenic orthostatic hypotension. N Engl J Med. 2008;358(6):615-624. doi: 10.1056/nejmcp074189
- La Rovere MT, Bigger JT Jr., Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (autonomic tone and reflexes after myocardial ınfarction) investigators. Lancet. 1998;351(9101):478-484. doi: 10.1016/s0140-6736(97)11144-8
- Florea VG, Cohn JN. The autonomic nervous system and heart failure. Circ Res. 2014;114(11):1815-1826. doi: 10.1161/cırcresaha.114.302589
- Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115(3):387-397. doi: 10.1161/cırculatıonaha.106.634949
- Hughes A, Shandhi MM, Master H, Dunn J, Brittain E. Wearable devices in cardiovascular medicine. Circ Res. 2023;132(5):652-670. doi: 10.1161/cırcresaha.122.322389
- La Rovere MT, Pinna GD, Maestri R, et al. Prognostic implications of baroreflex sensitivity in heart failure patients in the beta-blocking era. J Am Coll Cardiol. 2009;53(2): 193-199. doi: 10.1016/j.jacc.2008.09.034
- Mitchell GF. Arterial stiffness and wave reflection: Biomarkers of cardiovascular risk. Artery Res. 2009;3(2): 56-64. doi: 10.1016/j.artres.2009.02.002
- Thayer JF, Yamamoto SS, Brosschot JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol. 2010;141(2):122-131. doi: 10.1016/j.ijcard.2009.09.543
- Tsuji H, Larson MG, Venditti FJ Jr., et al. Impact of reduced heart rate variability on risk for cardiac events. The Framingham heart study. Circulation. 1996;94(11):2850-2855. doi: 10.1161/01.cir.94.11.2850
- Tracey KJ. The inflammatory reflex. Nature. 2002;420(6917):853-859. doi: 10.1038/nature01321
- Montezano AC, Touyz RM. Reactive oxygen species, vascular Noxs, and hypertension: Focus on translational and clinical research antioxid redox signal. Antioxid Redox Signal. 2014;20(1):164-182. doi: 10.1089/ars.2013.5302
- Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res. 2014;114(6):1004-1021. doi: 10.1161/cırcresaha.113.302549
- Grassi G, Mark A, Esler M. The sympathetic nervous system alterations in human hypertension. Circ Res. 2015;116(6):976-990. doi: 10.1161/cırcresaha.116.303604
- Esler M. The sympathetic system and hypertension. Am J Hypertens. 2000;13(6 Pt 2):99S-105S. doi: 10.1016/s0895-7061(00)00225-9
- Fedorowski A. Postural orthostatic tachycardia syndrome: Clinical presentation, aetiology and management. J Intern Med. 2019;285(4):352-366. doi: 10.1111/joim.12852
- Rose KM, Tyroler HA, Nardo CJ, et al. Orthostatic hypotension and the incidence of coronary heart disease: The atherosclerosis risk in communities study. Am J Hypertens. 2000;13(6 Pt 1):571-578. doi: 10.1016/s0895-7061(99)00257-5
- Nolan J, Batin PD, Andrews R, et al. Prospective study of heart rate variability and mortality in chronic heart failure: Results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-heart). Circulation. 1998;98(15):1510-1516. doi: 10.1161/01.cir.98.15.1510
- Bauer A, Kantelhardt JW, Barthel P, et al. Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: Cohort study. Lancet. 2006;367(9523):1674-1681. doi: 10.1016/S0140-6736(06)68735-7
- Goldhaber SZ, Visani L, De Rosa M. Acute pulmonary embolism: clinical outcomes in the ınternational cooperative pulmonary embolism registry (ICOPER). Lancet. 1999;353(9162):1386-1389. doi: 10.1016/s0140-6736(98)07534-5
- Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009;54(19):1747-1762. doi: 10.1016/j.jacc.2009.05.015
- Mortara A, La Rovere MT, Pinna GD, et al. Arterial baroreflex modulation of heart rate in chronic heart failure: Clinical and hemodynamic correlates and prognostic implications. Circulation. 1997;96(10):3450-3458. doi: 10.1161/01.cir.96.10.3450
- Chen PS, Chen LS, Fishbein MC, Lin SF, Nattel S. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ Res. 2014;114(9):1500-1515. doi: 10.1161/cırcresaha.114.303772
- Coumel P. Autonomic influences in atrial tachyarrhythmias. J Cardiovasc Electrophysiol. 1996;7(10):999-1007. doi: 10.1111/j.1540-8167.1996.tb00474.x
- Schwartz PJ, La Rovere MT, Vanoli E. Autonomic nervous system and sudden cardiac death. Experimental basis and clinical observations for post-myocardial infarction risk stratification. Circulation. 1992;85(1 Suppl):I77-I91.
- Spallone V, Ziegler D, Freeman R, et al. Cardiovascular autonomic neuropathy in diabetes: Clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev. 2011;27(7):639-653. doi: 10.1002/dmrr.1239
- Kaufmann H, Biaggioni I. Autonomic failure in neurodegenerative disorders. Semin Neurol. 2003;23(4):351-363. doi: 10.1055/s-2004-817719
- Taylor CE, Arnold AC, Fu Q, Shibao CA. Sex differences in cardiovascular autonomic control: İntroduction to the special issue. Clin Auton Res. 2020;30(5):365-367. doi: 10.1007/s10286-020-00732-y
- Farrell MC, Giza RJ, Shibao CA. Race and sex differences in cardiovascular autonomic regulation. Clin Auton Res. 2020;30(5):371-379. doi: 10.1007/s10286-020-00723-z
- La Rovere MT, Pinna GD, Raczak G. Baroreflex sensitivity: Measurement and clinical implications. Ann Noninvasive Electrocardiol. 2008;13(2):191-207. doi: 10.1111/j.1542-474X.2008.00219.x
- Barthel P, Schneider R, Bauer A, et al. Risk stratification after acute myocardial infarction by heart rate turbulence. Circulation. 2003;108(10):1221-1226. doi: 10.1161/01.CIR.0000088783.34082.89
- Wichterle D, Melenovsky V, Malik M. Mechanisms involved in heart rate turbulence. Card Electrophysiol Rev. 2002;6(3):262-266. doi: 10.1023/a:1016385126668
- Malik M, Camm AJ. Heart rate variability and clinical cardiology. Br Heart J. 1994;71(1):3-6. doi: 10.1136/hrt.71.1.3
- Perkiömäki JS, Zareba W, Ruta J, et al. Fractal and complexity measures of heart rate dynamics after acute myocardial infarction. Am J Cardiol. 2001;88(7):777-781. doi: 10.1016/s0002-9149(01)01851-3
- Benditt DG, Nguyen JT. Syncope: Therapeutic approaches. J Am Coll Cardiol. 2009;53(19):1741-1751. doi: 10.1016/j.jacc.2008.12.065
- Vallbo AB, Hagbarth KE, Torebjörk HE, Wallin BG. Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev. 1979;59(4):919-957. doi: 10.1152/physrev.1979.59.4.919
- Steinhubl SR, Waalen J, Edwards AM, et al. Effect of a home-based wearable continuous ECG monitoring patch on detection of undiagnosed atrial fibrillation: The mSToPS randomized clinical trial. JAMA. 2018;320(2):146-155. doi: 10.1001/jama.2018.8102
- Piwek L, Ellis DA, Andrews S, Joinson A. The rise of consumer health wearables: Promises and barriers. PLoS Med. 2016;13(2):e1001953. doi: 10.1371/journal.pmed.1001953
- Rajendra Acharya U, Paul Joseph K, Kannathal N, Lim CM, Suri JS. Heart rate variability: A review. Med Biol Eng Comput. 2006;44(12):1031-1051. doi: 10.1007/s11517-006-0119-0
- Huikuri HV, Stein PK. Clinical application of heart rate variability after acute myocardial infarction. Front Physiol. 2012;3:41. doi: 10.3389/fphys.2012.00041
- Packer M, Coats AJ, Fowler MB, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med. 2001;344(22):1651-1658. doi: 10.1056/nejm200105313442201
- Grassi G, Quarti-Trevano F, Seravalle G, et al. Early sympathetic activation in the initial clinical stages of chronic renal failure. Hypertension. 2011;57(4):846-851. doi: 10.1161/hypertensıonaha.110.164780
- Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119-1131. doi: 10.1056/nejmoa1707914
- Iellamo F, Manzi V, Caminiti G, et al. Dose-response relationship of baroreflex sensitivity and heart rate variability to individually-tailored exercise training in patients with heart failure. Int J Cardiol. 2013;166(2):334-339. doi: 10.1016/j.ijcard.2011.10.082
- Heusser K, Tank J, Engeli S, et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension. 2010;55(3):619-626. doi: 10.1161/hypertensıonaha.109.140665
- De Ferrari GM, Crijns HJ, Borggrefe M, et al. Chronic vagus nerve stimulation: A new and promising therapeutic approach for chronic heart failure. Eur Heart J. 2011;32(7):847-855. doi: 10.1093/eurheartj/ehq391
- Böhm M, Ewen S, Kindermann I, Linz D, Ukena C, Mahfoud F. Renal denervation and heart failure. Eur J Heart Fail. 2014;16(6):608-613. doi: 10.1002/ejhf.83
- Vilímek Z, Kantor J, Krejčí J, et al. The effect of low frequency sound on heart rate variability and subjective perception: A randomized crossover study. Healthcare (Basel). 2022;10(6):1024. doi: 10.3390/healthcare10061024
- Niu M, Zhao R, Wang J. The effects of a music intervention on the autonomic nervous system during recovery from strenuous exercise. Ann Noninvasive Electrocardiol. 2024;29(1):e13096. doi: 10.1111/anec.13096
- Martins V, Allen MS, Borges U, et al. Effects of light exposure on vagally-mediated heart rate variability: A systematic review. Neurosci Biobehav Rev. 2025;176:106241. doi: 10.1016/j.neubiorev.2025.106241
- Clancy JA, Mary DA, Witte KK, Greenwood JP, Deuchars SA, Deuchars J. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 2014;7(6):871-877. doi: 10.1016/j.brs.2014.07.031
- Lee H, Lee JH, Hwang MH, Kang N. Repetitive transcranial magnetic stimulation improves cardiovascular autonomic nervous system control: A meta-analysis. J Affect Disord. 2023;339:443-453. doi: 10.1016/j.jad.2023.07.039
- Chen S, Sun P, Wang S, Lin G, Wang T. Effects of heart rate variability biofeedback on cardiovascular responses and autonomic sympathovagal modulation following stressor tasks in prehypertensives. J Hum Hypertens. 2016;30(2):105-111. doi: 10.1038/jhh.2015.27
- Lopez-Buenafe GR, Alonso-Cabrera JA, Marcuello C, et al. Fabrication and characterization of PEDOT: PSS-based microstructured electrodes for in vitro cell culture. Adv Mater Interfaces. 2025;12(20):e202500097. doi: 10.1002/admi.202500097
- Roshanbinfar K, Schiffer M, Carls E, et al. Electrically conductive collagen-PEDOT: PSS hydrogel prevents post-ınfarct cardiac arrhythmia and supports hiPSC-cardiomyocyte function. Adv Mater. 2024;36(28):e2403642. doi: 10.1002/adma.202403642
- Huikuri HV, Castellanos A, Myerburg RJ. Sudden death due to cardiac arrhythmias. N Engl J Med. 2001;345(20):1473-1482. doi: 10.1056/nejmra000650
- Stein PK, Domitrovich PP, Huikuri HV, Kleiger RE, Cast Investigators. Traditional and nonlinear heart rate variability are each independently associated with mortality after myocardial infarction. J Cardiovasc Electrophysiol. 2005;16(1):13-20. doi: 10.1046/j.1540-8167.2005.04358.x
- Ishaque S, Khan N, Krishnan S. Trends in heart-rate variability signal analysis. Front Digit Health. 2021;3:639444. doi: 10.3389/fdgth.2021.639444
- Assimes TL, Roberts R. Genetics: Implications for prevention and management of coronary artery disease. J Am Coll Cardiol. 2016;68(25):2797-2818. doi: 10.1016/j.jacc.2016.10.039
- Abraham WT, Zile MR, Weaver FA, et al. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction. JACC Heart Fail. 2015;3(6):487-496. doi: 10.1016/j.jchf.2015.02.006
- Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res. 2007;100(4):460-473. doi: 10.1161/01.RES.0000258450.44413.96
