AccScience Publishing / BH / Volume 2 / Issue 3 / DOI: 10.36922/bh.2750
REVIEW

Cerebral ischemia biomarkers: Their roles in early diagnosis and prognosis with potential clinical applications

Lidija Radenovic1*
Show Less
1 Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
Brain & Heart 2024, 2(3), 2750 https://doi.org/10.36922/bh.2750
Submitted: 15 January 2024 | Accepted: 12 July 2024 | Published: 5 August 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Cerebral ischemia, caused by a disruption in blood supply to the brain, remains a significant cause of morbidity and mortality worldwide. Identifying reliable biomarkers for the early diagnosis and prognosis of cerebral ischemia is crucial for timely intervention and improved patient outcomes. This review aims to provide a comprehensive overview of the current knowledge on cerebral ischemia biomarkers, focusing on their potential role in early detection and prediction of clinical outcomes. Specifically, we discuss the current advances in the field of cerebral ischemia biomarkers, which serve as essential tools for early diagnosis and monitoring of ischemic stroke. We examine several promising biomarkers, including omics data, genetic (FOXF2 and ATP5H), physiological and neuroinflammatory biomarkers, neuroimaging markers, blood-based biomarkers (proteins, microRNAs, and metabolites), and newer modalities such as exosomes, microvesicles, and cell-free deoxyribonucleic acid (cfDNA). In addition, we highlight the challenges and future directions in translating these biomarkers into clinical practice. Standardization and reproducibility, methodological limitations, and cost and accessibility are critical challenges in the translation of biomarkers into clinical practice. Addressing these challenges requires multi-stakeholder collaborations and coordinated efforts to establish standardized protocols, improve analytical methods, and develop cost-effective biomarker assays. The use of point-of-care testing devices or miniaturized lab-on-a-chip technologies can reduce costs and improve accessibility, particularly in low-resource settings. Furthermore, collaborations between academia, industry, and regulatory agencies can facilitate the translation of biomarkers by addressing regulatory and reimbursement hurdles that affect the affordability and availability of these tests.

Keywords
Cerebral ischemia
Biomarkers
Neuroimaging
Blood-based markers
Early diagnosis
Prognosis
Monitoring
Funding
None.
Conflict of interest
The author declares that she has no competing interests.
References
  1. Zhao Y, Zhang X, Chen X, Wei Y. Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). Int J Mol Med. 2022;49(2):15. doi: 10.3892/ijmm.2021.5070

 

  1. Bivard A, Levi C, Krings T, et al. Neuroimaging standards for acute stroke patients: An update. Int J Stroke. 2018;13(6):612- 620.

 

  1. Schaeffer JJ, Leach JL, Aygun N. Neuroimaging of ischemic injury in stroke: A review for the clinician. Front Neurol. 2020;11:190.

 

  1. Campbell BC, Parsons MW. Imaging selection for acute stroke intervention. Int J Stroke. 2018;13(6):554-567. doi: 10.1177/1747493018765235

 

  1. Schirmer MD, Donahue KL, Nardin MJ, et al. Perfusion imaging versus diffusion-weighted imaging in transient ischemic attack: Is it time to change the guidelines? Stroke. 2017;48(3):556-563.

 

  1. Heldner MR. How to identify stroke mimics in patients eligible for intravenous thrombolysis? J Stroke. 2020;22(1):70-79.

 

  1. Smith LGF, Milliron E, Ho ML, et al. Advanced neuroimaging in traumatic brain injury: An overview. Neurosurg Focus. 2019;47(6):E17. doi: 10.3171/2019.9.FOCUS19652

 

  1. Pluta R, Ułamek-Kozioł M. Genes associated with Alzheimer’s disease in post-ischemic brain neurodegeneration. In: Pluta R, editor. Cerebral Ischemia. Ch. 3. Brisbane, AU: Exon Publications; 2021.

 

  1. Kimura R. Variants in MTHFR gene are and genetic susceptibility to ischemic stroke: A meta-analysis. J Clin Neurosci. 2018;47:158-165.

 

  1. Yao H, Zhang W, Jiang X, et al. Differential expression analysis of ATP5H in stroke and the development of ischemic tolerance. J Stroke Cerebrovas Dis. 2020;29(11):105090.

 

  1. Cai Y, Zhuang YK, Wu XY, et al. Serum hypoxia-inducible factor 1alpha levels correlate with outcomes after intracerebral hemorrhage. Ther Clin Risk Manag. 2021;17:717-726. doi: 10.2147/TCRM.S313433

 

  1. Wang J, Jiang Y, Zeng D, Zhou W, Hong X. Prognostic value of plasma HMGB1 in ischemic stroke patients with cerebral ischemia-reperfusion injury after intravenous thrombolysis. J Stroke Cerebrovasc Dis. 2020;29(9):105055. doi: 10.1016/j.jstrokecerebrovasdis.2020.105055

 

  1. Jin WN. Proteomic identification of biomarkers in the cerebrospinal fluid of acute ischemic stroke patients. Front Aging Neurosci. 2019;11:236.

 

  1. Roos N. Copeptin as a marker of severity and prognosis in patients with organ dysfunction in the intensive care unit. Crit Care. 2015;19(1):93.

 

  1. Zhou C, Zhou F, He Y, Liu Y, Cao Y. Exosomes in cerebral ischemia-reperfusion injury: Current perspectives and future challenges. Brain Sci. 2022;12(12):1657. doi: 10.3390/brainsci12121657

 

  1. Mitrečić D, Hribljan V, Jagečić D, et al. Regenerative neurology and regenerative cardiology: Shared hurdles and achievements. Int J Mol Sci. 2022;23(2):855. doi: 10.3390/ijms23020855

 

  1. Yin J. Cerebrospinal fluid metabolomics identifies a key role of glyoxylate pathway and pantothenate for mitochondrial dysfunction in experimental stroke. Cell Death Dis. 2016;7(2):e2166.

 

  1. Shin TH, Lee DY, Basith S, et al. Metabolome changes in cerebral ischemia. Cells. 2020;9(7):1630. doi: 10.3390/ cells9071630

 

  1. Lin QY. Metabolomic analysis reveals potential biomarkers and metabolic changes in experimental cerebral ischemia. Metabolomics. 2018;14(4):57.

 

  1. Wuolikainen A. Multi-platform mass spectrometry analysis of the CSF and plasma metabolomes of rigorously matched amyotrophic lateral sclerosis, Parkinson’s disease, and control subjects. Mol BioSystems. 2016;12(4):1287-1298.

 

  1. Dagonnier M, Donnan GA, Davis SM, Dewey HM, Howells DW. Acute stroke biomarkers: Are we there yet? Front Neurol. 2021;12:619721. doi: 10.3389/fneur.2021.619721

 

  1. Hu Y, Ni Z, Yu ZX, et al. Exploration of urine metabolomic profiling as potential diagnostic tool for ischemic stroke. Cell Physiol Biochem. 2018;50(6):2126-2136.

 

  1. Fan S. A urinary metabolite constellation characteristic of brain arteriovenous malformation patients. Hypertension. 2017;69(6):1209-1216.

 

  1. D’Souza K, Paramel GV, Kienesberger PC. Impact of metabolomics on renal diseases: Where are we and where can it lead us? Int J Mol Sci. 2019;20(3):E573.

 

  1. Guan L. DNA methylation located in CpG sites involved in stroke: A genome-scale analysis. Front Genet. 2020;11:589560.

 

  1. Bolton ML. Epigenetic control of stroke recovery. Epigenomics. 2014;6(2):179-194.

 

  1. Millar DS. Next-generation epigenomics: From sequencing to bedside. Clin Epigen. 2017;9:22.

 

  1. Oliveira MF, et al. S100B as a prognostic biomarker in acute cerebral ischemia. J Stroke Cerebrovasc Dis. 2020;29(2):104539.

 

  1. Huang Y, Wang Z, Huang ZX, Liu Z. Biomarkers and the outcomes of ischemic stroke. Front Mol Neurosci. 2023;16:1171101. doi: 10.3389/fnmol.2023.1171101

 

  1. Selakovic V, Raicevic R, Radenovic L. The increase of neuron-specific enolase in cerebrospinal fluid and plasma as a marker of neuronal damage in patients with acute brain infarction. J Clin Neurosci. 2005;12(5):542-547. doi: 10.1016/j.jocn.2004.07.019

 

  1. Katan M. Copeptin and neuron-specific enolase as predictors of neurologic outcome in patients with acute stroke. J Stroke Cerebrovasc Dis. 2018;27(8):2252-2258.

 

  1. Yang Y, Lv XL, Luo YY. The diagnostic value of neuron specific enolase in cerebral ischemia: A systematic review and meta-analysis. Neurol Sci. 2020;41(7):1735-1747.

 

  1. Rodrigo R, Fernández-Gajardo R, Gutiérrez R, et al. Oxidative stress and pathophysiology of ischemic stroke: Novel therapeutic opportunities. CNS Neurol Disord Drug Targets. 2013;12(5):698-714. doi: 10.2174/1871527311312050015

 

  1. Caviedes A, Lafourcade C, Soto C, et al. VEGF-induced BBB permeability is associated with an MMP-9 activity increase in cerebral ischemia: Both effects decreased by Ang-1. Front Cell Neurosci. 2017;11:18.

 

  1. Jean A, Conductier G, Manrique C, Rozas J, Martin AB. The role of BDNF signalling in neuroprotective and addictive properties of antidepressant drugs. Adv Exp Med Biol. 2018;1096:123-140.

 

  1. Pluta R, Czuczwar SJ, Januszewski S, Jabłoński M. The many faces of post-ischemic tau protein in brain neurodegeneration of the Alzheimer’s disease type. Cells. 2021;10(9):2213. doi: 10.3390/cells10092213

 

  1. Yan T, Venkat P, Ye X, Chopp M, Zacharek A. Adjuvant treatment with a combination of an anti-tau antibody and GDNF enhances recovery from traumatic brain injury. J Neurotrauma. 2017;34(5):1040-1052.

 

  1. Wang X, Wang M, Xu J, Tang P. Amyloid-β deposition in acute ischemic stroke: A histopathological study in humans. Stroke. 2020;51(8):2413-2422.

 

  1. Pluta R, Januszewski S, Czuczwar SJ. Post-ischemic neurodegeneration of the hippocampus resembling Alzheimer’s disease proteinopathy. Int J Mol Sci. 2021;23(1):306. doi: 10.3390/ijms23010306

 

  1. Pluta R, Januszewski S, Jabłoński M. acetylated tau protein: A new piece in the puzzle between brain ischemia and Alzheimer’s disease. Int J Mol Sci. 2022;23(16):9174. doi: 10.3390/ijms23169174

 

  1. Zhao L, Li F, Wang H, Wang Y, Jing Z, Liu D. Tau phosphorylation affects brain-derived neurotrophic factor in post-stroke cognition impairment. Behav Brain Res. 2015;286:228-235.

 

  1. Firanescu CE, Martens RJ, Ramakers IH, et al. Staging of sporadic corticobasal syndrome biomarker correlates: A study of 132 autopsy-confirmed cases. Eur J Neurol. 2013;20(3):589-596.

 

  1. Liu M. Association of interleukin-6-174G/C polymorphism with the risk of ischemic stroke: A meta-analysis. Neurol Res. 2017;39(9):787-794.

 

  1. Yilmaz G. The role of gene polymorphisms in stroke. Arch Neurosci. 2019;6(4):e93682.

 

  1. Liu H, Ren Y, Liu W, Li F, Zhang L, Liu K. Enhanced angiogenesis by transplantation of FoxF2-overexpressing endothelial progenitor cells in a rat model of ischemic stroke. J Transl Med. 2020;18(1):216.

 

  1. Liu Y, Yang X, Ruan L, Xu Y. The diagnostic value of downregulated plasma let-7c-5p in ischemic stroke and its correlation with oxidative stress and inflammation. Aging (Albany NY). 2020;12(20):19820-19835.

 

  1. Jiang X. MicroRNA in cerebrovascular disease. J Cereb Blood Flow Metab. 2019;39(5):749-763.

 

  1. Gao W. Circulating microRNAs as biomarkers in patients with ischemic stroke. J Stroke Cerebrovasc Dis. 2019;28(10):2733-2741.

 

  1. Zhou X. Serum miR-134 as a predictor for stroke outcomes in hyperacute ischemic stroke. J Stroke Cerebrovasc Dis. 2019;28(4):1048-1054.

 

  1. Liu P. MicroRNA-146a downregulates schizophrenia-associated DGCR8 in human induced pluripotent stem cell-derived neural progenitor cells and brain tissue. Am J Stem Cells. 2016;5(1):19-23.

 

  1. Shi W, Cui Y, Song Z, Wang M, Zhang J, Zhou Q. Diagnostic value of serum cystatin C and high-sensitivity C-reactive protein for cerebral small vessel disease. Int J Neurol Neuroth. 2017;4(5):160.

 

  1. Tan P, Li H, Zhang Y, Li H. Diagnostic values of circulating miRNAs in coronary artery diseases: A systematic review and diagnostic meta-analysis. Medicine. 2017;96(32):e7514.

 

  1. Maguire JM. APOE genotype and cognitive decline in stroke patients: A systematic review and meta-analysis. Int J Geriatric Psychiatry. 2018;33(12):1591-1602.

 

  1. Li M. Association of the APOE ε4 allele with risk of sporadic cerebral amyloid angiopathy. Neurology. 2017;88(3):214- 219.

 

  1. Wong KS. Association of renin-angiotensin system gene polymorphisms with recurrent ischemic stroke in two different Asian populations: A case-control study. Neurol Sci. 2019;40(7):1347-1354.

 

  1. Traylor M, Farrall M, Holliday EG, et al. Genetic risk factors for ischemic stroke and its subtypes: A meta-analysis of genome-wide association studies. Lancet Neurol. 2019;18(12):1062-1073.

 

  1. Martínez-Miguel P, Albalate M, Durán-Laforet V, et al. Effective glutamate clearance from the systemic circulation by hemodialysis: Potential relevance for cerebral ischemia management. Artif Organs. 2021;45(10):1183-1188. doi: 10.1111/aor.13933

 

  1. Selakovic V, Korenic A, Radenovic L. Spatial and temporal patterns of oxidative stress in the brain of gerbils submitted to different duration of global cerebral ischemia. Int J Dev Neurosci. 2011;29(6):645-654. doi: 10.1016/j.ijdevneu.2011.02.009

 

  1. Alrafiah A, Alofi E, Almohaya Y, et al. Angiogenesis biomarkers in ischemic stroke patients. J Inflamm Res. 2021;14:4893-4900. doi: 10.2147/JIR.S331868

 

  1. McCabe JJ, Walsh C, Gorey S, et al. C-reactive protein, interleukin-6, and vascular recurrence after stroke: An individual participant data meta-analysis. Stroke. 2023;54(5):1289-1299. doi: 10.1161/STROKEAHA.122.040529

 

  1. Burger PM, Pradhan AD, Dorresteijn JAN, et al. C-reactive protein and risk of cardiovascular events and mortality in patients with various cardiovascular disease locations. Am J Cardiol. 2023;197:13-23.

 

  1. Chen L, Xu M, Huang Q, Wen C, Ren W. Lactate dehydrogenase predicts hemorrhagic transformation in patients with acute ischemic stroke. Gerontology. 2023;69(5):571-580. doi: 10.1159/000528951

 

  1. Henriques DP. Blood pressure variability and cerebrovascular regulation in acute ischemic stroke: Approach and future directions. Front Neurol. 2021;12:662374.

 

  1. Sekeljic V, Bataveljic D, Stamenkovic S, et al. Cellular markers of neuroinflammation and neurogenesis after ischemic brain injury in the long-term survival rat model. Brain Struct Funct. 2012;217(2):411-420. doi: 10.1007/s00429-011-0336-7

 

  1. Pluta R, Januszewski S, Czuczwar SJ. Neuroinflammation in post-ischemic neurodegeneration of the brain: Friend, foe, or both? Int J Mol Sci. 2021;22(9):4405. doi: 10.3390/ijms22094405

 

  1. Chen Z, Wang B, Miao Y, et al. The emerging role of MCP-1 in cerebral ischemia and stroke. Aging Dis. 2021;12(3):944-958.

 

  1. del Zoppo GJ, Hallenbeck JM. Advances in the vascular pathophysiology of ischemic stroke. Thromb Res. 2000;98(3):73-81. doi: 10.1016/s0049-3848(00)00218-8

 

  1. Basu S, Rickards CA, Forbes JM, et al. Oxidative stress, ischemic stroke, and neurodegenerative diseases: A translational perspective. Oxid Med Cell Longev. 2021:6655649.

 

  1. Radenovic L, Nenadic M, Ułamek-Kozioł M, et al. Heterogeneity in brain distribution of activated microglia and astrocytes in a rat ischemic model of Alzheimer’s disease after 2 years of survival. Aging (Albany NY). 2020;12(12):12251-12267. doi: 10.18632/aging.103411

 

  1. Shi K. TREM2 exerts neuroprotective effects in traumatic brain injury via suppression of inflammatory activation and microglial-meditated neuronal apoptosis. Neurosci Lett. 2019;723:131076.

 

  1. Puentes F. CD11b immunolabeling as a reliable method to quantify microglia activation and distribution in human ischemic stroke’s adult and neonatal cerebral infarcts. R Rep. 2018;3(196):1-3.

 

  1. Xing. AMP-activated protein kinase (AMPK) oscillates microglia inflammation to alleviate neuronal apoptosis via the AMPK/AKT/NF-κB signal pathway. FASEB J. 2021;35(9):e21883.

 

  1. Pluta R, Jabłoński M. Exosomes in post-ischemic brain. In: Pluta R, editor. Cerebral Ischemia. Ch. 6. Brisbane, AU: Exon Publications; 2021.

 

  1. Xie R, Zeng X, Yan H, Huang X, Deng C. Effects and mechanisms of exosomes from different sources in cerebral ischemia. Cells. 2022;11(22):3623. doi: 10.3390/cells11223623

 

  1. Tian T, Zhang HX, He CP, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 2018;150:137-149. doi: 10.1016/j.biomaterials.2017.10.012

 

  1. Selakovic V, Raicevic R, Radenovic L. Temporal patterns of soluble adhesion molecules in cerebrospinal fluid and plasma in patients with the acute brain infraction. Dis Markers. 2009;26(2):65-74. doi: 10.3233/DMA-2009-0608

 

  1. Salgado JV, Casolla B, Rossipal R, et al. Vascular cell adhesion molecule-1 as biomarker in Alzheimer’s disease and cerebrovascular ischemia. Aging Dis. 2019;10(6):1302- 1311.

 

  1. Liu F, Gao Y, Liu L, et al. ICAM-1, VCAM-1, and E-selectin expression in leukocytes and aortic endothelial cells of patients with ischemic stroke. Biomed Res Int. 2018;2018:9396103.

 

  1. Wang H, Liu L, Zheng M, et al. Elevated sP-selectin and hs-CRP levels in patients with acute cerebral infarction and the effects of atorvastatin: A random, controlled clinical study. J Mol Neurosci. 2017;61(1):117-127.

 

  1. Gu YM, Li WX, Li Q, et al. Association of soluble E-selectin, an inflammatory marker with carotid atherosclerosis in patients with stroke: A cross-sectional study. BMC Neurol. 2018;18(1):67.

 

  1. Cheng L. Circulating cell-free DNA levels correlate with neurologic outcome and lesion volumes after acute ischemic stroke. Stroke. 2017;48(1):281-283.

 

  1. Grosse GM, Blume N, Abu-Fares O, et al. Endogenous deoxyribonuclease activity and cell-free deoxyribonucleic acid in acute ischemic stroke: A cohort study. Stroke. 2022;53(4):1235-1244.

 

  1. Cao J, Roth S, Zhang S, et al. Stroke induces early recurrent vascular events by inflammasome-dependent atherosclerotic plaque rupture. bioRxiv. 2023.

 

  1. Lafarga V. Epigenetic regulation of stroke. Front Aging Neurosci. 2020;12:260.

 

  1. Sjoberg H. Circulating cell-free DNA as a prognostic biomarker in ischemic stroke. Stroke. 2019;50(10):2947- 2954.

 

  1. Roth S, Wernsdorf SR, Liesz A. The role of circulating cell-free DNA as an inflammatory mediator after stroke. Semin Immunopathol. 2023;45(3):411-425. doi: 10.1007/s00281-023-00993-5
Share
Back to top
Brain & Heart, Electronic ISSN: 2972-4139 Published by AccScience Publishing