AccScience Publishing / AN / Online First / DOI: 10.36922/an.7087
REVIEW ARTICLE

Graphene quantum dots: A novel approach for early detection and diagnosis of Alzheimer’s disease

Gideon Sorlelodum Alex1* Martina C. Anene-Ogbe1 Glory Farounbi2 Tolulope Judah Gbayisomore3 Adejoke Elizabeth Memudu4
Show Less
1 Department of Anatomy, Faculty of Basic Medical Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
2 Department of Medicine and Surgery, College of Medicine, Lagos State University, Ikeja, Lagos State, Nigeria
3 Department of Anatomy, Faculty of Basic Medical Science, University of Medical Sciences, Ondo, Ondo State, Nigeria
4 Department of Anatomy, Neuroscience Unit, Faculty of Basic Medical Science, Edo State University, Benin City, Edo State, Nigeria
Advanced Neurology, 7087 https://doi.org/10.36922/an.7087
Received: 5 December 2024 | Revised: 18 March 2025 | Accepted: 7 April 2025 | Published online: 28 April 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Alzheimer’s disease (AD) is the most common cause of age-related dementia and death, resulting from the aggregation of tau protein into insoluble neurofibrillary tangles (NFTs) composed of paired helical filaments and straight filaments. Graphene quantum dots (GQDs), a unique form of nanoparticles, have emerged as a crucial tool for the detection and diagnosis of AD. They are considered attractive due to their fluorescence-emitting capabilities, nanoscale size, chemical stability, solubility, and ease of synthesis. In this review, we investigated the potential of GQDs as a therapeutic tool in AD intervention, highlighting their recent developments, challenges, and future directions. A comprehensive and systematic search was conducted across electronic databases (Scopus, PubMed, Google Scholar, and Medline) for recent and up-to-date articles related to the keywords: “Alzheimer’s disease,” “graphene quantum dots,” “nanoparticles,” and “neuroscience.” Our findings indicate that QDs possess the ability to cross the blood–brain barrier, reduce disease symptoms, and facilitate drug delivery, cell labeling, and neuronal regeneration. In addition, early identification, prevention, and disassembly of tau protein aggregation in AD can be achieved using GQDs. In conclusion, the application of GQDs to improve the progression of AD neuropathology by disintegrating NFTs of tau protein presents a promising approach for diagnostic research in AD. The limitations of GQDs, particularly their long-term exposure to the brain, need to be thoroughly investigated. This includes minimizing the side effects through a multidisciplinary translational neuroscience approach for therapeutic applications in clinical trials.

Keywords
Alzheimer’s disease
Graphene quantum dots
Nanoparticles
Neurotoxicity
Tau proteins
Ultrasensitive detection
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Stepanchuk AA, Morgan ML, Joseph JT, Stys PK. Dual-probe fluorescence spectroscopy for sensitive quantitation of Alzheimer’s amyloid pathology. Acta Neuropathol Commun. 2022;10(1):153. doi: 10.1186/s40478-022-01456-y

 

  1. Armstrong RA. The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer’s disease. Folia Neuropathol. 2009;47(4):289-299.

 

  1. Alzheimer’s Association. 2014 Alzheimer’s disease facts and figures. Alzheimers Dement. 2014;10(2):e47-e92. doi: 10.1016/j.jalz.2014.02.001

 

  1. Javaid SF, Giebel C, Khan MA, Hashim MJ. Epidemiology of Alzheimer’s disease and other dementias: Rising global burden and forecasted trends. F1000Res. 2021;10:425. doi: 10.12688/f1000research.50786.1

 

  1. Memudu AE, Olukade BA, Alex GS. Neurodegenerative diseases: Alzheimer’s disease. In: Integrating Neuroimaging, Computational Neuroscience, and Artificial Intelligence. Boca Raton: CRC Press; 2024. p. 128-147.

 

  1. Li X, Feng X, Sun X, Hou N, Han F, Liu Y. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2019. Front Aging Neurosci. 2022;14:937486. doi: 10.3389/fnagi.2022.937486

 

  1. Santiago JA, Potashkin JA. The impact of disease comorbidities in Alzheimer’s disease. Front Aging Neurosci. 2021;13:631770. doi: 10.3389/fnagi.2021.631770

 

  1. Xue M, Xu W, Ou YN, et al. Diabetes mellitus and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies. Ageing Res Rev. 2019;55:100944. doi: 10.1016/j.arr.2019.100944

 

  1. Nandi A, Counts N, Chen S, et al. Global and regional projections of the economic burden of Alzheimer’s disease and related dementias from 2019 to 2050: A value of statistical life approach. EClinicalMedicine. 2022;51:101580. doi: 10.1016/j.eclinm.2022.101580

 

  1. Shon C, Yoon H. Health-economic burden of dementia in South Korea. BMC Geriatr. 2021;21(1):549. doi: 10.1186/s12877-021-02526-x

 

  1. Hasannejadasl B, Janbaz FP, Choupani E, et al. Quantum dots application in neurodegenerative diseases. Thrita. 2020;9(2):e100105. doi: 10.5812/thrita.100105

 

  1. Devi S, Kumar M, Tiwari A, et al. Quantum dots: An emerging approach for cancer therapy. Front Mater. 2022;8:798440. doi: 10.3389/fmats.2021.798440

 

  1. Al-Hilaly YK, Pollack SJ, Vadukul DM, et al. Alzheimer’s disease-like paired helical filament assembly from truncated tau protein is independent of disulfide crosslinking. J Mol Biol. 2017;429(23):3650-3665. doi: 10.1016/j.jmb.2017.09.007

 

  1. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 2005;4(6):435-446. doi: 10.1038/nmat1390

 

  1. Jain PK, El-Sayed IH, El-Sayed MA. Review of some interesting surface Plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics. 2006;1(2):107-118. doi: 10.1007/s11468-007-9031-1

 

  1. Bera D, Qian L, Tseng TK, Holloway PH. Quantum dots and their multimodal applications: A review. Materials. 2010;3(4):2260-2345. doi: 10.3390/ma3042260

 

  1. Agarwal K, Rai H, Mondal S. Quantum dots: An overview of synthesis, properties, and applications. Mater Res Express. 2023;10(6):062001. doi: 10.1088/2053-1591/acda17

 

  1. Reiss P, Protière M, Li L. Core/shell semiconductor nanocrystals. Small. 2009;5(2):154-168. doi: 10.1002/smll.200800841

 

  1. Li Y, Reiss P, Protière M, et al. Size-tunable and kinetically controlled synthesis of InAs nanocrystals. Nano Lett. 2007;7(9):2630-2635.

 

  1. Murphy JE, Beard MC, Norman AG, et al. PbTe colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation. J Am Chem Soc. 2006;128(10):3241-3247. doi: 10.1021/ja0574973

 

  1. Zhu S, Meng Q, Wang L, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun. 2013;49(6):669-671.

 

  1. Ghaffarkhah A, Hosseini E, Kamkar M, et al. Synthesis, applications, and prospects of graphene quantum dots: A comprehensive review. Small. 2022;18(2):2102683. doi: 10.1002/smll.202102683

 

  1. Yan X, Cui X, Li B, Li LS. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 2010;10(5):1869-1873. doi: 10.1021/nl101060h

 

  1. Dutta M, Sarkar S, Ghosh T, Basak D. ZnO/graphene quantum dot solid-state solar cell. J Phys Chem C. 2012;116(38):20127-20131. doi: 10.1021/jp302992k

 

  1. Gupta V, Chaudhary N, Srivastava R, et al. Luminescent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc. 2011;133(26):9960-9963. doi: 10.1021/ja2036749

 

  1. Bacon M, Bradley SJ, Nann T. Graphene quantum dots. Part Part Syst Charact. 2014;31(4):415-428. doi: 10.1002/ppsc.201300252

 

  1. Li LS, Yan X. Colloidal graphene quantum dots. J Phys Chem Lett. 2010;1(17):2572-2576. doi: 10.1021/jz100862f

 

  1. Kim S, Hwang SW, Kim MK, et al. Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano 2012;6:8203-8208. doi: 10.1021/nn302878r

 

  1. Lu J, Yan M, Ge L, et al. Electrochemiluminescence of blue-luminescent graphene quantum dots and its application in ultrasensitive aptasensor for adenosine triphosphate detection. Biosens Bioelectron. 2013;47:271-277. doi: 10.1016/j.bios.2013.03.039

 

  1. Li L, Ji J, Fei R, et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater. 2012;22(14):2971-2979. doi: 10.1002/adfm.201200166

 

  1. Eda G, Lin Y, Mattevi C, et al. Blue photoluminescence from chemically derived graphene oxide. Adv Mater. 2010;22(4):505-509. doi: 10.1002/adma.200901996

 

  1. Joshi PN, Kundu S, Sanghi SK, Sarkar D. Graphene quantum dots-from emergence to nanotheranostic applications. In: Smart Drug Delivery System. London: InTech; 2016.

 

  1. Shen J, Zhu Y, Yang X, Li C. Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun. 2022;58(40):4906-4926.

 

  1. Dong Y, Pang H, Yang HB, et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed Engl. 2020;59(2):745-748.

 

  1. Liu R, Zhang Q, Liu J, et al. Graphene quantum dots based fluorescent sensor for sensitive and selective detection of mercury ions and its imaging in live cells. Sens Actuators B Chem. 2021;327:128898.

 

  1. Sengupta S, Pal S, Pal A, et al. A review on synthesis, toxicity profile and biomedical applications of graphene quantum dots (GQDs). Inorg Chim Acta. 2023;557:121677. doi: 10.1016/j.ica.2023.121677

 

  1. Wang M, Sun Y, Cao X, et al. Graphene quantum dots against human IAPP aggregation and toxicity in vivo. Nanoscale. 2018;10(42):19995-20006. doi: 10.1039/C8NR07180B

 

  1. Tang L, Ji R, Li X, et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano. 2012;6(6):5102-5110. doi: 10.1021/nn300760g

 

  1. Zhang L, Xia J, Zhao Q, Liu L, Zhang Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small. 2010;6(4):537-544. doi: 10.1002/smll.200901680

 

  1. Cao L, Wang X, Meziani MJ, et al. Carbon dots for multiphoton bioimaging. J Am Chem Soc. 2007;129(37):11318-11319. doi: 10.1021/ja073527l

 

  1. Zhang J, Qiao C, Tang S, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun. 2011;47(24):6858-6860. doi: 10.1039/C1CC11122A

 

  1. Mansuriya BD, Altintas Z. Carbon dots: Classification, properties, synthesis, characterization, and applications in health care-An updated review (2018-2021). Nanomaterials. 2021;11(10):2525. doi: 10.3390/nano11102525

 

  1. Zhou X, Zhang Y, Wang C, et al. Photo-Fenton reaction of graphene oxide: A new strategy to prepare graphene quantum dots for DNA cleavage. ACS Nano. 2012;6(8):6592-6599. doi: 10.1021/nn301629v

 

  1. Li H, He X, Kang Z, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed Engl. 2010;49(26):4430-4434. doi: 10.1002/anie.200906154

 

  1. Sun X, Chen WD, Wang YD. β-Amyloid: The key peptide in the pathogenesis of Alzheimer’s disease. Front Pharmacol. 2015;6:221. doi: 10.3389/fphar.2015.00221

 

  1. Ahyayauch H, Masserini ME, Alonso A, Goñi FM. Understanding Aβ peptide binding to lipid membranes: A biophysical perspective. Int J Mol Sci. 2024;25(12):6401. doi: 10.3390/ijms25126401

 

  1. Zhang H, Ma Q, Zhang YW, Xu H. Proteolytic processing of Alzheimer’s β-amyloid precursor protein. J Neurochem. 2012;120(Suppl 1):9-21. doi: 10.1111/j.1471-4159.2011.07519.x

 

  1. Fan L, Mao C, Hu X, et al. New insights into the pathogenesis of Alzheimer’s disease. Front Neurol. 2020;10:1312. doi: 10.3389/fneur.2019.01312

 

  1. Brondi M, Bruzzone M, Lodovichi C, Dal Maschio M. Optogenetic methods to investigate brain alterations in preclinical models. Cells. 2022;11(11):1848. doi: 10.3390/cells11111848

 

  1. Yang HL, Bai LF, Geng ZR, et al. Carbon quantum dots: Preparation, optical properties, and biomedical applications. Mater Today Adv. 2023;18:100376. doi: 10.1016/j.mtadv.2023.100376

 

  1. Mansuriya BD, Altintas Z. Applications of graphene quantum dots in biomedical sensors. Sensors. 2020;20(4):1072. doi: 10.3390/s20041072

 

  1. Tahiroğlu AP, Uğur E, Coşkun E, et al. The role of vitamin B12 in Alzheimer patients. In: Multidisciplinary Approach in Medical Science III. Ankara: Iksad Publishing House; 2023. p. 171.

 

  1. Li JG, Chu J, Barrero C, Merali S, Praticò D. Homocysteine exacerbates β-amyloid pathology, tau pathology, and cognitive deficit in a mouse model of Alzheimer disease with plaques and tangles. Ann Neurol. 2014;75(6):851-863. doi: 10.1002/ana.24145

 

  1. Andra A, Tanigawa S, Bito T, Ishihara A, Watanabe F, Yabuta Y. Effects of vitamin B12 deficiency on amyloid-β toxicity in Caenorhabditis elegans. Antioxidants. 2021;10(6):962. doi: 10.3390/antiox10060962

 

  1. Iqbal K, Alonso AD, Gong CX, Khatoon S, Singh TJ, Grundke-Iqbal I. Mechanism of neurofibrillary degeneration in Alzheimer’s disease. Mol Neurobiol. 1994;9(1-3):119-123. doi: 10.1007/BF02816111

 

  1. Brion JP. Neurofibrillary tangles and Alzheimer’s disease. Eur Neurol. 1998;40(3):130-140. doi: 10.1159/000007969

 

  1. Di Lorenzo D. Tau protein and tauopathies: Exploring tau protein-protein and microtubule interactions, cross-interactions and therapeutic strategies. ChemMedChem. 2024;19(21):e202400180. doi: 10.1002/cmdc.202400180

 

  1. Kamboh MI. Molecular genetics of late-onset Alzheimer’s disease. Ann Hum Genet. 2004;68(4):381-404. doi: 10.1046/j.1529-8817.2004.00110.x

 

  1. Isik AT. Late-onset Alzheimer’s disease in older people. Clin Interv Aging. 2010;5:307-311. doi: 10.2147/CIA.S11718

 

  1. Dorszewska J, Prendecki M, Oczkowska A, Dezor M, Kozubski W. Molecular basis of familial and sporadic Alzheimer’s disease. Curr Alzheimer Res. 2016;13(9):952-963. doi: 10.2174/1567205013666160314150501

 

  1. Piaceri I, Nacmias B, Sorbi S. Genetics of familial and sporadic Alzheimer’s disease. Front Biosci (Elite Ed). 2013;5(1):167-177. doi: 10.2741/e605

 

  1. Hickman SE, El Khoury J. TREM2 and the neuroimmunology of Alzheimer’s disease. Biochem Pharmacol. 2014;88(4):495-498. doi: 10.1016/j.bcp.2013.11.021

 

  1. Price DL, Sisodia SS. Mutant genes in familial Alzheimer’s disease and transgenic models. Annu Rev Neurosci. 1998;21:479-505. doi: 10.1146/annurev.neuro.21.1.479

 

  1. Liu CG, Song J, Zhang YQ, Wang PC. MicroRNA-193b is a regulator of amyloid precursor protein in the blood and cerebrospinal fluid derived exosomal microRNA- 193b is a biomarker of Alzheimer’s disease. Mol Med Rep. 2014;10(5):2395-2400. doi: 10.3892/mmr.2014.2484

 

  1. Xiao S, Zhou D, Luan P, et al. Graphene quantum dots conjugated neuroprotective peptide improve learning and memory capability. Biomaterials. 2016;106:98-110. doi: 10.1016/j.biomaterials.2016.08.021

 

  1. Perini G, Palmieri V, Ciasca G, De Spirito M, Papi M. Unravelling the potential of graphene quantum dots in biomedicine and neuroscience. Int J Mol Sci. 2020;21(10):3712. doi: 10.3390/ijms21103712

 

  1. Tang H, Li Y, Kakinen A, et al. Graphene quantum dots obstruct the membrane axis of Alzheimer’s amyloid beta. Phys Chem Chem Phys. 2021;24(1):86-97. doi: 10.1039/D1CP04246G

 

  1. Walton-Raaby M, Woods R, Kalyaanamoorthy S. Investigating the theranostic potential of graphene quantum dots in Alzheimer’s disease. Int J Mol Sci. 2023;24(11):9476. doi: 10.3390/ijms24119476

 

  1. Zhang Y, Zhu R, Rajewski B, et al. Graphene Quantum Dots Prevent the Amyloidogenic Tau Protein Aggregation in Alzheimer’s Disease. AIChE Annual Meeting; 2022.

 

  1. Tabish TA, Scotton CJ, Ferguson DC, et al. Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy. Nanomedicine. 2018;13(15):1923-1937. doi: 10.2217/nnm-2018-0018

 

  1. Long JM, Holtzman DM. Alzheimer disease: An update on pathobiology and treatment strategies. Cell. 2019;179(2):312-339. doi: 10.1016/j.cell.2019.09.001

 

  1. Nurunnabi M, Khatun Z, Huh KM, et al. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano. 2013;7(8):6858-6867. doi: 10.1021/nn402043c

 

  1. Yuan X, Liu Z, Guo Z, Ji Y, Jin M, Wang X. Cellular distribution and cytotoxicity of graphene quantum dots with different functional groups. Nanoscale Res Lett. 2014;9:108. doi: 10.1186/1556-276X-9-108

 

  1. Chong Y, Ma Y, Shen H, et al. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials. 2014;35(19):5041-5048. doi: 10.1016/j.biomaterials.2014.03.021

 

  1. Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry. 2015;77(1):43-51. doi: 10.1016/j.biopsych.2014.05.006

 

  1. Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimers Dement. 2015;11(3):332. doi: 10.1016/j.jalz.2015.02.003

 

  1. Goedert M. Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Aβ, tau, and α-synuclein. Science. 2015;349(6248):1255555. doi: 10.1126/science.1255555

 

  1. Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine. 2019;14:5541-5554. doi: 10.2147/IJN.S200490

 

  1. Chaparro CI, Simões BT, Borges JP, et al. A promising approach: Magnetic nanosystems for Alzheimer’s disease theranostics. Pharmaceutics. 2023;15(9):2316. doi: 10.3390/pharmaceutics15092316

 

  1. Guo X, Lie Q, Liu Y, et al. Multifunctional selenium quantum dots for the treatment of Alzheimer’s disease by reducing Aβ-neurotoxicity and oxidative stress and alleviate neuroinflammation. ACS Appl Mater Interfaces. 2021;13(26):30261-30273. doi: 10.1021/acsami.1c00690

 

  1. Chapleau M, Iaccarino L, Soleimani-Meigooni D, Rabinovici GD. The role of amyloid PET in imaging neurodegenerative disorders: A review. J Nucl Med. 2022;63(suppl 1):13S-19S. doi: 10.2967/jnumed.121.263195

 

  1. Antic SD, Empson RM, Knöpfel T. Voltage imaging to understand connections and functions of neuronal circuits. J Neurophysiol. 2016;116(1):135-152. doi: 10.1152/jn.00226.2016

 

  1. Banik M, Ledray AP, Wu Y, Lu Y. Delivering DNA aptamers across the blood-brain barrier reveals heterogeneous decreased ATP in different brain regions of Alzheimer’s disease mouse models. ACS Cent Sci. 2024;10(7):1585-1593. doi: 10.1021/acscentsci.4c00563

 

  1. Shimojo M, Higuchi M, Suhara T, Sahara N. Imaging multimodalities for dissecting Alzheimer’s disease: Advanced technologies of positron emission tomography and fluorescence imaging. Front Neurosci. 2015;9:482. doi: 10.3389/fnins.2015.00482

 

  1. Zhang Y, Ding C, Li C, Wang X. Advances in fluorescent probes for detection and imaging of amyloid-β peptides in Alzheimer’s disease. Adv Clin Chem. 2021;103:135-190. doi: 10.1016/bs.acc.2020.08.008

 

  1. Meca-Lallana JE, Casanova B, Rodríguez-Antigüedad A, et al. Consensus on early detection of disease progression in patients with multiple sclerosis. Front Neurol. 2022;13:931014. doi: 10.3389/fneur.2022.931014

 

  1. Guo F, Li Q, Zhang X, et al. Applications of carbon dots for the treatment of Alzheimer’s disease. Int J Nanomedicine. 2022;17:6621-6638. doi: 10.2147/IJN.S388030

 

  1. Li Y, Lai W, Zheng C, et al. Neuroprotective effect of stearidonic acid on amyloid β-induced neurotoxicity in rat hippocampal cells. Antioxidants. 2022;11(12):2357. doi: 10.3390/antiox11122357

 

  1. Puranik N, Yadav D, Song M. Advancements in the application of nanomedicine in Alzheimer disease: A therapeutic perspective. Int J Mol Sci. 2023;24(18):14044. doi: 10.3390/ijms241814044

 

  1. Yousaf M, Huang H, Li P, Wang C, Yang Y. Fluorine functionalized graphene quantum dots as inhibitor against hIAPP amyloid aggregation. ACS Chem Neurosci. 2017;8(6):1368-1377. doi: 10.1021/acschemneuro.7b00015

 

  1. Vatanparast M, Shariatinia Z. Revealing the role of different nitrogen functionalities in the drug delivery performance of graphene quantum dots: A combined density functional theory and molecular dynamics approach. J Mater Chem B. 2019;7(40):6156-6171. doi: 10.1039/C9TB00971J

 

  1. Li S, Li Y, Cao J, Zhu J, Fan L, Li X. Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+. Anal Chem. 2014;86(20):10201-10207. doi: 10.1021/ac503183y

 

  1. Gessner I, Neundorf I. Nanoparticles modified with cell-penetrating peptides: Conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. Int J Mol Sci. 2020;21(7):2536. doi: 10.3390/ijms21072536

 

  1. Lo PY, Lee GY, Zheng JH, et al. GFP plasmid and chemoreagent conjugated with graphene quantum dots as a novel gene delivery platform for colon cancer inhibition in vitro and in vivo. ACS Appl Bio Mater. 2020;3(9):5948-5956. doi: 10.1021/acsabm.0c00631

 

  1. Soeda Y, Takashima A. New insights into drug discovery targeting tau protein. Front Mol Neurosci. 2020;13:231. doi: 10.3389/fnmol.2020.590896

 

  1. Bharadwaj PR, Dubey AK, Masters CL, et al. Aβ aggregation and possible implications in Alzheimer’s disease pathogenesis. J Cell Mol Med. 2009;13(3):412-421. doi: 10.1111/j.1582-4934.2009.00609.x

 

  1. Arora H, Ramesh M, Rajasekhar K, Govindaraju T. Molecular tools to detect alloforms of Aβ and tau: Implications for multiplexing and multimodal diagnosis of Alzheimer’s disease. Bull Chem Soc Jpn. 2020;93(4):507-546. doi: 10.1246/bcsj.20190356

 

  1. Patel V, Shah J, Gupta AK. Design and in-silico study of bioimaging fluorescence graphene quantum dot-bovine serum albumin complex synthesized by diimide-activated amidation. Comput Biol Chem. 2021;93:107543. doi: 10.1016/j.compbiolchem.2021.107543

 

  1. Kim D, Yoo JM, Hwang H, et al. Graphene quantum dots prevent α-synucleinopathy in Parkinson’s disease. Nat Nanotechnol. 2018;13(9):812-818. doi: 10.1038/s41565-018-0179-y

 

  1. Liu C, Huang H, Ma L, et al. Modulation of β-amyloid aggregation by graphene quantum dots. R Soc Open Sci. 2021;6(7):190271. doi: 10.1098/rsos.190271

 

  1. Nayab A, Murtaza NA, Tooba JK. Carbon quantum dots for biomedical applications: Review and analysis. Front Mater. 2022;8:700403. doi: 10.3389/fmats.2021.700403

 

  1. Zhu C, Chen Z, Gao S, et al. Recent advances in non-toxic quantum dots and their biomedical applications. Prog Nat Sci Mater Int. 2019;29(6):628-640. doi: 10.1016/j.pnsc.2019.11.007

 

  1. Meng Q, Wang Y, Li C, Hu X. Bismuth- and gadolinium-codoped carbon quantum dots with red/green dual emission for fluorescence/CT/T1-MRI mode imaging. New J Chem. 2022;46(35):16970-16980. doi: 10.1039/D2NJ03420D

 

Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing