Advancing Alzheimer’s disease treatment: Synergistic ligand combinations targeting BACE1 through multi-ligand simultaneous docking
Alzheimer’s disease, a progressive neurodegenerative disorder, is characterized by memory loss, cognitive decline, and behavioral changes, with no therapies available to halt its progression. Newer therapies targeting BACE1, a key enzyme in amyloid plaque formation, have shown promise in clinical trials. However, they have been limited by side effects and insufficient efficacy in slowing cognitive decline. Current treatments, including phase III BACE1 inhibitors such as atabecestat, elenbecestat, lanabecestat, and verubecestat, have shown limited efficacy. This is the first study where multi-ligand simultaneous docking (MLSD) was employed to identify potential synergistic inhibitor combinations from among thousands of small molecules that could yield better results than the current phase III inhibitors of BACE1. A library of 15,641 small molecules with known IC₅₀ values against BACE1 was filtered and docked, yielding binding affinities from −11.32 kcal/mol to +10.85 kcal/mol. Five small molecules with affinities ≤−11 kcal/mol and phase III inhibitors were tested as combinations for MLSD. Among 14 combinations tested, CHEMBL4078427 and CHEMBL3656158, CHEMBL4078427 and CHEMBL3695732, verubecestat and CHEMBL3656158, and CHEMBL4078427 and lanabecestat demonstrated superior binding affinities of −19.90 kcal/mol, −18.45 kcal/mol, −18.07 kcal/mol, and −17.67 kcal/mol, respectively, with inter-ligand interactions indicating synergy. Molecular dynamics simulations of CHEMBL4078427 with lanabecestat revealed enhanced BACE1 inhibition, showing lower root mean square deviation and radius of gyration compared to single-ligand inhibition. These findings underscore the transformative potential of MLSD in identifying synergistic compound interactions, paving the way for novel combination therapies in Alzheimer’s disease treatment.

- Davis M, O’Connell T, Johnson S, et al. Estimating Alzheimer’s disease progression rates from normal cognition through mild cognitive impairment and stages of dementia. Curr Alzheimer Res. 2018;15(8):777-788. doi: 10.2174/1567205015666180119092427
- World Health Organization. Global Status Report on the Public Health Response to Dementia. Geneva: World Health Organization; 2021.
- Prince MJ, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M. World Alzheimer Report 2015: The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends; 2015.
- Long S, Benoist C, Weidner W. World Alzheimer Report 2023: Reducing Dementia Risk: Never Too Early, Never Too Late. London, England: Alzheimer’s Disease International; 2023.
- Roher AE, Kokjohn TA, Clarke SG, et al. APP/Aβ structural diversity and Alzheimer’s disease pathogenesis. Neurochem Int. 2017;110:1-13. doi: 10.1016/j.neuint.2017.08.007
- Khan S, Yuldasheva NY, Batten TFC, Pickles AR, Kellett KAB, Saha S. Tau pathology and neurochemical changes associated with memory dysfunction in an optimised murine model of global cerebral ischaemia - A potential model for vascular dementia? Neurochem Int. 2018;118:134-144. doi: 10.1016/j.neuint.2018.04.004
- De Strooper B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron. 2003;38(1):9-12. doi: 10.1016/S0896-6273(03)00205-8
- van Es JH, van Gijn ME, Riccio O, et al. Notch/ gamma- secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature. 2005;435(7044):959-963. doi: 10.1038/nature03659
- Olry A, Chastagner P, Israël A, Brou C. Generation and characterization of mutant cell lines defective in gamma-secretase processing of notch and amyloid precursor protein. J Biol Chem. 2005;280(31):28564-28571. doi: 10.1074/jbc.M502199200
- Gounder M, Ratan R, Alcindor T, et al. Nirogacestat, a γ-secretase inhibitor for desmoid tumors. N Engl J Med. 2023;388(10):898-912. doi: 10.1056/NEJMoa2210140
- Coimbra JRM, Marques DFF, Baptista SJ, et al. Highlights in BACE1 inhibitors for Alzheimer’s disease treatment. Front Chem. 2018;6:178. doi: 10.3389/fchem.2018.00178
- Cole SL, Vassar R. The Alzheimer’s disease Beta-secretase enzyme, BACE1. Mol Neurodegener. 2007;2(1):22. doi: 10.1186/1750-1326-2-22
- Molinuevo JL, Ayton S, Batrla R, et al. Current state of Alzheimer’s fluid biomarkers. Acta Neuropathol. 2018;136(6):821-853. doi: 10.1007/s00401-018-1932-x
- Vergallo A, Houot M, Cavedo E, et al. Brain Aβ load association and sexual dimorphism of plasma BACE1 concentrations in cognitively normal individuals at risk for AD. Alzheimers Dementia. 2019;15(10):1274-1285. doi: 10.1016/j.jalz.2019.07.001
- Shen Y, Wang H, Sun Q, et al. Increased plasma beta-secretase 1 may predict conversion to Alzheimer’s disease dementia in individuals with mild cognitive impairment. Biol Psychiatry. 2018;83(5):447-455. doi: 10.1016/j.biopsych.2017.02.007
- Vassar R. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Res Ther. 2014;6(9):89. doi: 10.1186/s13195-014-0089-7
- Bjørklund G, Aaseth J, Dadar M, Chirumbolo S. Molecular targets in Alzheimer’s disease. Mol Neurobiol. 2019;56(10):7032-7044. doi: 10.1007/s12035-019-1563-9
- Peng Y, Jin H, Xue YH, et al. Current and future therapeutic strategies for Alzheimer’s disease: An overview of drug development bottlenecks. Front Aging Neurosci. 2023;15:1206572. doi: 10.3389/fnagi.2023.1206572
- Southey MWY, Brunavs M. Introduction to small molecule drug discovery and preclinical development. Front Drug Discov. 2023;3:1314077. doi: 10.3389/fddsv.2023.1314077
- Carbone EJ, Jiang T, Nelson C, Henry N, Lo KWH. Small molecule delivery through nanofibrous scaffolds for musculoskeletal regenerative engineering. Nanomedicine. 2014;10(8):1691-1699. doi: 10.1016/j.nano.2014.05.013
- Kim CK, Lee YR, Ong L, Gold M, Kalali A, Sarkar J. Alzheimer’s disease: Key insights from two decades of clinical trial failures. J Alzheimers Dis. 2022;87(1):83-100. doi: 10.3233/JAD-215699
- Jabir NR, Shakil S, Tabrez S, Khan MS, Rehman MT, Ahmed BA. In silico screening of glycogen synthase kinase-3β targeted ligands against acetylcholinesterase and its probable relevance to Alzheimer’s disease. J Biomol Struct Dyn. 2021;39(14):5083-5092. doi: 10.1080/07391102.2020.1784796
- Jabir NR, Rehman MT, Tabrez S, et al. Identification of butyrylcholinesterase and monoamine oxidase B targeted ligands and their putative application in Alzheimer’s treatment: A computational strategy. Curr Pharm Des. 2021;27(20):2425-2434. doi: 10.2174/1381612827666210226123240
- Jabir NR, Rehman MT, Alsolami K, et al. Concatenation of molecular docking and molecular simulation of BACE- 1, γ-secretase targeted ligands: In pursuit of Alzheimer’s treatment. Ann Med. 2021;53(1):2332-2344. doi: 10.1080/07853890.2021.2009124
- Sudha M, Saha A, Desai BMA, Mhashal AR, Biswas P. Multi-ligand simultaneous docking of Carica papaya leaf phytochemicals, Carpaine and Rutin reveal multi-mechanism inhibition of cancer proteins, BCL-2 and WWP1. Phytomed Plus. 2025;5(3):100829. doi: 10.1016/j.phyplu.2025.100829
- Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 2010;53(7):2719-2740. doi: 10.1021/jm901137j
- Brenk R, Schipani A, James D, et al. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem. 2008;3(3):435-444. doi: 10.1002/cmdc.200700139
- Biswas P, Bhatt M, Desai BMA. In silico prediction and validation of LmGt inhibitors using QSAR and molecular docking approaches. In: 2025 International Conference on Innovation in Computing and Engineering (ICE). IEEE; 2025. p. 1-5. doi: 10.1109/ICE63309.2025.10984096
- Saha A, Desai BMA, Biswas P. Multi-ligand simultaneous docking analysis of Moringa oleifera phytochemicals reveals enhanced BCL-2 inhibition via synergistic action. In: 2024 5th International Conference on Biomedical Engineering (IBIOMED). IEEE; 2024. p. 51-56. doi: 10.1109/iBioMed62485.2024.10875829
- Biswas P, Mathur D, Dinesh J, Dinesh HK, Desai BMA. Computational analysis using multi-ligand simultaneous docking of Withaferin A and garcinol reveals enhanced BCL-2 and AKT-1 Inhibition. In: 2025 International Conference on Innovation in Computing and Engineering (ICE). IEEE; 2025. p. 1-6. doi: 10.1109/ICE63309.2025.10984324
- Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc. 2016;11(5):905-919. doi: 10.1038/nprot.2016.051
- Desai BMA, Anirudh BM, Biju KS, Ramesh V, Biswas P. Deep learning-based QSAR model for therapeutic strategies targeting SmTGR Protein’s immune modulating role in host-parasite interaction. In: 2025 International Conference on Advances in Modern Age Technologies for Health and Engineering Science (AMATHE). IEEE; 2025. p. 1-5. doi: 10.1109/AMATHE65477.2025.11081313
- Desai BMA, Sudha M, Ghosh S, Biswas P. Prediction of novel CXCR7 inhibitors using QSAR modeling and validation via molecular docking. In: 2024 First International Conference for Women in Computing (InCoWoCo). IEEE; 2024. p. 1-5. doi: 10.1109/InCoWoCo64194.2024.10863533
- Patel S, Bansoad AV, Singh R, Khatik GL. BACE1: A key regulator in Alzheimer’s disease progression and current development of its inhibitors. Curr Neuropharmacol. 2022;20(6):1174-1193. doi: 10.2174/1570159X19666211201094031
- Dhanabalan AK, Vasudevan S, Velmurugan D, Khan MS. Identification of potential marine bioactive compounds from brown seaweeds towards BACE1 inhibitors: Molecular docking and molecular dynamics simulations approach. In Silico Pharmacol. 2024;12(1):40. doi: 10.1007/s40203-024-00210-7
- Gheidari D, Mehrdad M, Karimelahi Z. Virtual screening, ADMET prediction, molecular docking, and dynamic simulation studies of natural products as BACE1 inhibitors for the management of Alzheimer’s disease. Sci Rep. 2024;14(1):26431. doi: 10.1038/s41598-024-75292-6
- Kalaimathi K, Prabhu S, Ayyanar M, et al. Unravelling the untapped pharmacological potential of plant molecules as inhibitors of BACE1: In silico explorations for Alzheimer’s disease. Appl Biochem Biotechnol. 2024;196(8):5447-5470. doi: 10.1007/s12010-023-04803-4
- Murad HAS, Moawadh MS, Alzahrani A, et al. Computational identification of promising therapeutics via BACE1 Targeting: Implications for Alzheimer’s disease. Cell Mol Biol (Noisy-le-grand). 2024;70(8):64-75. doi: 10.14715/cmb/2024.70.8.8
- Sangeet S. Machine Learning-Enhanced Drug Discovery for BACE1: A Novel Approach to Alzheimer’s Therapeutics. bioRxiv. Preprint posted; 2024. doi: 10.1101/2024.09.24.614844
- Tarif AMM, Huhe H, Ohno M. Combination strategy employing BACE1 inhibitor and memantine to boost cognitive benefits in Alzheimer’s disease therapy. Psychopharmacology (Berl). 2024;241(5):975-986. doi: 10.1007/s00213-024-06525-9
- Manoharan P, Ghoshal N. Fragment-based virtual screening approach and molecular dynamics simulation studies for identification of BACE1 inhibitor leads. J Biomol Struct Dyn. 2018;36(7):1878-1892. doi: 10.1080/07391102.2017.1337590
- Li H, Komori A, Li M, et al. Multi-ligand molecular docking, simulation, free energy calculations and wavelet analysis of the synergistic effects between natural compounds baicalein and cubebin for the inhibition of the main protease of SARS-CoV-2. J Mol Liq. 2023;374:121253. doi: 10.1016/j.molliq.2023.121253
- Zhang Y, Miao D, Liu S, Hao X. Revealing the binding mechanism of BACE1 inhibitors through molecular dynamics simulations. J Biomol Struct Dyn. 2025;43(13):6883–6895. doi: 10.1080/07391102.2024.2319676
- Bhanukiran K, Hemalatha S. Single crystal X-ray, DFT, molecular dynamic simulations, and biological evaluation of 3-OH pyrrolidine derivative VA10 from alkaloid vasicine for BACE1 inhibition. J Mol Struct. 2024;1300:137196. doi: 10.1016/j.molstruc.2023.137196
- Omolabi KF, Odeniran PO, Olotu FA, Soliman MES. A mechanistic probe into the dual inhibition of T. cruzi glucokinase and hexokinase in Chagas disease treatment – a stone killing two birds? Chem Biodivers. 2021;18(2):e2000863. doi: 10.1002/cbdv.202000863
- Tsaioun K, Bottlaender M, Mabondzo A. ADDME -- avoiding drug development mistakes early: Central nervous system drug discovery perspective. BMC Neurol. 2009;9(Suppl 1):S1. doi: 10.1186/1471-2377-9-S1-S1
- Paul PR, Mishra MK, Bora S, et al. The impact of P‐glycoprotein on CNS drug efflux and variability in response. J Biochem Mol Toxicol. 2025;39(3):e70190. doi: 10.1002/jbt.70190
- Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRX. 2005;2(4):541-553. doi: 10.1602/neurorx.2.4.541
- Kalyaanamoorthy S, Barakat KH. Development of safe drugs: The hERG challenge. Med Res Rev. 2018;38(2):525-555. doi: 10.1002/med.21445
- Tarazi H, Odeh RA, Al-Qawasmeh R, Yousef IA, Voelter W, Al-Tel TH. Design, synthesis and SAR analysis of potent BACE1 inhibitors: Possible lead drug candidates for Alzheimer’s disease. Eur J Med Chem. 2017;125:1213-1224. doi: 10.1016/j.ejmech.2016.11.021
- Nguyen VT, To DC, Tran MH, et al. Isolation of cholinesterase and β-secretase 1 inhibiting compounds from Lycopodiella cernua. Bioorg Med Chem. 2015;23(13):3126-3134. doi: 10.1016/j.bmc.2015.04.080
- Minatti AE, Epstein O, White R, Weiss M, Zhong W, Low JD; Amgen Inc, assignee. Spiro-amino-imidazolone and spiro-amino-dihydro-pyrimidinone compounds as beta-secretase modulators and methods of use. US Patent; 2015.
- Cacatian S, Claremon DA, Dillard LW, et al; Vitae Pharmaceuticals LLC, assignee. Inhibitors of beta-secretase. US Patent; 2019.
