AccScience Publishing / BH / Volume 2 / Issue 2 / DOI: 10.36922/bh.2704

Oxidative stress and neurological disorders: Therapeutic strategies and pharmacological intervention

Nikhila Khola1† Kareena Moar1† Pawan Kumar Maurya1*
Show Less
1 Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
Brain & Heart 2024, 2(2), 2704
Submitted: 10 January 2024 | Accepted: 20 March 2024 | Published: 14 May 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( )

Oxidative stress plays a significant role in cerebral biochemical dysfunction, contributing to the increased sensitivity of the central nervous system to reactive oxygen species (ROS)-mediated injury. It is characterized by an imbalance between the production of ROS and the antioxidant capacity of the cell, which results in a variety of pathological disorders and diseases, including neurological conditions such as Parkinson’s disease, Alzheimer’s disease, schizophrenia, bipolar disorder, and anxiety. In this review, we delve into the role of oxidative stress in neurodegenerative disorders. We conducted a comprehensive search across various databases, including Google Scholar, ScienceDirect, and PubMed, with a focus on literature published within the past decade. Our search utilized terms such as “oxidative stress and neurological disorders,” “pharmacological interventions for neurological disorders,” “oxidative stress, free radicals, and neurological disorders,” and “free radicals and neurological disorders. Our aim was to elucidate the relationship between oxidative stress and neurological disorders, as well as to summarize available therapies and pharmacological interventions for these conditions.

Oxidative stress
Neurological disorder
Reactive oxygen species
Pharmacological interventions
Nihila Khola is a recipient of a fellowship from the Central University of Haryana. Kareena Moar is a recipient of a junior research fellowship from the Haryana State Council for Science, Innovation and Technology (HSCIT-3946). This agency had no role in the interpretation or writing the manuscript. The Indian Council of Medical Research (ICMR), Government of India, is gratefully acknowledged by Pawan Kumar Maurya for giving financial assistance (5/10/FR/03/2021-RBMCH).
  1. Bardaweel SK, Gul M, Alzweiri M, Ishaqat A, ALSalamat HA, Bashatwah RM. Reactive oxygen species: The dual role in physiological and pathological conditions of the human body. Eurasian J Med. 2018;50(3):193-201. doi: 10.5152/eurasianjmed.2018


  1. Jomova K, Raptova R, Alomar SY, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch Toxicol. 2023;97(10):2499-2574. doi: 10.1007/s00204-023-03562-9


  1. Sun YY, Zhu HJ, Zhao RY, et al. Remote ischemic conditioning attenuates oxidative stress and inflammation via the Nrf2/HO-1 pathway in MCAO mice. Redox Biol. 2023;66:102852. doi: 10.1016/j.redox.2023.102852


  1. Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res. 2017;39(1):73-82. doi: 10.1080/01616412.2016.1251711


  1. Teleanu DM, Niculescu AG, Lungu II, et al. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int J Mol Sci. 2022;23(11):5938. doi: 10.3390/ijms23115938


  1. Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules. 2019;24(8):1583. doi: 10.3390/molecules24081583


  1. Fischer R, Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: Role of TNF. Oxid Med Cell Longev. 2015;2015:610813. doi: 10.1155/2015/610813


  1. Elfawy HA, Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age-related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci. 2019;218:165-184. doi: 10.1016/j.lfs.2018.12.029


  1. Hajam YA, Rani R, Ganie SY, et al. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells. 2022;11(3):552. doi: 10.3390/cells11030552


  1. Olufunmilayo EO, Gerke-Duncan MB, Holsinger RMD. Oxidative stress and antioxidants in neurodegenerative disorders. Antioxidants (Basel). 2023;12(2):517. doi: 10.3390/antiox12020517


  1. Simpson DSA, Oliver PL. ROS generation in microglia: Understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants (Basel). 2020;9(8):743. doi: 10.3390/antiox9080743


  1. Harman D. Free radical theory of aging. Mutat Res. 1992;275:257-266. doi: 10.1016/0921-8734(92)90030-s


  1. Ionescu-Tucker A, Cotman CW. Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol Aging. 2021;107:86-95. doi: 10.1016/j.neurobiolaging.2021.07.014


  1. Banks WA, Reed MJ, Logsdon AF, Rhea EM, Erickson MA. Healthy aging and the blood-brain barrier. Nat Aging. 2021;1(3):243-254. doi: 10.1038/s43587-021-00043-5


  1. Halliwell B. Oxidative stress and neurodegeneration: Where are we now. J Neurochem. 2006;97(6):1634-1658. doi: 10.1111/j.1471-4159.2006.03907.x


  1. Moritz B, Schmitz AE, Rodrigues ALS, Dafre AL, Cunha MP. The role of vitamin C in stress-related disorders. J Nutr Biochem. 2020;85:108459. doi: 10.1016/j.jnutbio.2020.108459


  1. Ullah A, Munir S, Badshah SL, et al. Important flavonoids and their role as a therapeutic agent. Molecules. 2020;25(22):5243. doi: 10.3390/molecules25225243


  1. Calderaro A, Patanè GT, Tellone E, et al. The neuroprotective potentiality of flavonoids on Alzheimer’s disease. Int J Mol Sci. 2022;23(23):14835. doi: 10.3390/ijms232314835


  1. Singh SK, Srivastav S, Castellani RJ, Plascencia-Villa G, Perry G. Neuroprotective and antioxidant effect of Ginkgo biloba extract against AD and other neurological disorders. Neurotherapeutics. 2019;16(3):666-674. doi: 10.1007/s13311-019-00767-8


  1. Carvalho AN, Firuzi O, Gama MJ, Horssen JV, Saso L. Oxidative stress and antioxidants in neurological diseases: Is there still hope? Curr Drug Targets. 2017;18(6):705-718. doi: 10.2174/1389450117666160401120514


  1. Khan H, Singh TG, Dahiya RS, Abdel-Daim MM. α-Lipoic acid, an organosulfur biomolecule a novel therapeutic agent for neurodegenerative disorders: An mechanistic perspective. Neurochem Res. 2022;47(7):1853-1864. doi: 10.1007/s11064-022-03598-w


  1. Singh S, Chauhan K. Pharmacological approach using doxycycline and tocopherol in rotenone induced oxidative stress, neuroinflammation and Parkinson’s like symptoms. Int J Neurosci. 2022; 132:1-6. doi: 10.1080/00207454.2022.2154670


  1. Ahmed S, Hasan MM, Heydari M, et al. Therapeutic potentials of crocin in medication of neurological disorders. Food Chem Toxicol. 2020;145:111739. doi: 10.1016/j.fct.2020.111739


  1. Zhou DD, Luo M, Huang SY, et al. Effects and mechanisms of resveratrol on aging and age-related diseases. Oxid Med Cell Longev. 2021;2021:9932218. doi: 10.1155/2021/9932218


  1. Sebastiani G, Almeida-Toledano L, Serra-Delgado M, et al. Therapeutic effects of catechins in less common neurological and neurodegenerative disorders. Nutrients. 2021;13(7):2232. doi: 10.3390/nu13072232


  1. Rahman MH, Akter R, Kamal MA. Prospective function of different antioxidant containing natural products in the treatment of neurodegenerative diseases. CNS Neurol Disord Drug Targets. 2021;20(8):694-703. doi: 10.2174/1871527319666200722153611


  1. Rauchová H. Coenzyme Q10 effects in neurological diseases. Physiol Res. 2021;70(Suppl 4):S683-S714. doi: 10.33549/physiolres.934712


  1. Mor A, Tankiewicz-Kwedlo A, Krupa A, Pawlak D. Role of Kynurenine pathway in oxidative stress during neurodegenerative disorders. Cells. 2021;10(7):1603. doi: 10.3390/cells10071603


  1. Eskandari MR, Eftekhari P, Abbaszadeh S, Noubarani M, Shafaghi B, Pourahmad J. Inhibition of different pain pathways attenuates oxidative stress in glial cells: A mechanistic view on neuroprotective effects of different types of analgesics. Iran J Pharm Res. 2021;20(3):204-215. doi: 10.22037/ijpr.2021.114476.14871


  1. Moraes CA, Zaverucha-do-Valle C, Fleurance R, Sharshar T, Bozza FA, d’Avila JC. Neuroinflammation in sepsis: Molecular pathways of microglia activation. Pharmaceuticals (Basel). 2021;14(5):416. doi: 10.3390/ph14050416


  1. Sharma V, Kaur A, Singh TG. Counteracting role of nuclear factor erythroid 2-related factor 2 pathway in Alzheimer’s disease. Biomed Pharmacother. 2020;129:110373. doi: 10.1016/j.biopha.2020.110373


  1. Johnson JA, Johnson DA, Kraft AD, et al. The Nrf2-ARE pathway: An indicator and modulator of oxidative stress in neurodegeneration. Ann N Y Acad Sci. 2008;1147:61-69. doi: 10.1196/annals.1427.036


  1. Nguyen L, Lucke-Wold BP, Mookerjee SA, et al. Role of sigma-1 receptors in neurodegenerative diseases. J Pharmacol Sci. 2015;127(1):17-29. doi: 10.1016/j.jphs.2014.12.005


  1. Piechal A, Jakimiuk A, Mirowska-Guzel D. Sigma receptors and neurological disorders. Pharmacol Rep. 2021;73(6):1582-1594. doi: 10.1007/s43440-021-00310-7


  1. Ren P, Wang J, Li N, et al. Sigma-1 receptors in depression: Mechanism and therapeutic development. Front Pharmacol. 2022;13:925879. doi: 10.3389/fphar.2022.925879


  1. Jia J, Cheng J, Wang C, Zhen X. Sigma-1 receptor-modulated neuroinflammation in neurological diseases. Front Cell Neurosci. 2018;12:314. doi: 10.3389/fncel.2018.00314


  1. Smith SB. Introduction to sigma receptors: Their role in disease and as therapeutic targets. Adv Exp Med Biol. 2017;964:1-4. doi: 10.1007/978-3-319-50174-1_1


  1. Zhang G, Li Q, Tao W, et al. Sigma-1 receptor-regulated efferocytosis by infiltrating circulating macrophages/ microglial cells protects against neuronal impairments and promotes functional recovery in cerebral ischemic stroke. Theranostics. 2023;13(2):543-559. doi: 10.7150/thno.77088


  1. Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757-772. doi: 10.2147/CIA.S158513


  1. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell. 2023;186(2):243-278. doi: 10.1016/j.cell.2022.11.001


  1. Zhang H, Davies KJA, Forman HJ. Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med. 2015;88(Pt B):314-336. doi: 10.1016/j.freeradbiomed.2015.05.036


  1. Pérez-Torres I, Castrejón-Téllez V, Soto ME, Rubio- Ruiz ME, Manzano-Pech L, Guarner-Lans V. Oxidative stress, plant natural antioxidants, and obesity. Int J Mol Sci. 2021;22(4):1786. doi: 10.3390/ijms22041786


  1. Sun Y, Ge X, Li X, et al. High-fat diet promotes renal injury by inducing oxidative stress and mitochondrial dysfunction. Cell Death Dis. 2020;11(10):914. doi: 10.1038/s41419-020-03122-4


  1. Pestel J, Blangero F, Watson J, Pirola L, Eljaafari A. Adipokines in obesity and metabolic-related-diseases. Biochimie. 2023;212:48-59. doi: 10.1016/j.biochi.2023.04.008


  1. Jia G, Aroor AR, Jia C, Sowers JR. Endothelial cell senescence in aging-related vascular dysfunction. Biochim Biophys Acta Mol Basis Dis. 2019;1865(7):1802-1809. doi: 10.1016/j.bbadis.2018.08.008


  1. Miller AA, Spencer SJ. Obesity and neuroinflammation: A pathway to cognitive impairment. Brain Behav Immun. 2014;42:10-21. doi: 10.1016/j.bbi.2014.04.001


  1. Han YP, Tang X, Han M, et al. Relationship between obesity and structural brain abnormality: Accumulated evidence from observational studies. Ageing Res Rev. 2021;71:101445. doi: 10.1016/j.arr.2021.101445


  1. Tan BL, Norhaizan ME, Liew WP. Nutrients and oxidative stress: Friend or foe? Oxid Med Cell Longev. 2018;2018:9719584. doi: 10.1155/2018/9719584


  1. Dikalov S, Itani H, Richmond B, et al. Tobacco smoking induces cardiovascular mitochondrial oxidative stress, promotes endothelial dysfunction, and enhances hypertension [published correction appears in Am J Physiol Heart Circ Physiol. 2019;316(4):H939]. Am J Physiol Heart Circ Physiol. 2019;316(3):H639-H646. doi: 10.1152/ajpheart.00595.2018


  1. Caliri AW, Tommasi S, Besaratinia A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat Res Rev Mutat Res. 2021;787:108365. doi: 10.1016/j.mrrev.2021.108365


  1. Durazzo TC, Mattsson N, Weiner MW, Alzheimer’s Disease Neuroimaging Initiative. Smoking and increased Alzheimer’s disease risk: A review of potential mechanisms. Alzheimers Dement. 2014;10(3 Suppl):S122-S145. doi: 10.1016/j.jalz.2014.04.009


  1. Hahad O, Lelieveld J, Birklein F, Lieb K, Daiber A, Münzel T. Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress. Int J Mol Sci. 2020;21(12):4306. doi: 10.3390/ijms21124306


  1. Song T, Song X, Zhu C, et al. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer’s disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res Rev. 2021;72:101503. doi: 10.1016/j.arr.2021.101503


  1. Nguyen A, Mandavalli A, Diaz MJ, et al. Neurosurgical anesthesia: Optimizing outcomes with agent selection. Biomedicines. 2023;11(2):372. doi: 10.3390/biomedicines11020372


  1. Bose A, Beal MF. Mitochondrial dysfunction and oxidative stress in induced pluripotent stem cell models of Parkinson’s disease. Eur J Neurosci. 2019;49(4):525-532. doi: 10.1111/ejn.14264


  1. Jurcau A. Insights into the pathogenesis of neurodegenerative diseases: Focus on mitochondrial dysfunction and oxidative stress. Int J Mol Sci. 2021;22(21):11847. doi: 10.3390/ijms222111847


  1. Espay AJ, Aybek S, Carson A, et al. Current concepts in diagnosis and treatment of functional neurological disorders. JAMA Neurol. 2018;75(9):1132-1141. doi: 10.1001/jamaneurol.2018.1264


  1. Makkar R, Behl T, Bungau S, et al. Nutraceuticals in neurological disorders. Int J Mol Sci. 2020;21(12):4424. doi: 10.3390/ijms21124424


  1. Kang WY, Wang L, Qiu M, et al. Adrenal cavernous hemangioma: A case report and literature review. Beijing Da Xue Xue Bao Yi Xue Ban. 2021;53(4):808-810. doi: 10.19723/j.issn.1671-167X.2021.04.032


  1. Jurca CM, Kozma K, Petchesi CD, et al. Tuberous sclerosis, type II diabetes mellitus and the PI3K/AKT/mTOR signaling pathways-case report and literature review. Genes (Basel). 2023;14(2):433. doi: 10.3390/genes14020433


  1. Karageorgiou I, Chandler C, Whyte MB. Silent diabetes mellitus, periodontitis and a new case of thalamic abscess. BMJ Case Rep. 2014;2014:bcr2014204654. doi: 10.1136/bcr-2014-204654


  1. Cahyanur R, Setyawan W, Sudrajat DG, Setyowati S, Purnamasari D, Soewondo P. Diagnosis and management of acromegaly: Giant invasive adenoma. Acta Med Indones. 2011;43(2):122-128.


  1. Ridker PM, MacFadyen JG, Thuren T, et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: Exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10105):1833-1842. doi: 10.1016/S0140-6736(17)32247-X


  1. Ha J, Choi DW, Kim KJ, et al. Association of metformin use with Alzheimer’s disease in patients with newly diagnosed type 2 diabetes: A population-based nested case-control study. Sci Rep. 2021;11(1):24069. doi: 10.1038/s41598-021-03406-5


  1. Biag HMB, Potter LA, Wilkins V, et al. Metformin treatment in young children with fragile X syndrome. Mol Genet Genomic Med. 2019;7(11):e956. doi: 10.1002/mgg3.956


  1. Winship IR, Dursun SM, Baker GB, et al. An overview of animal models related to schizophrenia. Can J Psychiatry. 2019;64(1):5-17. doi: 10.1177/0706743718773728


  1. Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016;388(10039):86-97. doi: 10.1016/S0140-6736(15)01121-6


  1. Stępnicki P, Kondej M, Kaczor AA. Current concepts and treatments of schizophrenia. Molecules. 2018;23(8):2087. doi: 10.3390/molecules23082087


  1. Kane JM, Agid O, Baldwin ML, et al. Clinical guidance on the identification and management of treatment-resistant schizophrenia. J Clin Psychiatry. 2019;80(2):18com12123. doi: 10.4088/JCP.18com12123


  1. Javitt DC. Cognitive impairment associated with schizophrenia: From pathophysiology to treatment. Annu Rev Pharmacol Toxicol. 2023;63:119-141. doi: 10.1146/annurev-pharmtox-051921-093250


  1. Yang AC, Tsai SJ. New targets for schizophrenia treatment beyond the dopamine hypothesis. Int J Mol Sci. 2017;18(8):1689. doi: 10.3390/ijms18081689


  1. Donegan JJ, Lodge DJ. Cell-based therapies for the treatment of schizophrenia. Brain Res. 2017;1655:262-269. doi: 10.1016/j.brainres.2016.08.010


  1. Tiihonen J, Mittendorfer-Rutz E, Majak M, et al. Real-world effectiveness of antipsychotic treatments in a nationwide cohort of 29 823 patients with schizophrenia. JAMA Psychiatry. 2017;74(7):686-693. doi: 10.1001/jamapsychiatry.2017.1322


  1. Wu Y, Yang Z, Cui S. Update research advances in the application of transcranial magnetic stimulation in the treatment of schizophrenia. Scanning. 2022;2022:5415775. doi: 10.1155/2022/5415775


  1. Maroney M. An update on current treatment strategies and emerging agents for the management of schizophrenia. Am J Manag Care. 2020;26(3 Suppl):S55-S61. doi: 10.37765/ajmc.2020.43012


  1. Trivedi MH. Major depressive disorder in primary care: Strategies for identification. J Clin Psychiatry. 2020;81(2):UT17042BR1C. doi: 10.4088/JCP.UT17042BR1C


  1. Gu X, Ke S, Wang Q, et al. Energy metabolism in major depressive disorder: Recent advances from omics technologies and imaging. Biomed Pharmacother. 2021;141:111869. doi: 10.1016/j.biopha.2021.111869


  1. Zhdanava M, Pilon D, Ghelerter I, et al. The prevalence and national burden of treatment-resistant depression and major depressive disorder in the United States. J Clin Psychiatry. 2021;82(2):20m13699. doi: 10.4088/JCP.20m13699


  1. Dwyer JB, Aftab A, Radhakrishnan R, et al. Hormonal treatments for major depressive disorder: State of the art [published correction appears in Am J Psychiatry. 2020;177(7):642] [published correction appears in Am J Psychiatry. 2020;177(10):1009]. Am J Psychiatry. 2020;177(8):686-705. doi: 10.1176/appi.ajp.2020.19080848


  1. Paris J. The mistreatment of major depressive disorder. Can J Psychiatry. 2014;59(3):148-151. doi: 10.1177/070674371405900306


  1. Chiriţă AL, Gheorman V, Bondari D, Rogoveanu I. Current understanding of the neurobiology of major depressive disorder. Rom J Morphol Embryol. 2015;56(2 Suppl):651- 658.


  1. Kang SG, Cho SE. Neuroimaging biomarkers for predicting treatment response and recurrence of major depressive disorder. Int J Mol Sci. 2020;21(6):2148. doi: 10.3390/ijms21062148


  1. Hofmann SG, Gómez AF. Mindfulness-based interventions for anxiety and depression. Psychiatr Clin North Am. 2017;40(4):739-749. doi: 10.1016/j.psc.2017.08.008


  1. Zhang Z, Zhang L, Zhang G, Jin J, Zheng Z. The effect of CBT and its modifications for relapse prevention in major depressive disorder: A systematic review and meta-analysis. BMC Psychiatry. 2018;18(1):50. doi: 10.1186/s12888-018-1610-5


  1. Mirchandaney R, Barete R, Asarnow LD. Moderators of cognitive behavioral treatment for insomnia on depression and anxiety outcomes. Curr Psychiatry Rep. 2022;24(2):121-128. doi: 10.1007/s11920-022-01326-3


  1. Tondo L, Vázquez GH, Baldessarini RJ. Depression and Mania in bipolar disorder. Curr Neuropharmacol. 2017;15(3):353-358. doi: 10.2174/1570159X14666160606210811


  1. Harrison PJ, Geddes JR, Tunbridge EM. The emerging neurobiology of bipolar disorder. Trends Neurosci. 2018;41(1):18-30. doi: 10.1016/j.tins.2017.10.006


  1. Solé B, Jiménez E, Torrent C, et al. Cognitive impairment in bipolar disorder: Treatment and prevention strategies. Int J Neuropsychopharmacol. 2017;20(8):670-680. doi: 10.1093/ijnp/pyx032


  1. Arnold I, Dehning J, Grunze A, Hausmann A. Old age bipolar disorder-epidemiology, aetiology and treatment. Medicina (Kaunas). 2021;57(6):587. doi: 10.3390/medicina57060587


  1. McCormick U, Murray B, McNew B. Diagnosis and treatment of patients with bipolar disorder: A review for advanced practice nurses. J Am Assoc Nurse Pract. 2015;27(9):530-542. doi: 10.1002/2327-6924.12275


  1. Kato T. Current understanding of bipolar disorder: Toward integration of biological basis and treatment strategies. Psychiatry Clin Neurosci. 2019;73(9):526-540. doi: 10.1111/pcn.12852


  1. Post RM, Grunze H. The challenges of children with bipolar disorder. Medicina (Kaunas). 2021;57(6):601. doi: 10.3390/medicina57060601


  1. Maron E, Nutt D. Biological markers of generalized anxiety disorder. Dialogues Clin Neurosci. 2017;19(2):147-158. doi: 10.31887/DCNS.2017.19.2/dnutt


  1. Locke AB, Kirst N, Shultz CG. Diagnosis and management of generalized anxiety disorder and panic disorder in adults. Am Fam Physician. 2015;91(9):617-624.


  1. Muris P, Ollendick TH. Selective mutism and its relations to social anxiety disorder and autism spectrum disorder. Clin Child Fam Psychol Rev. 2021;24(2):294-325. doi: 10.1007/s10567-020-00342-0


  1. Ströhle A, Gensichen J, Domschke K. The diagnosis and treatment of anxiety disorders. Dtsch Arztebl Int. 2018;155(37):611-620. doi: 10.3238/arztebl.2018.0611


  1. Kaczkurkin AN, Foa EB. Cognitive-behavioral therapy for anxiety disorders: An update on the empirical evidence. Dialogues Clin Neurosci. 2015;17(3):337-346. doi: 10.31887/DCNS.2015.17.3/akaczkurkin


  1. Vejux A. Cell death, inflammation and oxidative stress in neurodegenerative diseases: Mechanisms and cytoprotective molecules. Int J Mol Sci. 2021;22(24):13657. doi: 10.3390/ijms222413657


  1. Niedzielska E, Smaga I, Gawlik M, et al. Oxidative stress in neurodegenerative diseases. Mol Neurobiol. 2016;53(6):4094-4125. doi: 10.1007/s12035-015-9337-5


  1. Trist BG, Hare DJ, Double KL. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell. 2019;18(6):e13031. doi: 10.1111/acel.13031


  1. Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis. 2013;3(4):461-491. doi: 10.3233/JPD-130230


  1. Badanjak K, Fixemer S, Smajić S, Skupin A, Grünewald A. The contribution of microglia to neuroinflammation in Parkinson’s disease. Int J Mol Sci. 2021;22(9):4676. doi: 10.3390/ijms22094676


  1. Miyazaki I, Asanuma M. Neuron-astrocyte interactions in Parkinson’s disease. Cells. 2020;9(12):2623. doi: 10.3390/cells9122623


  1. Vrijsen S, Houdou M, Cascalho A, Eggermont J, Vangheluwe P. Polyamines in Parkinson’s disease: Balancing between neurotoxicity and neuroprotection. Annu Rev Biochem. 2023;92:435-464. doi: 10.1146/annurev-biochem-071322-021330


  1. Elsworth JD. Parkinson’s disease treatment: Past, present, and future. J Neural Transm (Vienna). 2020;127(5):785-791. doi: 10.1007/s00702-020-02167-1


  1. Gao C, Liu J, Tan Y, Chen S. Freezing of gait in Parkinson’s disease: Pathophysiology, risk factors and treatments. Transl Neurodegener. 2020;9:12. doi: 10.1186/s40035-020-00191-5


  1. Pajares M, Rojo AI, Manda G, Boscá L, Cuadrado A. Inflammation in Parkinson’s disease: Mechanisms and therapeutic implications. Cells. 2020;9(7):1687. doi: 10.3390/cells9071687


  1. Sonntag KC, Song B, Lee N, et al. Pluripotent stem cell-based therapy for Parkinson’s disease: Current status and future prospects. Prog Neurobiol. 2018;168:1-20. doi: 10.1016/j.pneurobio.2018.04.005


  1. Fabbri M, Barbosa R, Rascol O. Off-time treatment options for Parkinson’s disease [published correction appears in Neurol Ther. 2023]. Neurol Ther. 2023;12(2):391-424. doi: 10.1007/s40120-022-00435-8


  1. Radhakrishnan DM, Goyal V. Parkinson’s disease: A review. Neurol India. 2018;66(Suppl):S26-S35. doi: 10.4103/0028-3886.226451


  1. Pirker W, Katzenschlager R, Hallett M, Poewe W. Pharmacological treatment of tremor in Parkinson’s disease revisited. J Parkinsons Dis. 2023;13(2):127-144. doi: 10.3233/JPD-225060


  1. Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet. 2021;397(10284):1577-1590. doi: 10.1016/S0140-6736(20)32205-4


  1. Weller J, Budson A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res. 2018;7:F1000 Faculty Rev-1161. doi: 10.12688/f1000research.14506.1


  1. Khan S, Barve KH, Kumar MS. Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease. Curr Neuropharmacol. 2020;18(11):1106-1125. doi: 10.2174/1570159X18666200528142429


  1. Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules. 2020;25(24):5789. doi: 10.3390/molecules25245789


  1. Bondi MW, Edmonds EC, Salmon DP. Alzheimer’s disease: Past, present, and future. J Int Neuropsychol Soc. 2017;23(9- 10):818-831. doi: 10.1017/S135561771700100X


  1. Graff-Radford J, Yong KXX, Apostolova LG, et al. New insights into atypical Alzheimer’s disease in the era of biomarkers. Lancet Neurol. 2021;20(3):222-234. doi: 10.1016/S1474-4422(20)30440-3


  1. Briggs R, Kennelly SP, O’Neill D. Drug treatments in Alzheimer’s disease. Clin Med (Lond). 2016;16(3):247-253. doi: 10.7861/clinmedicine.16-3-247


  1. Rostagno AA. Pathogenesis of Alzheimer’s disease. Int J Mol Sci. 2022;24(1):107. doi: 10.3390/ijms24010107


  1. Ferrari C, Sorbi S. The complexity of Alzheimer’s disease: An evolving puzzle. Physiol Rev. 2021;101(3):1047-1081. doi: 10.1152/physrev.00015.2020


  1. Stefaniak O, Dobrzyńska M, Drzymała-Czyż S, Przysławski J. Diet in the prevention of Alzheimer’s disease: Current knowledge and future research requirements. Nutrients. 2022;14(21):4564. doi: 10.3390/nu14214564


  1. Knapskog AB, Engedal K, Selbæk G, Øksengård AR. Alzheimers sykdom - diagnostikk og behandling [Alzheimer’s disease - diagnosis and treatment]. Tidsskr Nor Laegeforen. 2021;141(7). doi: 10.4045/tidsskr.20.0919


  1. Stern Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012;11(11):1006-1012. doi: 10.1016/S1474-4422(12)70191-6


  1. Penney J, Ralvenius WT, Tsai LH. Modeling Alzheimer’s disease with iPSC-derived brain cells. Mol Psychiatry. 2020;25(1):148-167. doi: 10.1038/s41380-019-0468-3


  1. Chen ZY, Zhang Y. Animal models of Alzheimer’s disease: Applications, evaluation, and perspectives. Zool Res. 2022;43(6):1026-1040. doi: 10.24272/j.issn.2095-8137.2022.289


  1. Sun BL, Li WW, Zhu C, et al. Clinical research on Alzheimer’s disease: Progress and perspectives. Neurosci Bull. 2018;34(6):1111-1118. doi: 10.1007/s12264-018-0249-z


  1. Toups K, Hathaway A, Gordon D, et al. Precision medicine approach to Alzheimer’s disease: Successful pilot project. J Alzheimers Dis. 2022;88(4):1411-1421.

doi: 10.3233/JAD-215707

  1. Ma C, Hong F, Yang S. Amyloidosis in Alzheimer’s disease: Pathogeny, etiology, and related therapeutic directions. Molecules. 2022;27(4):1210. doi: 10.3390/molecules27041210


  1. Liu S, Gao J, Zhu M, Liu K, Zhang HL. Gut microbiota and dysbiosis in Alzheimer’s disease: Implications for pathogenesis and treatment. Mol Neurobiol. 2020;57(12):5026-5043. doi: 10.1007/s12035-020-02073-3


  1. Beata BK, Wojciech J, Johannes K, Piotr L, Barbara M. Alzheimer’s disease-biochemical and psychological background for diagnosis and treatment. Int J Mol Sci. 2023;24(2):1059. doi: 10.3390/ijms24021059


  1. Viña J, Escudero J, Baquero M, et al. Genistein effect on cognition in prodromal Alzheimer’s disease patients. The GENIAL clinical trial. Alzheimers Res Ther. 2022;14(1):164. doi: 10.1186/s13195-022-01097-2


  1. Boespflug EL, Eliassen JC, Dudley JA, et al. Enhanced neural activation with blueberry supplementation in mild cognitive impairment. Nutr Neurosci. 2018;21(4):297-305. doi: 10.1080/1028415X.2017.1287833


  1. Gonzales MM, Garbarino VR, Marques Zilli E, et al. Senolytic therapy to modulate the progression of Alzheimer’s disease (SToMP-AD): A pilot clinical trial. J Prev Alzheimers Dis. 2022;9(1):22-29. doi: 10.14283/jpad.2021.62


  1. Losso JN, Finley JW, Karki N, et al. Pilot study of the tart cherry juice for the treatment of insomnia and investigation of mechanisms. Am J Ther. 2018;25(2):e194-e201. doi: 10.1097/MJT.0000000000000584


  1. Aarsland D, Khalifa K, Bergland AK, et al. A randomised placebo-controlled study of purified anthocyanins on cognition in individuals at increased risk for dementia. Am J Geriatr Psychiatry. 2023;31(2):141-151. doi: 10.1016/j.jagp.2022.10.002


  1. Rust R, Chien C, Scheel M, et al. Epigallocatechin gallate in progressive MS: A randomized, placebo-controlled trial. Neurol Neuroimmunol Neuroinflamm. 2021;8(3):e964. doi: 10.1212/NXI.0000000000000964


  1. Qureshi MY, Patterson MC, Clark V, et al. Safety and efficacy of (+)-epicatechin in subjects with Friedreich’s ataxia: A phase II, open-label, prospective study. J Inherit Metab Dis. 2021;44(2):502-514. doi: 10.1002/jimd.12285
Conflict of interest
The authors declare no conflicts of interest.
Back to top
Brain & Heart, Electronic ISSN: 2972-4139 Published by AccScience Publishing