AccScience Publishing / AN / Online First / DOI: 10.36922/AN025350089
REVIEW ARTICLE

Curcumin and neuroinflammation in autism: Mechanistic insights and therapeutic implications

Abdullah Al Noman1 Susmita Deb Tonni1 Md Al Mamun2 Iftakhar Ahmad3 Monty Datta4 Pranab Dev Sharma5 Kaniz Fatama Khan2 Md Jahed Rana6 Himanshu Sharma7 Vetriselvan Subramaniyan8,9,10*
Show Less
1 School of Pharmacy, BRAC University, Dhaka, Bangladesh
2 Department of Chemistry and Biochemistry, College of Science and Mathematics, Kennesaw State University, Kennesaw, Georgia, United States of America
3 Department of Zoology, Comilla Victoria Government College, National University Bangladesh, Gazipur, Bangladesh
4 Department of Zoology, Government Tolaram College, National University Bangladesh, Gazipur, Bangladesh
5 Biotechnology Program, Department of Mathematics and Natural Science, BRAC University, Dhaka, Bangladesh
6 Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
7 Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, Rajasthan, India
8 Department of Biomedical Sciences, Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, Malaysia
9 Global Research Cell, Dr. D. Y. Patil Dental College & Hospital, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, India
10 Department of Pharmacy, Faculty of Pharmacy, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
Advanced Neurology, 025350089 https://doi.org/10.36922/AN025350089
Received: 29 August 2025 | Revised: 17 September 2025 | Accepted: 9 October 2025 | Published online: 4 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by impairments in social interaction and communication. According to recent research, neuroinflammation may play a role in the pathogenesis of ASD. Curcumin, the active compound in turmeric, has been demonstrated to exhibit neuroprotective, antioxidant, and anti-inflammatory properties. This review summarizes the potential mechanisms by which curcumin may influence the inflammatory pathways implicated in ASD. Curcumin can suppress nuclear factor kappa-light-chain-enhancer of activated B-cell activation, thereby reducing the levels of pro-inflammatory cytokines. In addition, it can protect mitochondrial function, upregulate antioxidant enzymes, scavenge reactive oxygen and nitrogen species, and modulate the gut–brain axis. Animal studies have shown that curcumin can improve sociability, repetitive behaviors, and enhance cognitive function in ASD models. The beneficial effects of curcumin supplementation on autism symptoms have also been documented in several small clinical trials involving children with ASD. Overall, curcumin is a natural compound with the potential to modulate neuroinflammatory pathways implicated in ASD; however, its therapeutic role remains under investigation.

Keywords
Autism spectrum disorder
Neuroinflammation
Curcumin
Anti-inflammatory effects
Animal models
Clinical trials
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Ivraghi MS, Zamanian MY, Gupta R, et al. Neuroprotective effects of gemfibrozil in neurological disorders: Focus on inflammation and molecular mechanisms. CNS Neurosci Ther. 2024;30(3):e14473. doi: 10.1111/CNS.14473

 

  1. Abd-Nikfarjam B, Dolati-Somarin A, Rahimi VB, Askari VR. Cannabinoids in neuroinflammatory disorders: Focusing on multiple sclerosis, Parkinsons, and Alzheimers diseases. Biofactors. 2023;49(3):560-583. doi: 10.1002/biof.1936

 

  1. Piancone F, La Rosa F, Hernis A, et al. Neuroinflammatory signature of post-traumatic confusional state: The role of cytokines in moderate-to-severe traumatic brain injury. Int J Mol Sci. 2025;26:8593. doi: 10.3390/IJMS26178593

 

  1. Kölliker-Frers R, Udovin L, Otero-Losada M, et al. Neuroinflammation: An integrating overview of reactive-neuroimmune cell interactions in health and disease. Mediators Inflamm. 2021;2021(1):9999146. doi: 10.1155/2021/9999146

 

  1. Chladek M, Burbridge C, Gibbons E, Willgoss T, Smith J, Clinch S. Qualitative exploration in exit interviews of changes observed in clinical trials for individuals with autism spectrum disorder without intellectual disability. Patient Relat Outcome Meas. 2023;14:313-335. doi: 10.2147/PROM.S385682

 

  1. Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J. Autism spectrum disorder. Lancet. 2018;392(10146):508. doi: 10.1016/S0140-6736(18)31129-2

 

  1. Usui N, Kobayashi H, Shimada S. Neuroinflammation and oxidative stress in the pathogenesis of autism spectrum disorder. Int J Mol Sci. 2023;24(6):5487. doi: 10.3390/IJMS24065487

 

  1. Ullah MA, Johora FT, Sarkar B, Araf Y, Rahman MH. Curcumin analogs as the inhibitors of TLR4 pathway in inflammation and their drug like potentialities: A computer-based study. J Recept Signal Transduct Res. 2020;40(4):324-338. doi: 10.1080/10799893.2020.1742741

 

  1. Matta SM, Hill-Yardin EL, Crack PJ. The influence of neuroinflammation in Autism Spectrum Disorder. Brain Behav Immun. 2019;79:75-90. doi: 10.1016/J.BBI.2019.04.037

 

  1. Cuellar-Santoyo AO, Ruiz-Rodríguez VM, Mares-Barbosa TB, et al. Revealing the contribution of astrocytes to glutamatergic neuronal transmission. Front Cell Neurosci. 2023;16:1037641. doi: 10.3389/fncel.2022.1037641

 

  1. Andersen JV, Schousboe A, Wellendorph P. Astrocytes regulate inhibitory neurotransmission through GABA uptake, metabolism, and recycling. Essays Biochem. 2023;67(1):77-91. doi: 10.1042/ebc20220208

 

  1. Mahmoud S, Gharagozloo M, Simard C, Gris D. Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells. 2019;8:184. doi: 10.3390/cells8020184

 

  1. Hao T, Du X, Yang S, Zhang Y, Liang F. Astrocytes-induced neuronal inhibition contributes to depressive-like behaviors during chronic stress. Life Sci. 2020;258:118099. doi: 10.1016/j.lfs.2020.118099

 

  1. Rábago-Monzón ÁR, Osuna-Ramos JF, Armienta-Rojas DA, et al. Stress-induced sleep dysregulation: The roles of astrocytes and microglia in neurodegenerative and psychiatric disorders. Biomedicines. 2025;13:1121. doi: 10.3390/biomedicines13051121

 

  1. Afridi R, Suk K. Microglial responses to stress-induced depression: Causes and consequences. Cells. 2023;12(11):1521. doi: 10.3390/cells12111521

 

  1. Singh K, Bhushan B, Chanchal DK, et al. Emerging therapeutic potential of cannabidiol (CBD) in neurological disorders: A comprehensive review. Behav Neurol. 2023;2023:8825358. doi: 10.1155/2023/8825358

 

  1. Surguchov A, Bernal L, Surguchev AA. Phytochemicals as regulators of genes involved in synucleinopathies. Biomolecules. 2021;11(5):624. doi: 10.3390/BIOM11050624

 

  1. Hewlings SJ, Kalman DS. Curcumin: A review of its effects on human health. Foods 2017;6(10):92. doi: 10.3390/FOODS6100092

 

  1. Khayatan D, Razavi SM, Arab ZN, et al. Protective effects of curcumin against traumatic brain injury. Biomed Pharmacother. 2022;154:113621. doi: 10.1016/j.biopha.2022.113621

 

  1. Cornelius C, Crupi R, Calabrese V, et al. Traumatic brain injury: Oxidative stress and neuroprotection. Antioxid Redox Signal. 2013;19(8):836-853. doi: 10.1089/ARS.2012.4981

 

  1. Vasconcelos AR, Dos Santos NB, Scavone C, Munhoz CD. Nrf2/ARE pathway modulation by dietary energy regulation in neurological disorders. Front Pharmacol. 2019;10:33. doi: 10.3389/FPHAR.2019.00033

 

  1. Wong M. Mammalian target of rapamycin (mTOR) pathways in neurological diseases. Biomed J. 2013;36(2):40-50. doi: 10.4103/2319-4170.110365

 

  1. Sun SC. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 2017;17(9):545-558. doi: 10.1038/NRI.2017.52

 

  1. Wang R, Li YB, Li YH, Xu Y, Wu HL, Li XJ. Curcumin protects against glutamate excitotoxicity in rat cerebral cortical neurons by increasing brain-derived neurotrophic factor level and activating TrkB. Brain Res. 2008;1210:84-91. doi: 10.1016/J.BRAINRES.2008.01.104

 

  1. Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules. 2020;25(24):5789. doi: 10.3390/molecules25245789

 

  1. Hamaguchi T, Ono K, Yamada M. REVIEW: Curcumin and Alzheimer’s disease. CNS Neurosci Ther. 2010;16(5):285-297. doi: 10.1111/J.1755-5949.2010.00147.X

 

  1. Farkhondeh T, Samarghandian S, Pourbagher-Shahri AM, Sedaghat M. The impact of curcumin and its modified formulations on Alzheimer’s disease. J Cell Physiol. 2019;234(10):16953-16965. doi: 10.1002/JCP.28411

 

  1. Abdi Dezfouli R, Akbariforoud S, Esmaeilidezfouli E. Are there links between Alzheimer’s disease and ADHD? The efficacy of acetylcholinesterase inhibitors and NMDA receptor antagonists in controlling ADHD symptoms: A systematic review. Middle East Curr Psychiatry. 2024;31(1):1-17. doi: 10.1186/S43045-024-00405-W/FIGURES/2

 

  1. Schmidt CWP. Pharmacology of NMDA (N-Methyl-D-Aspartate) Receptor Antagonists in Alzheimer’s Disease. Pharmacological Treatment of Alzheimer’s Disease: Scientific and Clinical Aspects. Berlin: Springer; 2022. p. 69-79. doi: 10.1007/978-3-030-94383-7_5

 

  1. Morasso C, Truffi M, Tinelli V, et al. Exploring the anti-inflammatory effects of curcumin encapsulated within ferritin nanocages: A comprehensive in vivo and in vitro study in Alzheimer’s disease. J Nanobiotechnol. 2024;22(1):718. doi: 10.1186/S12951-024-02897-4

 

  1. Moldoveanu CA, Tomoaia-Cotisel M, Sevastre-Berghian A, et al. A review on current aspects of curcumin-based effects in relation to neurodegenerative, neuroinflammatory and cerebrovascular diseases. Molecules. 2024;30(1):43. doi: 10.3390/molecules30010043

 

  1. Huang HC, Tang D, Xu K, Jiang ZF. Curcumin attenuates amyloid-β-induced tau hyperphosphorylation in human neuroblastoma SH-SY5Y cells involving PTEN/Akt/ GSK-3β signaling pathway. J Recept Signal Transduct. 2014;34(1):26-37. doi: 10.3109/10799893.2013.848891

 

  1. Rajmohan R, Reddy PH. Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. J Alzheimers Dis. 2017;57(4):975-999. doi: 10.3233/jad-160612

 

  1. Rawat P, Sehar U, Bisht J, Selman A, Culberson J, Reddy PH. Phosphorylated Tau in Alzheimer’s disease and other tauopathies. Int J Mol Sci. 2022;23(21):12841. doi: 10.3390/ijms232112841

 

  1. Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Farkhondeh T, Samarghandian S. Curcumin activates the Nrf2 pathway and induces cellular protection against oxidative injury. Curr Mol Med. 2019;20(2):116-133. doi: 10.2174/1566524019666191016150757

 

  1. Park JY, Sohn HY, Koh YH, Jo C. Curcumin activates Nrf2 through PKCδ-mediated p62 phosphorylation at Ser351. Sci Rep. 2021;11(1):8430. doi: 10.1038/S41598-021-87225-8

 

  1. Lin X, Bai D, Wei Z, et al. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One. 2019;14(5):e0216711. doi: 10.1371/journal.pone.0216711

 

  1. Ghafouri-Fard S, Shoorei H, Bahroudi Z, et al. Nrf2-related therapeutic effects of curcumin in different disorders. Biomolecules. 2022;12(1):82. doi: 10.3390/biom12010082

 

  1. Kehinde SA, Lin WP, Lay BB, et al. Curcumin and dementia: A systematic review of its effects on oxidative stress and cognitive outcomes in animal models. Int J Mol Sci. 2025;26(14):7026. doi: 10.3390/ijms26147026

 

  1. Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson- Lewis VR. Oxidative stress and Parkinson’s disease. Front Neuroanat. 2015;9:147963. doi: 10.3389/fnana.2015.00091/full

 

  1. Moradi Vastegani S, Nasrolahi A, Ghaderi S, et al. Mitochondrial dysfunction and Parkinson’s disease: Pathogenesis and therapeutic strategies. Neurochem Res. 2023;48(8):2285-2308. doi: 10.1007/S11064-023-03904-0

 

  1. Puspita L, Chung SY, Shim JW. Oxidative stress and cellular pathologies in Parkinson’s disease. Mol Brain. 2017;10(1):53. doi: 10.1186/S13041-017-0340-9/FIGURES/2

 

  1. Song J, Zhao Y, Shan X, Luo Y, Hao N, Zhao L. Active ingredients of Chinese medicine with immunomodulatory properties: NF-κB pathway and Parkinson’s disease. Brain Res. 2024;1822:148603. doi: 10.1016/J.brainres.2023.148603

 

  1. Pajares M, Rojo AI, Manda G, Boscá L, Cuadrado A. Inflammation in Parkinson’s disease: Mechanisms and therapeutic implications. Cells. 2020;9(7):1687. doi: 10.3390/cells9071687

 

  1. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2(1):17023. doi: 10.1038/sigtrans.2017.23

 

  1. Eo H, Kim S, Jung UJ, Kim SR. Alpha-synuclein and microglia in Parkinson’s disease: From pathogenesis to therapeutic prospects. J Clin Med. 2024;13(23):7243. doi: 10.3390/jcm13237243

 

  1. Stefanis L. α-synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(2):a009399. doi: 10.1101/cshperspect.A009399

 

  1. Singh PK, Kotia V, Ghosh D, Mohite GM, Kumar A, Maji SK. Curcumin modulates α-synuclein aggregation and toxicity. ACS Chem Neurosci. 2012;4(3):393-407. doi: 10.1021/cn3001203

 

  1. Hu Y, Cheng L, Du S, Wang K, Liu S. Antioxidant curcumin induces oxidative stress to kill tumor cells (Review). Oncol Lett. 2024;27(2):67. doi: 10.3892/OL.2023.14200

 

  1. Buhrmann C, Mobasheri A, Busch F, et al. Curcumin modulates nuclear factor κB (NF-κB)-mediated inflammation in human tenocytes in vitro. J Biol Chem. 2011;286(32):28556-28566. doi: 10.1074/jbc.m111.256180

 

  1. Allely CS, Woodhouse E, Mukherjee RAS. Autism spectrum disorder and personality disorders: How do clinicians carry out a differential diagnosis? Autism. 2023;27(6):1847-1850. doi: 10.1177/13623613231151356

 

  1. Bala K, Aran KR. Exploring the common genes involved in autism spectrum disorder and Parkinson’s disease: A systematic review. Aging Health Res. 2024;4(4):100206. doi: 10.1016/J.ahr.2024.100206

 

  1. El Nebrisi E. Neuroprotective activities of curcumin in Parkinson’s disease: A review of the literature. Int J Mol Sci. 2021;22(20):11248. doi: 10.3390/ijms222011248

 

  1. Chang YH. Curcumin as a potential therapeutic agent for Parkinson’s disease: A systematic review. Front Pharmacol. 2025;16:1593191. doi: 10.3389/fphar.2025.1593191/bibtex

 

  1. Uddin MS, Kabir MT, Al Mamun A, Abdel-Daim MM, Barreto GE, Ashraf GM. APOE and Alzheimer’s disease: Evidence mounts that targeting APOE4 may Combat Alzheimer’s pathogenesis. Mol Neurobiol. 2019;56(4):2450-2465. doi: 10.1007/S12035-018-1237-Z

 

  1. Feldman EL, Goutman SA, Petri S, et al. Amyotrophic lateral sclerosis. Lancet. 2022;400(10360):1363-1380. doi: 10.1016/S0140-6736(22)01272-7

 

  1. Benatar M, Wuu J, McHutchison C, et al. Preventing amyotrophic lateral sclerosis: Insights from pre-symptomatic neurodegenerative diseases. Brain. 2022;145(1):27. doi: 10.1093/brain/awab404

 

  1. Zou ZY, Zhou ZR, Che CH, Liu CY, He RL, Huang HP. Genetic epidemiology of amyotrophic lateral sclerosis: A systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2017;88(7):540-549. doi: 10.1136/JNNP-2016-315018

 

  1. Gharaibeh A, Maiti P, Culver R, et al. Solid lipid curcumin particles protect medium spiny neuronal morphology, and reduce learning and memory deficits in the YAC128 mouse model of Huntington’s disease. Int J Mol Sci. 2020;21(24):9542. doi: 10.3390/IJMS21249542

 

  1. Pandey N, Strider J, Nolan WC, Yan SX, Galvin JE. Curcumin inhibits aggregation of alpha-synuclein. Acta Neuropathol. 2008;115(4):479-489. doi: 10.1007/S00401-007-0332-4

 

  1. Hickey MA, Zhu C, Medvedeva V, et al. Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington’s disease. Mol Neurodegener. 2012;7(1):12. doi: 10.1186/1750-1326-7-12

 

  1. Chongtham A, Agrawal N. Curcumin modulates cell death and is protective in Huntington’s disease model. Sci Rep. 2016;6:18736. doi: 10.1038/srep18736

 

  1. Khyati, Malik I, Agrawal N, Kumar V. Melatonin and curcumin reestablish disturbed circadian gene expressions and restore locomotion ability and eclosion behavior in Drosophila model of Huntington’s disease. Chronobiol Int. 2021;38(1):61-78. doi: 10.1080/07420528.2020.1842752

 

  1. Aditi K, Singh A, Shakarad MN, Agrawal N. Management of altered metabolic activity in Drosophila model of Huntington’s disease by curcumin. Exp Biol Med. 2022;247(2):152. doi: 10.1177/15353702211046927

 

  1. Elifani F, Amico E, Pepe G, et al. Curcumin dietary supplementation ameliorates disease phenotype in an animal model of Huntington’s disease. Hum Mol Genet. 2019;28(23):4012-4021. doi: 10.1093/hmg/ddz247

 

  1. Sandhir R, Yadav A, Mehrotra A, Sunkaria A, Singh A, Sharma S. Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease. Neuromolecular Med. 2014;16(1):106-118. doi: 10.1007/S12017-013-8261-Y

 

  1. Bishnoi M, Chopra K, Kulkarni SK. Protective effect of Curcumin, the active principle of turmeric (Curcuma longa) in haloperidol-induced orofacial dyskinesia and associated behavioural, biochemical and neurochemicalchanges in rat brain. Pharmacol Biochem Behav. 2008;88(4):511-522. doi: 10.1016/j.pbb.2007.10.009

 

  1. Kulkarni SK, Dhir A. An overview of curcumin in neurological disorders. Indian J Pharm Sci. 2010;72(2):149-154. doi: 10.4103/0250-474X.65012

 

  1. Lassmann H. Multiple sclerosis pathology. Cold Spring Harb Perspect Med. 2018;8(3):a028936. doi: 10.1101/cshperspect.a028936

 

  1. Haider L, Zrzavy T, Hametner S, et al. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain. Brain. 2016;139(3):807. doi: 10.1093/brain/awv398

 

  1. Huang WJ, Chen WW, Zhang X. Multiple sclerosis: Pathology, diagnosis and treatments. Exp Ther Med. 2017;13(6):3163-3166. doi: 10.3892/etm.2017.4410

 

  1. Calabrese M, Magliozzi R, Ciccarelli O, Geurts JJG, Reynolds R, Martin R. Exploring the origins of grey matter damage in multiple sclerosis. Nat Rev Neurosci. 2015;16(3):147-158. doi: 10.1038/nrn3900

 

  1. Shehzad A, Qureshi M, Anwar MN, Lee YS. Multifunctional curcumin mediate multitherapeutic effects. J Food Sci. 2017;82(9):2006-2015. doi: 10.1111/1750-3841.13793

 

  1. Tang F, Hartz AMS, Bauer B. Drug-resistant epilepsy: Multiple hypotheses, few answers. Front Neurol. 2017;8:301. doi: 10.3389/fneur.2017.00301

 

  1. Vidaurre J, Gedela S, Yarosz S. Antiepileptic drugs and liver disease. Pediatr Neurol. 2017;77:23-36. doi: 10.1016/j.pediatrneurol.2017.09.013

 

  1. Drion CM, Borm LE, Kooijman L, et al. Effects of rapamycin and curcumin treatment on the development of epilepsy after electrically induced status epilepticus in rats. Epilepsia. 2016;57(5):688-697. doi: 10.1111/epi.13345

 

  1. Ashina M, Katsarava Z, Do TP, et al. Migraine: Epidemiology and systems of care. Lancet. 2021;397(10283):1485-1495. doi: 10.1016/S0140-6736(20)32160-7

 

  1. Lantéri-Minet M, Duru G, Mudge M, Cottrell S. Quality of life impairment, disability and economic burden associated with chronic daily headache, focusing on chronic migraine with or without medication overuse: A systematic review. Cephalalgia. 2011;31(7):837-850. doi: 10.1177/0333102411398400

 

  1. Farhadi Z, Alidoost S, Behzadifar M, et al. The prevalence of migraine in Iran: A systematic review and meta-analysis. Iran Red Crescent Med J. 2016;18(10):e40061. doi: 10.5812/ircmj.40061

 

  1. Scher AI, Buse DC, Fanning KM, et al. Comorbid pain and migraine chronicity: The chronic migraine epidemiology and outcomes study. Neurology. 2017;89(5):461-468. doi: 10.1212/wnl.0000000000004177

 

  1. Ferrari MD, Goadsby PJ, Burstein R, et al. Migraine. Nat Rev Dis Primers. 2022;8(1):2. doi: 10.1038/S41572-021-00328-4

 

  1. Gerring ZF, Powell JE, Montgomery GW, Nyholt DR. Genome-wide analysis of blood gene expression in migraine implicates immune-inflammatory pathways. Cephalalgia. 2018;38(2):292-303. doi: 10.1177/0333102416686769

 

  1. Hauge AW, Kirchmann M, Olesen J. Trigger factors in migraine with aura. Cephalalgia. 2010;30(3):346-353. doi: 10.1111/J.1468-2982.2009.01930.X

 

  1. Ashina M, Buse DC, Ashina H, et al. Migraine: Integrated approaches to clinical management and emerging treatments. Lancet. 2021;397(10283):1505-1518. doi: 10.1016/S0140-6736(20)32342-4

 

  1. Lipton RB, Fanning KM, Serrano D, Reed ML, Cady R, Buse DC. Ineffective acute treatment of episodic migraine is associated with new-onset chronic migraine. Neurology. 2015;84(7):688-695. doi: 10.1212/wnl.0000000000001256

 

  1. Buse DC, Greisman JD, Baigi K, Lipton RB. Migraine progression: A systematic review. Headache. 2019;59(3):306-338. doi: 10.1111/head.13459

 

  1. Ouyang J, Li R, Shi H, Zhong J, Shi X. Curcumin protects human umbilical vein endothelial cells against H2O2- induced cell injury. Pain Res Manag. 2019;2019:3173149. doi: 10.1155/2019/3173149

 

  1. Courchesne E, Pramparo T, Gazestani VH, Lombardo MV, Pierce K, Lewis NE. The ASD Living Biology: From cell proliferation to clinical phenotype. Mol Psychiatry. 2019;24(1):88-107. doi: 10.1038/s41380-018-0056-y

 

  1. Masi A, Breen EJ, Alvares GA, et al. Cytokine levels and associations with symptom severity in male and female children with autism spectrum disorder. Mol Autism. 2017;8(1):63. doi: 10.1186/s13229-017-0176-2

 

  1. Xu N, Li X, Zhong Y. Inflammatory cytokines: Potential biomarkers of immunologic dysfunction in autism spectrum disorders. Mediators Inflamm. 2015;2015:531518. doi: 10.1155/2015/531518

 

  1. Majerczyk D, Ayad EG, Brewton KL, Saing P, Hart PC. Systemic maternal inflammation promotes ASD via IL-6 and IFN-γ. Biosci Rep. 2022;42(11):BSR20220713. doi: 10.1042/BSR20220713

 

  1. Zawadzka A, Cieślik M, Adamczyk A. The role of maternal immune activation in the pathogenesis of autism: A review of the evidence, proposed mechanisms and implications for treatment. Int J Mol Sci. 2021;22(21):11516. doi: 10.3390/ijms222111516

 

  1. Beversdorf DQ, Stevens HE, Margolis KG, Van de Water J. Prenatal stress and maternal immune dysregulation in autism spectrum disorders: Potential points for intervention. Curr Pharm Des. 2019;25(41):4331-4343. doi: 10.2174/1381612825666191119093335

 

  1. Hughes HK, Moreno RJ, Ashwood P. Innate immune dysfunction and neuroinflammation in autism spectrum disorder (ASD). Brain Behav Immun. 2023;108:245-254. doi: 10.1016/j.bbi.2022.12.001

 

  1. Fang C. C1q as a regulator of brain development: implications for autism spectrum disorders. Brain Disord Ther. 2015;4:1. doi: 10.4172/2168-975X.1000152

 

  1. Peng Y, Ao M, Dong B, et al. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures. Drug Des Devel Ther. 2021;15:4503. doi: 10.2147/DDDT.S327378

 

  1. Yang J, Fu X, Liao X, Li Y. Nrf2 activators as dietary phytochemicals against oxidative stress, inflammation, and mitochondrial dysfunction in autism spectrum disorders: A systematic review. Front Psychiatry. 2020;11:561998. doi: 10.3389/fpsyt.2020.561998

 

  1. Jayaprakash P, Isaev D, Shabbir W, Lorke DE, Sadek B, Oz M. Curcumin potentiates α7 nicotinic acetylcholine receptors and alleviates autistic-like social deficits and brain oxidative stress status in mice. Int J Mol Sci. 2021;22(14):7251. doi: 10.3390/ijms22147251

 

  1. Zhong H, Xiao R, Ruan R, et al. Neonatal curcumin treatment restores hippocampal neurogenesis and improves autism-related behaviors in a mouse model of autism. Psychopharmacology (Berl). 2020;237(12):3539-3552. doi: 10.1007/S00213-020-05634-5

 

  1. Singh R, Kisku A, Kungumaraj H, et al. Autism spectrum disorders: A recent update on targeting inflammatory pathways with natural anti-inflammatory agents. Biomedicines. 2023;11(1):115. doi: 10.3390/biomedicines11010115

 

  1. Researcher View NCT04327648 Effect and Mechanism of Social Interaction Treatment on ASD Children. Available from: https://clinicaltrials.gov/study/NCT04327648?tab=table [Last accessed on 2025 Sep 14].

 

  1. Huang CY, Chen KS, Lee KY, Lin CH, Chen KL. Different autism measures targeting different severity levels in children with autism spectrum disorder. Eur Arch Psychiatry Clin Neurosci. 2024;274(1):27-33. doi: 10.1007/S00406-023-01673-z/metrics

 

  1. Lopresti AL. The problem of curcumin and its bioavailability: Could its gastrointestinal influence contribute to its overall health-enhancing effects? Adv Nutr. 2018;9(1):41-50. doi: 10.1093/advances/nmx011

 

  1. Salehi B, Calina D, Docea AO, et al. Curcumin’s nanomedicine formulations for therapeutic application in neurological diseases. J Clin Med. 2020;9(2):430. doi: 10.3390/JCM9020430

 

  1. Chen MH, Chiang BH. Modification of curcumin-loaded liposome with edible compounds to enhance ability of crossing blood brain barrier. Colloids Surf A Physicochem Eng Asp. 2020;599:124862. doi: 10.1016/j.colsurfa.2020.124862

 

  1. Al-Askar M, Bhat RS, Selim M, Al-Ayadhi L, El-Ansary A. Postnatal treatment using curcumin supplements to amend the damage in VPA-induced rodent models of autism. BMC Complement Altern Med. 2017;17(1):259. doi: 10.1186/S12906-017-1763-7
Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing