AccScience Publishing / AN / Online First / DOI: 10.36922/AN025100020
ORIGINAL RESEARCH ARTICLE

Mechanistic investigation of Xi Jiao Di Huang Tang for ischemic stroke: A network pharmacology and in vivo validation study

Qiuhua He1 Fantao Song1 Yujie Wang1 Zhaoyao Chen1*
Show Less
1 Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
Advanced Neurology, 025100020 https://doi.org/10.36922/AN025100020
Received: 4 March 2025 | Revised: 23 May 2025 | Accepted: 9 June 2025 | Published online: 4 July 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Ischemic stroke is the most prevalent and severe form of cerebrovascular disease and a leading cause of significant neurological disability. As the primary cause of hospitalization for neurological disorders, it necessitates urgent and effective therapeutic interventions. Xi Jiao Di Huang Tang (XJDHT), a classical traditional Chinese medicinal formula, is traditionally known for its effects in heat clearing, detoxification, blood cooling, and blood stasis removing. Emerging evidence suggests its potential to promote neurological recovery following ischemic stroke; however, systematic evaluation remains limited. This study employed a systematic network pharmacology approach to elucidate the molecular mechanisms underlying XJDHT’s therapeutic effects on ischemic stroke. LC-MS identified 24 bioactive compounds in XJDHT, using Traditional Chinese Medicine Systems Pharmacology and SwissTargetPrediction databases for target prediction. Disease targets for ischemic stroke were retrieved from GeneCards, Online Mendelian Inheritance in Man, Therapeutic Target Database, and Gene Expression Omnibus datasets. Intersection analysis found 424 overlapping targets between 690 compound targets and 3415 disease targets. Cytoscape and STRING platforms were used to construct networks and identify hub genes and critical modules. Functional enrichment analysis was conducted using the Database for Annotation, Visualization, and Integrated Discovery database. Network analysis identified core bioactive constituents, including paeoniflorin, albiflorin, benzoylpaeoniflorin, kaempferol, paeonol, ellagic acid, pinostrobin, β-sitosterol, and stigmasterol. Key therapeutic targets comprised phosphatidylinositol-4,5-bisphosphate 3-kinase regulatory subunit 1, SRC proto-oncogene, signal transducer and activator of transcription 3, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta, AKT serine/threonine kinase 1, epidermal growth factor receptor, estrogen receptor 1, Harvey rat sarcoma virus, and neuroblastoma RAS viral oncogene homolog. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment revealed significant involvement in the mammalian target of rapamycin signaling pathway, mitogen-activated protein kinase cascade, phosphatidylinositol 3-Kinase-Protein Kinase B (PI3K-AKT) pathway, erythroblastic leukemia viral oncogene homolog signaling, and vascular endothelial growth factor-mediated angiogenesis. These findings suggest XJDHT exerts neuroprotective effects through coordinated modulation of inflammatory responses and cellular signaling cascades, exhibiting the characteristic therapeutic properties of a multicomponent, multitarget, and multipathway approach.

Keywords
Ischemic stroke
Traditional Chinese medicine
Network pharmacology
Micromolecular protein
Anti-inflammation
Antioxidation
Funding
This research was partially supported by the Key Project of Medical Research of the Jiangsu Commission of Health (K2023009) and the Natural Science Foundation of Nanjing University of Chinese Medicine (XZR2023030). The financial support was used to cover experimental expenses.
Conflict of interest
Zhaoyao Chen is the Youth Editorial Board Member of this journal but was not involved in the editorial and peer-review process conducted for this paper, either directly or indirectly. Separately, other authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Zhang S, Zhang X, Wang X, et al. Maltol inhibits oxygen glucose deprivation‑induced chromatinolysis in SH‑SY5Y cells by maintaining pyruvate level. Mol Med Rep. 2023;27(3):75. doi: 10.3892/mmr.2023.12962

 

  1. Xiong Y, Wakhloo AK, Fisher M. Advances in acute ischemic stroke therapy. Circ Res. 2022;130(8):1230-1251. doi: 10.1161/CIRCRESAHA.121.319948

 

  1. Bu L, Dai O, Zhou F, et al. Traditional chinese medicine formulas, extracts, and compounds promote angiogenesis. Biomed Pharmacother. 2020;132:110855. doi: 10.1016/j.biopha.2020.110855

 

  1. Fei X, Zhang X, Wang Q, et al. Xijiao dihuang decoction alleviates ischemic brain injury in MCAO rats by regulating inflammation, neurogenesis, and angiogenesis. Evid Based Complement Alternat Med. 2018;2018:5945128. doi: 10.1155/2018/5945128

 

  1. Zhang X, Fei X, Tao W, et al. Neuroprotective effect of modified xijiao dihuang decoction against oxygen-glucose deprivation and reoxygenation-induced injury in PC12 Cells: Involvement of TLR4-MyD88/NF- κB signaling pathway. Evid Based Complement Alternat Med. 2017;2017:3848595. doi: 10.1155/2017/3848595

 

  1. Zhao L, Zhang H, Li N, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J Ethnopharmacol. 2023;309:116306. doi: 10.1016/j.jep.2023.116306

 

  1. Ma Q, Li R, Wang L, et al. Temporal trend and attributable risk factors of stroke burden in China, 1990-2019: An analysis for the global burden of disease study 2019. Lancet Public Health. 2021;6(12):e897-e906. doi: 10.1016/S2468-2667(21)00228-0

 

  1. Jing J, Jing-Bo L, Ming-Ming F, et al. Clinical efficacy of xijiao dihuang decoction combined with conventional treatment on acute cerebral infarction patients with st. Prog Mod Biomed. 2024;24(8): 1495-1499.

 

  1. Hao S. Effect of Xijiao Dihuang Decoction on Autophagy Level and its Regulatory Mechanism in Rats with Focal Lschemia Reperfusion. Nanjing: Nanjing University of Chinese Medicine; 2019.

 

  1. Eckner R, Ewen ME, Newsome D, et al. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 1994;8(8):869-884. doi: 10.1101/gad.8.8.869

 

  1. Gronkowska K, Robaszkiewicz A. Genetic dysregulation of EP300 in cancers in light of cancer epigenome control - targeting of p300-proficient and -deficient cancers. Mol Ther Oncol. 2024;32(4):200871. doi: 10.1016/j.omton.2024.200871

 

  1. Rubio K, Molina-Herrera A, Perez-Gonzalez A, et al. EP300 as a molecular integrator of fibrotic transcriptional programs. Int J Mol Sci. 2023;24(15):12302. doi: 10.3390/ijms241512302

 

  1. Durbin AD, Wang T, Wimalasena VK, et al. EP300 selectively controls the enhancer landscape of MYCN-amplified neuroblastoma. Cancer Discov. 2022;12(3):730-751. doi: 10.1158/2159-8290.CD-21-0385

 

  1. Yang H, Liu X, Zhu X, et al. CPVL promotes glioma progression via STAT1 pathway inhibition through interactions with the BTK/p300 axis. JCI Insight. 2021;6(24):e146362. doi: 10.1172/jci.insight.146362

 

  1. Hou W, Hao Y, Sun L, Zhao Y, Zheng X, Song L. The dual roles of autophagy and the GPCRs-mediating autophagy signaling pathway after cerebral ischemic stroke. Mol Brain. 2022;15(1):14. doi: 10.1186/s13041-022-00899-7

 

  1. Son SM, Park SJ, Stamatakou E, Vicinanza M, Menzies FM, Rubinsztein DC. Leucine regulates autophagy via acetylation of the mTORC1 component raptor. Nat Commun. 2020;11(1):3148. doi: 10.1038/s41467-020-16886-2

 

  1. Xu Y, Wan W. Emerging roles of p300/CBP in autophagy and autophagy-related human disorders. J Cell Sci. 2023;136(12):jcs261028. doi: 10.1242/jcs.261028

 

  1. Peng L, Hu G, Yao Q, et al. Microglia autophagy in ischemic stroke: A double-edged sword. Front Immunol. 2022;13:1013311. doi: 10.3389/fimmu.2022.1013311

 

  1. Mo Y, Sun YY, Liu KY. Autophagy and inflammation in ischemic stroke. Neural Regen Res. 2020;15(8):1388-1396. doi: 10.4103/1673-5374.274331

 

  1. Sebti S, Prebois C, Perez-Gracia E, et al. BAG6/BAT3 modulates autophagy by affecting EP300/p300 intracellular localization. Autophagy. 2014;10(7):1341-1342. doi: 10.4161/auto.28979

 

  1. Kumar S, Gu Y, Abudu YP, et al. Phosphorylation of syntaxin 17 by TBK1 controls autophagy initiation. Dev Cell. 2019;49(1):130-144.e6. doi: 10.1016/j.devcel.2019.01.027

 

  1. Shen Q, Shi Y, Liu J, et al. Acetylation of STX17 (syntaxin 17) controls autophagosome maturation. Autophagy. 2021;17(5):1157-1169. doi: 10.1080/15548627.2020.1752471

 

  1. Pietrocola F, Castoldi F, Markaki M, et al. Aspirin recapitulates features of caloric restriction. Cell Rep. 2018;22(9):2395-2407. doi: 10.1016/j.celrep.2018.02.024

 

  1. Lei L, Lu Q, Ma G, Li T, Deng J, Li W. P53 protein and the diseases in central nervous system. Front Genet. 2022;13:1051395. doi: 10.3389/fgene.2022.1051395

 

  1. Ito A, Lai CH, Zhao X, et al. P300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 2001;20(6):1331-1340. doi: 10.1093/emboj/20.6.1331

 

  1. Xue Y, Zeng X, Tu WJ, Zhao J. Tumor necrosis factor- α: The next marker of stroke. Dis Markers. 2022;2022:2395269. doi: 10.1155/2022/2395269

 

  1. Doll DN, Barr TL, Simpkins JW. Cytokines: Their role in stroke and potential use as biomarkers and therapeutic targets. Aging Dis. 2014;5(5):294-306. doi: 10.14336/AD.2014.0500294

 

  1. Mukherjee SP, Behar M, Birnbaum HA, Hoffmann A, Wright PE, Ghosh G. Analysis of the RelA: CBP/p300 interaction reveals its involvement in NF-κB-driven transcription. PLoS Biol. 2013;11(9):e1001647. doi: 10.1371/journal.pbio.1001647

 

  1. Sha JY, Zhou YD, Yang JY, et al. Maltol (3-Hydroxy-2- methyl-4-pyrone) slows d-galactose-induced brain aging process by damping the Nrf2/HO-1-mediated oxidative stress in mice. J Agric Food Chem. 2019;67(37):10342-10351. doi: 10.1021/acs.jafc.9b04614

 

  1. Lu H, Fu C, Kong S, et al. Maltol prevents the progression of osteoarthritis by targeting PI3K/Akt/NF-κB pathway: In vitro and in vivo studies. J Cell Mol Med. 2021;25(1):499-509. doi: 10.1111/jcmm.16104

 

  1. Wang WT, Fan ML, Hu JN, et al. Maltol, a naturally occurring flavor enhancer, ameliorates cisplatin-induced apoptosis by inhibiting NLRP3 inflammasome activation by modulating ROS-mediated oxidative stress. J Funct Foods. 2022;94:105127. doi: 10.1016/j.jff.2022.105127

 

  1. Bai D, Ueno L, Vogt PK. Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and akt. Int J Cancer. 2009;125(12):2863-2870. doi: 10.1002/ijc.24748

 

  1. Zhou XY, Dai HY, Zhang H, Zhu JL, Hu H. Signal transducer and activator of transcription family is a prognostic marker associated with immune infiltration in endometrial cancer. J Clin Lab Anal. 2022;36(4):e24315. doi: 10.1002/jcla.24315

 

  1. Wang S, Awad KS, Elinoff JM, et al. G protein-coupled receptor 40 (GPR40) and peroxisome proliferator-activated receptor γ (PPARγ): AN integrated two-receptor signaling pathway. J Biol Chem. 2015;290(32):19544-19557. doi: 10.1074/jbc.M115.638924

 

  1. Ahn H, Lee G, Han BC, Lee SH, Lee GS. Maltol, a natural flavor enhancer, inhibits NLRP3 and non-canonical inflammasome activation. Antioxidants (Basel). 2022;11(10):1923. doi: 10.3390/antiox11101923

 

  1. Jin MH, Hu JN, Zhang M, et al. Corrigendum to ‘maltol attenuates polystyrene nanoplastic-induced enterotoxicity by promoting AMPK/mTOR/TFEB-mediated autophagy and modulating gut microbiota’ [Environmental pollution, maltol attenuates polystyrene nanoplastic-induced enterotoxicity by promoting AMPK/mTOR/TFEB-mediated autophagy and modulating gut microbiota, volume 322 (2023), 121202]. Environ Pollut. 2023;334:122127. doi: 10.1016/j.envpol.2023.122127

 

  1. Gu M, Su ZG, Janson JC. One-step purification of 3,4-dihydroxyphenyllactic acid, salvianolic acid B, and protocatechualdehyde from salvia miltiorrhiza bunge by isocratic stepwise hydrogen bond adsorption chromatography on cross-linked 12% agarose. J Chromatogr Sci. 2008;46(2):165-168. doi: 10.1093/chromsci/46.2.165

 

  1. Cao S, Chen S, Qiao X, et al. Protocatechualdehyde rescues oxygen-glucose deprivation/reoxygenation-induced endothelial cells injury by inducing autophagy and inhibiting apoptosis via regulation of SIRT1. Front Pharmacol. 2022;13:846513. doi: 10.3389/fphar.2022.846513

 

  1. Bouras T, Fu M, Sauve AA, et al. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem. 2005;280(11):10264-10276. doi: 10.1074/jbc.M408748200

 

  1. Guo Y, Yang JH, He Y, et al. Protocatechuic aldehyde prevents ischemic injury by attenuating brain microvascular endothelial cell pyroptosis via lncRNA Xist. Phytomedicine. 2022;94:153849. doi: 10.1016/j.phymed.2021.153849

 

  1. He M, Chiang HH, Luo H, et al. An acetylation switch of the NLRP3 inflammasome regulates aging-associated chronic inflammation and insulin resistance. Cell Metab. 2020;31(3):580-591.e5. doi: 10.1016/j.cmet.2020.01.009

 

  1. Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-κB signaling in inflammation and cancer. Med Comm (2020). 2021;2(4):618-653. doi: 10.1002/mco2.104

 

  1. Winter AN, Brenner MC, Punessen N, et al. Comparison of the neuroprotective and anti-inflammatory effects of the anthocyanin metabolites, protocatechuic acid and 4-hydroxybenzoic acid. Oxid Med Cell Longev. 2017;2017:6297080. doi: 10.1155/2017/6297080

 

  1. Kong BS, Cho YH, Lee EJ. G protein-coupled estrogen receptor-1 is involved in the protective effect of protocatechuic aldehyde against endothelial dysfunction. PLoS One. 2014;9(11):e113242. doi: 10.1371/journal.pone.0113242

 

  1. Zeng M, Shao C, Zhou H, et al. Protocatechudehyde improves mitochondrial energy metabolism through the HIF1α/PDK1 signaling pathway to mitigate ischemic stroke-elicited internal capsule injury. J Ethnopharmacol. 2021;277:114232. doi: 10.1016/j.jep.2021.114232

 

  1. Bolun Z, Guannan Z. Advances in the treatment of advanced melanoma with NRAS gene mutation. China Oncol. 2023;33(10):936-944. doi: 10.19401/j.cnki.1007-3639.2023.10.006

 

  1. Randic T, Kozar I, Margue C, Utikal J, Kreis S. NRAS mutant melanoma: Towards better therapies. Cancer Treat Rev. 2021;99:102238. doi: 10.1016/j.ctrv.2021.102238

 

  1. Wang J, Liu Y, Li Z, et al. Endogenous oncogenic nras mutation initiates hematopoietic malignancies in a dose- and cell type-dependent manner. Blood. 2011;118(2):368-379. doi: 10.1182/blood-2010-12-326058

 

  1. Valencia-Sama I, Ladumor Y, Kee L, et al. NRAS status determines sensitivity to SHP2 inhibitor combination therapies targeting the RAS-MAPK pathway in neuroblastoma. Cancer Res. 2020;80(16):3413-3423. doi: 10.1158/0008-5472.CAN-19-3822

 

  1. Kuiming Z, Yinglin C, Luandie G, et al. Research progress in effect of p38 MAPK signal pathway on ischemic stroke. Med Recapitulate. 2021;27(09):1691-1695.

 

  1. Meng-Yang J. The role of p38 MAPK- PPARγ/NF-κB signaling pathway inthe induction of brain ischemic tolerance induced bycerebral ischemic preconditioning. Hebei Medical University. 2014.

 

  1. Zhang B, Wei YZ, Wang GQ, Li DD, Shi JS, Zhang F. Targeting MAPK pathways by naringenin modulates microglia M1/ M2 polarization in lipopolysaccharide-stimulated cultures. Front Cell Neurosci. 2018;12:531. doi: 10.3389/fncel.2018.00531

 

  1. Chen MJ, Ramesha S, Weinstock LD, et al. Extracellular signal-regulated kinase regulates microglial immune responses in Alzheimer’s disease. J Neurosci Res. 2021;99(6):1704-1721. doi: 10.1002/jnr.24829

 

  1. Vu HL, Aplin AE. Targeting mutant NRAS signaling pathways in melanoma. Pharmacol Res. 2016;107:111-116. doi: 10.1016/j.phrs.2016.03.007

 

  1. Chu E, Mychasiuk R, Hibbs ML, Semple BD. Dysregulated phosphoinositide 3-kinase signaling in microglia: Shaping chronic neuroinflammation. J Neuroinflammation. 2021;18(1):276. doi: 10.1186/s12974-021-02325-6

 

  1. Xin-Yu HU, Xue W, Wen-Qian LU, et al. Involvement of mitochondria-mediated pathway and akt/GSK3β signaling in protective action of albiflorin against MPP~+-induced PC12 cells apoptosis. Chin Pharm J. 2016;51(17):1467-1471. doi: 10.11669/cpj.2016.17.007

 

  1. Yoeli-Lerner M, Chin YR, Hansen CK, Toker A. Akt/ protein kinase b and glycogen synthase kinase-3beta signaling pathway regulates cell migration through the NFAT1 transcription factor. Mol Cancer Res. 2009;7(3):425- 432. doi: 10.1158/1541-7786.MCR-08-0342

 

  1. Palanivel C, Chaudhary N, Seshacharyulu P, et al. The GSK3 kinase and LZTR1 protein regulate the stability of ras family proteins and the proliferation of pancreatic cancer cells. Neoplasia. 2022;25:28-40. doi: 10.1016/j.neo.2022.01.002

 

  1. Oh YJ, Jin SE, Shin HK, Ha H. Daeshiho-tang attenuates inflammatory response and oxidative stress in LPS-stimulated macrophages by regulating TLR4/MyD88, NF-κB, MAPK, and Nrf2/HO-1 pathways. Sci Rep. 2023;13(1):18891. doi: 10.1038/s41598-023-46033-y

 

  1. Zhang H, Wang J, Lang W, et al. Albiflorin ameliorates inflammation and oxidative stress by regulating the NF-κB/ NLRP3 pathway in methotrexate-induced enteritis. Int Immunopharmacol. 2022;109:108824. doi: 10.1016/j.intimp.2022.108824

 

  1. Ou Z, Li P, Wu L, et al. Albiflorin alleviates neuroinflammation of rats after MCAO via PGK1/Nrf2/HO-1 signaling pathway. Int Immunopharmacol. 2024;137:112439. doi: 10.1016/j.intimp.2024.112439

 

  1. Kryszczuk M, Kowalczuk O. Significance of NRF2 in physiological and pathological conditions an comprehensive review. Arch Biochem Biophys. 2022;730:109417. doi: 10.1016/j.abb.2022.109417

 

  1. Banerjee N, Wang H, Wang G, Boor PJ, Khan MF. Redox-sensitive Nrf2 and MAPK signaling pathways contribute to trichloroethene-mediated autoimmune disease progression. Toxicology. 2021;457:152804. doi: 10.1016/j.tox.2021.152804

 

  1. Ferro E, Goitre L, Retta SF, Trabalzini L. The interplay between ROS and ras GTPases: physiological and pathological implications. J Signal Transduct. 2012;2012:365769. doi: 10.1155/2012/365769

 

  1. Zhang L, Xu J, Yin S, Wang Q, Jia Z, Wen T. Albiflorin attenuates neuroinflammation and improves functional recovery after spinal cord injury through regulating LSD1-mediated microglial activation and ferroptosis. Inflammation. 2024;47(4):1313-1327. doi: 10.1007/s10753-024-01978-8

 

  1. Sun S, Jimu RB, Lema AK, et al. A systematic review on the origin, anti-inflammatory effect, mechanism, pharmacokinetics, and toxicity of albiflorin. Arab J Chem. 2024;17(7):105836. doi: 10.1016/j.arabjc.2024.105836

 

  1. Zhou J, Wang L, Wang J, et al. Paeoniflorin and albiflorin attenuate neuropathic pain via MAPK pathway in chronic constriction injury rats. Evid Based Complement Alternat Med. 2016;2016:8082753. doi: 10.1155/2016/8082753
Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing