A commentary on “Local DIO2 Elevation Is an Adaption in Malformed Cerebrovasculature”

This commentary discusses the study “Local DIO2 Elevation Is an Adaption in Malformed Cerebrovasculature.” The authors investigated the role of iodothyronine deiodinase 2 (DIO2), an enzyme that converts thyroxine (T4) to active triiodothyronine (T3), and thyroid hormone (TH) signaling in cerebrovascular malformations. Using single-cell transcriptomic analyses of two prototypical malformations, cerebral cavernous malformations (CCMs) and brain arteriovenous malformations (AVMs), they identified activated TH signaling accompanied by elevated DIO2 expression in fibroblasts isolated from lesion samples. Functionally, supplementation with exogenous DIO2 or T3 effectively reduced brain hemorrhage, excessive extracellular matrix remodeling, and vascular leakage in CCM mouse models (endothelial-specific Pdcd10 knockout mice) and brain AVMs (endothelial-specific KrasG12D mutant mice). Conversely, genetic silencing of DIO2 or pharmacological inhibition of TH signaling deteriorated vascular anomalies and increased hemorrhagic burden. Mechanistic investigations revealed that elevated DIO2 expression is driven by activation of the fibroblast phosphoinositide 3-kinase-protein kinase B-mammalian target of rapamycin-forkhead box K1 pathway in malformed vessels. Furthermore, the study elucidated the molecular basis by which T3 ameliorates cerebrovascular pathology: T3 administration suppressed inflammatory infiltration and restored mitochondrial homeostasis by activating the peroxisome proliferator-activated receptor gamma coactivator 1-alpha-superoxide dismutase 2/peroxiredoxin 3/glutathione peroxidase 1 axis, thereby reducing reactive oxygen species accumulation in malformed brain vessels. Collectively, the authors delineate a novel, localized DIO2-mediated adaptive response in malformed brain vessels and highlight TH signaling as a promising therapeutic target for cerebrovascular disorders.
- Li R, Tang Y, Wang H, et al. Local DIO2 elevation is an adaption in malformed cerebrovasculature. Circ Res. 2025;163:1010-1027. doi: 10.1161/circresaha.124.325857
- Hong T, Yan Y, Li J, et al. High prevalence of KRAS/BRAF somatic mutations in brain and spinal cord arteriovenous malformations. Brain. 2019;142(1):23-34. doi: 10.1093/brain/awy307
- Hong T, Xiao X, Ren J, et al. Somatic MAP3K3 and PIK3CA mutations in sporadic cerebral and spinal cord cavernous malformations. Brain. 2021;144(9):2648-2658. doi: 10.1093/brain/awab117
- Lawton MT, Rutledge WC, Kim H, et al. Brain arteriovenous malformations. Nat Rev Dis Primers. 2015;1:15008. doi: 10.1038/nrdp.2015.8
- Snellings DA, Hong CC, Ren AA, et al. Cerebral cavernous malformation: From mechanism to therapy. Circ Res. 2021;129(1):195-215. doi: 10.1161/circresaha.121.318174
- He Q, Huo R, Sun Y, et al. Cerebral vascular malformations: Pathogenesis and therapy. MedComm (2020). 2024;5(12):e70027. doi: 10.1002/mco2.70027
- Xu H, Yang Y, Zhou Q, et al. Map3k3 I441M knock-in mouse model of cerebral cavernous malformations. Stroke. 2025;56(4):1010-1025. doi: 10.1161/strokeaha.124.049935
- Fish JE, Flores Suarez CP, Boudreau E, et al. Somatic Gain of KRAS function in the endothelium is sufficient to cause vascular malformations that require MEK but Not PI3K signaling. Circ Res. 2020;127(6):727-743. doi: 10.1161/circresaha.119.316500
- Di Carlo SE, Peduto L. The perivascular origin of pathological fibroblasts. J Clin Invest. 2018;128(1):54-63. doi: 10.1172/jci93558
- Chen K, Cheong LY, Gao Y, et al. Adipose-targeted triiodothyronine therapy counteracts obesity-related metabolic complications and atherosclerosis with negligible side effects. Nat Commun. 2022;13(1):7838. doi: 10.1038/s41467-022-35470-4
- Jabbar A, Pingitore A, Pearce SHS, Zaman A, Iervasi G, Razvi S. Thyroid hormones and cardiovascular disease. Nat Rev Cardiol. 2017;14(1):39-55. doi: 10.1038/nrcardio.2016.174
- Fukunaga K. Refractory gastrointestinal bleeding treated with thyroid hormone replacement. J Clin Gastroenterol. 2001;33:145-147. doi: 10.1097/00004836-200108000-00011
- Comi AM, Bellamkonda S, Ferenc LM, Cohen BA, Germain-Lee EL. Central hypothyroidism and sturge-weber syndrome. Pediatr Neurol. 2008;39(1):58-62. doi: 10.1016/j.pediatrneurol.2008.03.018
- Zhang H, Li B, Huang Q, et al. Mitochondrial dysfunction induces ALK5-SMAD2-mediated hypovascularization and arteriovenous malformations in mouse retinas. Nat Commun. 2022;13(1):7637. doi: 10.1038/s41467-022-35262-w
- Shi D, Qi M, Zhou L, et al. Endothelial mitochondrial preprotein translocase tomm7-rac1 signaling axis dominates cerebrovascular network homeostasis. Arterioscler Thromb Vasc Biol. 2018;38(11):2665-2677. doi: 10.1161/atvbaha.118.311538