A streamlit-powered cloud platform for machine learning-driven early detection of cardiovascular diseases
Cardiovascular diseases (CVDs) are a major contributor to global morbidity and mortality, highlighting the need for early detection and prevention. This study introduces CardioPredict AI, a cloud-based system using advanced machine learning (ML) for CVD prediction. It offers scalable, accessible, and real-time diagnosis. The system leverages a comprehensive patient dataset that integrates multiple clinical features, including age, cholesterol levels, and blood pressure. Data preprocessing involved imputation, normalization, one-hot encoding, and the selection of 12 key features. The random forest model achieved an accuracy of 90.21%, a recall of 94.75%, and an F1-score of 91.31%, meeting the medical standards for heart disease prediction (recall >90%; false negatives <20). Cross-validation yielded a recall of 0.8940 ± 0.0889. Key features include personalized recommendations, real-time risk assessment through a Streamlit application, SHapley Additive exPlanation-based interpretability, and a dashboard for patient metrics. This study highlights the potential of ML and cloud computing to reduce the burden of CVDs through early detection.
- Lawton JS, Tamis-Holland JE, Bangalore S, et al. 2021 ACC/ AHA/SCAI guideline for coronary artery revascularization: A report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. Circulation. 2022;145(3):e18-e114. doi: 10.1161/CIR.0000000000001038
- Al-Zaiti SS, Alghwiri AA, Hu X, et al. A clinician’s guide to understanding and critically appraising machine learning studies: A checklist for ruling out bias using standard tools in machine learning (ROBUST-ML). Eur Heart J Digit Health. 2022;3(2):125-140. doi: 10.1093/ehjdh/ztac016
- Anusha KS, Radhika AD. A comprehensive analysis of technique’s used to predict heart disease. Int J Sci Res Comput Sci Eng Inf Technol. 2019;5(3):380-383. doi: 10.32628/CSEIT1953117
- Alshraideh M, Alshraideh N, Alshraideh A, Alkayed Y, Al Trabsheh Y, Alshraideh B. Enhancing heart attack prediction with machine learning: A study at Jordan University Hospital. Appl Comput Intell Soft Comput. 2024;2024:5080332. doi: 10.1155/2024/5080332
- Lundberg SM, Lee SI. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst. 2017;30:4765-4774. doi: 10.48550/arXiv.1705.07874
- Su X, Xu Y, Tan Z, et al. Prediction for cardiovascular diseases based on laboratory data: An analysis of random forest model. J Clin Lab Anal. 2020;34(9):e23421. doi: 10.1002/jcla.23421
- Bharti S, Singh SN. Analytical Study of Heart Disease Prediction Compared with Different Algorithms. In: Proceedings of the International Conference on Computing, Communication & Automation (ICCCA). Greater Noida, India; 2015. p. 78-82. doi: 10.1109/CCAA.2015.7148347
- Purushottam, Saxena K, Sharma R. Efficient heart disease prediction system. Procedia Comput Sci. 2016;85:962-969. doi: 10.1016/j.procs.2016.05.288
- Dwivedi AK. Performance evaluation of different machine learning techniques for predicting heart disease. Neural Comput Appl. 2018;29:685-693. doi: 10.1007/s00521-016-2604-1
- Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthc J. 2021;8(2):e188-e194. doi: 10.7861/fhj.2021-0095
- Liu T, Krentz A, Lu L, Curcin V. Machine learning based prediction models for cardiovascular disease risk using electronic health records data: Systematic review and meta-analysis. Eur Heart J Digit Health. 2024;6(1):7-22. doi: 10.1093/ehjdh/ztae080
- Ghose P, Oliullah K, Mahbub MK, Biswas M, Uddin KN, Jamil HM. Explainable AI assisted heart disease diagnosis through effective feature engineering and stacked ensemble learning. Expert Syst Appl. 2025;265:125928. doi: 10.1016/j.eswa.2024.125928
- Shah P, Shukla M, Dholakia NH, Gupta H. Predicting cardiovascular risk with hybrid ensemble learning and explainable AI. Sci Rep. 2025;15:17927. doi: 10.1038/s41598-025-01650-7
- El-Sofany H, Bouallegue B, El-Latif YM. A proposed technique for predicting heart disease using machine learning algorithms and an explainable AI method. Sci Rep. 2024;14(1):23277. doi: 10.1038/s41598-024-74656-2
- Mathew J, Pagliaro JA, Elumalai S, et al. Developing a multisensor-based machine learning technology (Aidar decompensation index) for real-time automated detection of post-COVID-19 condition: Protocol for an observational study. JMIR Res Protoc. 2025;14:e54993. doi: 10.2196/54993
- Dharma A, Sihombing P, Efendi S, Mawengkang H, Turnip A. Portable holter with cloud-based learning analytics for real-time health monitoring. J Biomed Phys Eng. 2025;15(4):393-406. doi: 10.31661/jbpe.v0i0.2411-1856
- Doppala BP, Bhattacharyya D. Cardiovascular_Disease_ Dataset (Version 1) [Data set], Mendeley Data. Lincoln University College. 2021. doi: 10.17632/dzz48mvjht.1
- Dua D, Graff C. Heart Disease Dataset. UCI Machine Learning Repository; 2019. Available from: https://archive. ics.uci.edu/ml/datasets/heart+disease [Last accessed on 2025 Nov 10].
- Janosi A, Steinbrunn W, Pfisterer M, Detrano R. Heart Disease [Dataset]. UCI Machine Learning Repository. UCI Machine Learning Repository: California, United states of America; 1989. doi: 10.24432/C52P4X
- Dua D, Graff C. Statlog (Heart) Dataset. UCI Machine Learning Repository; 2021. Available from: https://archive. ics.uci.edu/ml/datasets/statlog+(heart) [Last accessed on 2025 Nov 10].
- Anand N. Heart Attack Prediction Dataset. Kaggle; 2018. Available from: https://www.kaggle.com/datasets/imnikhilanand/heart-attack-prediction?utm_source=chat gpt.com [Last accessed on 2025 Nov 10].
- Doppala BP, Bhattacharyya D, Janarthanan M, Baik N. A reliable machine intelligence model for accurate identification of cardiovascular diseases using ensemble techniques. J Healthc Eng. 2022;2022:2585235. doi: 10.1155/2022/2585235
- Adeyeye AC, Adedayo JS, Kolawole IA, Matanmi OG. Prediction of patients’ outcomes in cardiovascular disease. Biomed Stat Inform. 2025;10(2):39-45. doi: 10.11648/j.bsi.20251002.13
