AccScience Publishing / AN / Online First / DOI: 10.36922/AN025110023
ORIGINAL RESEARCH ARTICLE

In vitro suppression of glioblastoma cell functions by TG100-115, a transient receptor potential melastatin 7 kinase inhibitor

Yuanyuan Xu1,2 Wenliang Chen1,2 Rahmah Alanazi1,2 Xinyang Zhang1,2 Erin Cross2 Barbara Gundi1,2 James T. Rutka1 F. David Horgen3 Andrea Fleig4,5 Zhong-Ping Feng2 Hong-Shuo Sun1,2,6,7*
Show Less
1 Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
2 Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
3 Department of Natural Science, College of Natural Sciences and Computational Sciences, Hawaii Pacific University, Honolulu, Hawaii, United States of America
4 John A. Burns School of Medicine and University of Hawaii Cancer Center at the University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
5 Center for Biomedical Research at The Queen’s Medical Center, Honolulu, Hawaii, United States of America
6 Department of Pharmacology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
7 Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
Advanced Neurology, 025110023 https://doi.org/10.36922/AN025110023
Received: 14 March 2025 | Revised: 26 May 2025 | Accepted: 30 May 2025 | Published online: 11 July 2025
(This article belongs to the Special Issue Advanced Neurology 3rd Anniversary Special Issue)
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Glioblastomas (GBMs) are highly aggressive and lethal primary brain tumors, known for their rapid proliferation, diffuse infiltration, and resistance to conventional therapies. Recent studies have highlighted the involvement of transient receptor potential melastatin 7 (TRPM7) in regulating GBM progression through its dual function as an ion channel and a serine/threonine protein kinase. TG100-115, initially characterized as a phosphoinositide 3-kinase γ/δ inhibitor, has recently been identified as a novel inhibitor of TRPM7 kinase. However, its potential pharmacological effects in GBM cells have not been fully elucidated. In this study, we investigated the anti-GBM effects of TG100-115 in U251 glioma cells. Cell viability and proliferation were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, whereas cell motility and invasiveness were determined through wound healing and transwell assays, respectively. Western blotting was used to detect the expression of key proteins involved in the apoptotic and molecular signaling pathways. Our findings revealed that TG100-115 significantly diminished the viability of U251 cells by promoting apoptosis while concurrently inhibiting the migratory and invasive activities of GBM cells. Mechanistically, TG100-115 enhanced apoptotic signaling by modulating B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein, and cleaved caspase-3 levels. It also altered the phosphorylation status of protein kinase B and cofilin – both critical for cell survival and cytoskeletal dynamics. In conclusion, these findings suggest that TG100-115, by targeting TRPM7 kinase, exhibits promising therapeutic potential for GBM treatment and provides novel insights into targeting TRPM7-associated pathways in aggressive brain tumors.

Graphical abstract
Keywords
Transient receptor potential melastatin 7 kinase
TG100-115
Glioblastoma
Proliferation
Migration
Invasion
Funding
This work was supported by the following grants: Canadian Institutes of Health Research (CIHR PJT-153155) to ZPF and the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants (RGPIN- 2016-04574 and RGPIN-2022-04589) to HSS.
Conflict of interest
Hong-Shuo Sun is an Editorial Board Member, and Zhong- Ping Feng serves as an Associate Editor for this journal, but they were not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Wasilewski A, Serventi J, Kamalyan L, Wychowski T, Mohile N. Acute care in glioblastoma: The burden and the consequences. Neurooncol Pract. 2017;4(4):248-254. doi: 10.1093/nop/npw032

 

  1. Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459-466. doi: 10.1016/S1470-2045(09)70025-7

 

  1. Kannan S, Murugan AK, Balasubramanian S, Munirajan AK, Alzahrani AS. Gliomas: Genetic alterations, mechanisms of metastasis, recurrence, drug resistance, and recent trends in molecular therapeutic options. Biochem Pharmacol. 2022;201:115090. doi: 10.1016/j.bcp.2022.115090

 

  1. Murugan AK, Alzahrani AS. Isocitrate dehydrogenase IDH1 and IDH2 mutations in human cancer: Prognostic implications for gliomas. Br J Biomed Sci. 2022;79:10208. doi: 10.3389/bjbs.2021.10208

 

  1. Murugan AK, Kannan S, Alzahrani AS. Immune checkpoint expression and therapeutic implications in IDH1- mutant and wild-type glioblastomas. Curr Probl Cancer. 2025;55:101182. doi: 10.1016/j.currproblcancer.2025.101182

 

  1. Le Rhun E, Preusser M, Roth P, et al. Molecular targeted therapy of glioblastoma. Cancer Treat Rev. 2019;80:101896. doi: 10.1016/j.ctrv.2019.101896

 

  1. Fleig A, Chubanov V. TRPM7. In: Nilius B, Flockerzi V, editors. Mammalian Transient Receptor Potential (TRP) Cation Channels. Vol. 1. Berlin, Heidelberg: Springer; 2014. p. 521-546.

 

  1. Yee NS, Kazi AA, Li Q, Yang Z, Berg A, Yee RK. Aberrant over-expression of TRPM7 ion channels in pancreatic cancer: Required for cancer cell invasion and implicated in tumor growth and metastasis. Biol Open. 2015;4(4):507-514. doi: 10.1242/bio.20137088

 

  1. Guilbert A, Gautier M, Dhennin-Duthille I, Haren N, Sevestre H, Ouadid-Ahidouch H. Evidence that TRPM7 is required for breast cancer cell proliferation. Am J Physiol Cell Physiol. 2009;297(3):C493-C502. doi: 10.1152/ajpcell.00624.2008

 

  1. Kim BJ, Park EJ, Lee JH, Jeon JH, Kim SJ, So I. Suppression of transient receptor potential melastatin 7 channel induces cell death in gastric cancer. Cancer Sci. 2008;99(12):2502-2509. doi: 10.1111/j.1349-7006.2008.00982.x

 

  1. Chen JP, Luan Y, You CX, Chen XH, Luo RC, Li R. TRPM7 regulates the migration of human nasopharyngeal carcinoma cell by mediating Ca(2+) influx. Cell Calcium. 2010;47(5):425-432. doi: 10.1016/j.ceca.2010.03.003

 

  1. Chen WL, Barszczyk A, Turlova E, et al. Inhibition of TRPM7 by carvacrol suppresses glioblastoma cell proliferation, migration and invasion. Oncotarget. 2015;6(18):16321- 16340. doi: 10.18632/oncotarget.3872

 

  1. Wong R, Gong H, Alanazi R, et al. Inhibition of TRPM7 with waixenicin A reduces glioblastoma cellular functions. Cell Calcium. 2020;92:102307. doi: 10.1016/j.ceca.2020.102307

 

  1. Wong R, Turlova E, Feng ZP, Rutka JT, Sun HS. Activation of TRPM7 by naltriben enhances migration and invasion of glioblastoma cells. Oncotarget. 2017;8(7):11239-11248. doi: 10.18632/oncotarget.14496

 

  1. Majewska E, Szeliga M. AKT/GSK3β signaling in glioblastoma. Neurochem Res. 2017;42(3):918-924. doi: 10.1007/s11064-016-2044-4

 

  1. McCubrey JA, Steelman LS, Chappell WH, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 2007;1773(8):1263-1284. doi: 10.1016/j.bbamcr.2006.10.001

 

  1. Chen WL, Turlova E, Sun CL, et al. Xyloketal B suppresses glioblastoma cell proliferation and migration in vitro through inhibiting TRPM7-regulated PI3K/Akt and MEK/ ERK signaling pathways. Mar Drugs. 2015;13(4):2505-2525. doi: 10.3390/md13042505

 

  1. Tian Y, Yang T, Yu S, Liu C, He M, Hu C. Prostaglandin E2 increases migration and proliferation of human glioblastoma cells by activating transient receptor potential melastatin 7 channels. J Cell Mol Med. 2018;22(12):6327-6337. doi: 10.1111/jcmm.13931

 

  1. Meng S, Alanazi R, Ji D, et al. Role of TRPM7 kinase in cancer. Cell Calcium. 2021;96:102400. doi: 10.1016/j.ceca.2021.102400

 

  1. Guilbert A, Gautier M, Dhennin-Duthille I, et al. Transient receptor potential melastatin 7 is involved in oestrogen receptor-negative metastatic breast cancer cells migration through its kinase domain. Eur J Cancer. 2013;49(17):3694-707. doi: 10.1016/j.ejca.2013.07.008

 

  1. Wan J, Guo AA, Chowdhury I, et al. TRPM7 induces mechanistic target of rap1b through the downregulation of miR-28-5p in glioma proliferation and invasion. Front Oncol. 2019;9:1413. doi: 10.3389/fonc.2019.01413

 

  1. Song C, Bae Y, Jun J, et al. Identification of TG100-115 as a new and potent TRPM7 kinase inhibitor, which suppresses breast cancer cell migration and invasion. Biochim Biophys Acta Gen Subj. Apr 2017;1861(4):947-957. doi: 10.1016/j.bbagen.2017.01.034

 

  1. Doukas J, Wrasidlo W, Noronha G, et al. Phosphoinositide 3-kinase gamma/delta inhibition limits infarct size after myocardial ischemia/reperfusion injury. Proc Natl Acad Sci U S A. 2006;103(52):19866-19871. doi: 10.1073/pnas.0606956103

 

  1. Alandağ C, Kancaği DD, Karakuş Sir G, et al. The effects of thymoquinone on pancreatic cancer and immune cells. Rev Assoc Med Bras (1992). 2022;68(8):1023-1026. doi: 10.1590/1806-9282.20220066

 

  1. Asadi M, Taghizadeh S, Kaviani E, et al. Caspase-3: Structure, function, and biotechnological aspects. Biotechnol Appl Biochem. 2022;69(4):1633-1645. doi: 10.1002/bab.2233

 

  1. Fulda S. Cell death-based treatment of glioblastoma. Cell Death Dis. 2018;9(2):121. doi: 10.1038/s41419-017-0021-8

 

  1. Murugan AK. mTOR: Role in cancer, metastasis and drug resistance. Semin Cancer Biol. 2019;59:92-111. doi: 10.1016/j.semcancer.2019.07.003

 

  1. Murugan AK. Special issue: PI3K/Akt signaling in human cancer. Semin Cancer Biol. 2019;59:1-2. doi: 10.1016/j.semcancer.2019.10.022

 

  1. Bravo-Cordero JJ, Magalhaes MA, Eddy RJ, Hodgson L, Condeelis J. Functions of cofilin in cell locomotion and invasion. Nat Rev Mol Cell Biol. 2013;14(7):405-415. doi: 10.1038/nrm3609

 

  1. Manning BD, Cantley LC. AKT/PKB signaling: Navigating downstream. Cell. 2007;129(7):1261-1274. doi: 10.1016/j.cell.2007.06.009

 

  1. Hoeger B, Nadolni W, Hampe S, et al. Inactivation of TRPM7 kinase targets AKT signaling and cyclooxygenase-2 expression in human CML cells. Function (Oxf). 2023;4(6):zqad053. doi: 10.1093/function/zqad053

 

  1. Nadolni W, Immler R, Hoelting K, et al. TRPM7 kinase is essential for neutrophil recruitment and function via regulation of Akt/mTOR signaling. Front Immunol. 2020;11:606893. doi: 10.3389/fimmu.2020.606893

 

  1. Pridham KJ, Le L, Guo S, et al. PIK3CB/p110beta is a selective survival factor for glioblastoma. Neuro Oncol. Mar 27 2018;20(4):494-505. doi: 10.1093/neuonc/nox181

 

  1. Zhao HF, Wang J, Jiang HR, Chen ZP, To SS. PI3K p110β isoform synergizes with JNK in the regulation of glioblastoma cell proliferation and migration through Akt and FAK inhibition. J Exp Clin Cancer Res. 2016;35:78. doi: 10.1186/s13046-016-0356-5

 

  1. Yuan J, Dong X, Yap J, Hu J. The MAPK and AMPK signalings: Interplay and implication in targeted cancer therapy. J Hematol Oncol. 2020;13(1):113. doi: 10.1186/s13045-020-00949-4

 

  1. Barbosa R, Acevedo LA, Marmorstein R. The MEK/ERK network as a therapeutic target in human cancer. Mol Cancer Res. 2021;19(3):361-374. doi: 10.1158/1541-7786.MCR-20-0687

 

  1. Qiu B, Wang Y, Tao J, Wang Y. Expression and correlation of Bcl-2 with pathological grades in human glioma stem cells. Oncol Rep. 2012;28(1):155-160. doi: 10.3892/or.2012.1800

 

  1. Kirkin V, Joos S, Zornig M. The role of Bcl-2 family members in tumorigenesis. Biochim Biophys Acta. 2004;1644(2- 3):229-249. doi: 10.1016/j.bbamcr.2003.08.009

 

  1. Fels C, Schafer C, Huppe B, et al. Bcl-2 expression in higher-grade human glioma: A clinical and experimental study. J Neurooncol. 2000;48(3):207-216. doi: 10.1023/a:1006484801654

 

  1. Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6(2):99-104. doi: 10.1038/sj.cdd.4400476

 

  1. Chang CY, Leu JD, Lee YJ. The actin depolymerizing factor (ADF)/cofilin signaling pathway and DNA damage responses in cancer. Int J Mol Sci. 2015;16(2):4095-4120. doi: 10.3390/ijms16024095

 

  1. Bernstein BW, Bamburg JR. ADF/cofilin: A functional node in cell biology. Trends Cell Biol. 2010;20(4):187-195. doi: 10.1016/j.tcb.2010.01.001

 

  1. Park JB, Agnihotri S, Golbourn B, et al. Transcriptional profiling of GBM invasion genes identifies effective inhibitors of the LIM kinase-Cofilin pathway. Oncotarget. 2014;5(19):9382-9395. doi: 10.18632/oncotarget.2412

 

  1. Abumaria N, Li W, Clarkson AN. Role of the chanzyme TRPM7 in the nervous system in health and disease. Cell Mol Life Sci. 2019;76(17):3301-3310. doi: 10.1007/s00018-019-03124-2

 

  1. Liu Y, Chen C, Liu Y, et al. TRPM7 is required for normal synapse density, learning, and memory at different developmental stages. Cell Rep. 2018;23(12):3480-3491. doi: 10.1016/j.celrep.2018.05.069

 

  1. Li J, Yang R, Yang H, et al. NCAM regulates the proliferation, apoptosis, autophagy, EMT, and migration of human melanoma cells via the Src/Akt/mTOR/cofilin signaling pathway. J Cell Biochem. 2020;121(2):1192-1204. doi: 10.1002/jcb.29353
Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing