AccScience Publishing / AN / Online First / DOI: 10.36922/an.8356
REVIEW ARTICLE

A review of current status of epilepsy after traumatic brain injuries: Pathophysiology, clinical outcomes, and emerging treatment strategies

Aman Shrivastava1* Sumeet Dwivedi2 Paras Gupta3 Rahul Chaurasia4 Anees Ghosi5 Amit Anand6 Abhishek Kumar7
Show Less
1 Department of Pharmacology, Institute of Professional Studies College of Pharmacy, Gwalior, Madhya Pradesh, India
2 Department of Pharmacognosy, Acropolis Institute of Pharmaceutical Education and Research, Indore,Madhya Pradesh, India
3 Department of Pharmacognosy, United Institute of Pharmacy, Naini, Prayagraj, Uttar Pradesh, India
4 Department of Pharmaceutics, Bhagyoday Tirth Pharmacy College, Sagar, Madhya Pradesh, India
5 Department of Pharmacology, Chameli Devi Institute of Pharmacy, Indore, Madhya Pradesh, India
6 Department of Pharmacognosy, JSS College of Pharmacy, Mysuru, Karnataka, India
7 Department of Pharmacology, Gurukul Institute of Pharmaceutical Sciences and Research, Gwalior,Madhya Pradesh, India
Advanced Neurology, 8356 https://doi.org/10.36922/an.8356
Received: 1 January 2025 | Revised: 13 February 2025 | Accepted: 2 April 2025 | Published online: 22 April 2025
(This article belongs to the Special Issue Advances in the pathogenesis, diagnosis and treatment of epilepsy)
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Traumatic brain injury (TBI) is a leading cause of neurological dysfunction worldwide, often resulting in long-lasting cognitive, motor, and psychiatric disorders. This review presents a comprehensive analysis of the neurological complications that arise following TBI, focusing on the underlying mechanisms and the clinical manifestations observed in affected patients. TBI induces a complex cascade of biochemical events, including neuronal injury, neuroinflammation, oxidative stress, and excitotoxicity, which collectively contribute to the onset of various neurological disorders. One of the most common and debilitating consequences of TBI is post-traumatic epilepsy (PTE), which frequently develops in patients as a long-term sequela. The review discusses the pathophysiology of PTE, examining how brain injury alters neuronal excitability and predisposes patients to recurrent seizures. In addition to epilepsy, TBI often leads to cognitive impairments, such as memory loss, attention deficits, and executive dysfunction, which significantly affect patients’ daily functioning. Motor impairments, including weakness, spasticity, and coordination issues, are common among TBI patients and can severely limit their mobility and independence. These motor deficits are primarily associated with injury to the motor cortex, basal ganglia, and cerebellum. Psychiatric disorders, such as depression, anxiety, and post-traumatic stress disorder, are prevalent in TBI patients and further complicate their recovery. This review emphasizes the need for early diagnosis, targeted interventions, and novel therapeutic strategies to manage the diverse and complex neurological consequences of TBI. A deeper understanding of the pathophysiology and clinical manifestations of TBI-related neurological disorders is crucial for improving patient outcomes and enhancing quality of life.

Keywords
Traumatic brain injury
Post-traumatic epilepsy
Cognitive impairments
Neuroinflammation
Motor deficits
Psychiatric disorders
Neurological sequelae
Funding
None.
Conflict of interest
The authors declare that there are no conflicts of interest.
References
  1. Bushnik T. Introduction: The traumatic brain injury model systems of care. Arch Phys Med Rehabil. 2003;84(2):151-152. doi: 10.1053/apmr.2003.50123

 

  1. Hendry K, Ownsworth T, Beadle E, et al. Cognitive deficits underlying error behavior on a naturalistic task after severe traumatic brain injury. Front Behav Neurosci. 2016;10:190. doi: 10.3389/fnbeh.2016.00190

 

  1. Schirmer‐Mikalsen K, Moen KG, Skandsen T, Vik A, Klepstad P. Intensive care and traumatic brain injury after the introduction of a treatment protocol: A prospective study. Acta Anaesthesiol Scand. 2013;57(1):46-55. doi: 10.1111/j.1399-6576.2012.02785.x

 

  1. Bauer R, Fritz H. Pathophysiology of traumatic injury in the developing brain: An introduction and short update. Exp Toxicol Pathol. 2004;56(1-2):65-73. doi: 10.1016/j.etp.2004.04.002

 

  1. Hossain I, Marklund N, Czeiter E, Hutchinson P, Buki A. Blood biomarkers for traumatic brain injury: A narrative review of current evidence. Brain Spine. 2024;12(4):102735. doi: 10.1016/j.bas.2023.102735

 

  1. Alouani AT, Elfouly T. Traumatic brain injury (TBI) detection: Past, present, and future. Biomedicines. 2022;10(10):2472. doi: 10.3390/biomedicines10102472

 

  1. Maas AI, Menon DK, Manley GT, et al. Traumatic brain injury: Progress and challenges in prevention, clinical care, and research. Lancet Neurol. 2022;21(11):1004-1060. doi: 10.1016/S1474-4422(22)00309-X

 

  1. Wang XP, Zhong J, Lei T, et al. Epidemiology of traumatic brain injury-associated epilepsy in Western China: An analysis of multicenter data. Epilepsy Res. 2020;8(164):106354. doi: 10.1016/j.eplepsyres.2020.106354

 

  1. Smith BG, Whiffin CJ, Esene IN, et al. Neurotrauma clinicians’ perspectives on the contextual challenges associated with traumatic brain injury follow up in low-income and middle-income countries: A reflexive thematic analysis. PLos One. 2022;17(9):e0274922. doi: 10.1371/journal.pone.0274922

 

  1. Brazinova A, Rehorcikova V, Taylor MS, et al. Epidemiology of traumatic brain injury in Europe: A living systematic review. J Neurotrauma. 2021;38(10):1411-1440. doi: 10.1089/neu.2015.4126

 

  1. Capizzi A, Woo J, Verduzco-Gutierrez M. Traumatic brain injury: An overview of epidemiology, pathophysiology, and medical management. Med Clin North Am. 2020; 104(2):213-238. doi: 10.1016/j.mcna.2019.11.001

 

  1. Lefevre-Dognin C, Cogné M, Perdrieau V, Granger A, Heslot C, Azouvi P. Definition and epidemiology of mild traumatic brain injury. Neurochirurgie. 2021;67(3):218-221. doi: 10.1016/j.neuchi.2020.02.002

 

  1. Kureshi N, Erdogan M, Thibault-Halman G, Fenerty L, Green RS, Clarke DB. Long-term trends in the epidemiology of major traumatic brain injury. J Community Health. 2021;46(6):1197-1203. doi: 10.1007/s10900-021-01005-z

 

  1. Giner J, Galán LM, Teruel SY, et al. Traumatic brain injury in the new millennium: New population and new management. Neurología (Engl Ed). 2022;37(5):383-389. doi: 10.1016/j.nrl.2019.03.012

 

  1. Ye Z, Li Z, Zhong S, et al. The recent two decades of traumatic brain injury: A bibliometric analysis and systematic review. Int J Surg. 2024;110(6):3745-3759. doi: 10.1097/JS9.0000000000001367

 

  1. Joannides A, Korhonen TK, Clark D, et al. An international, prospective observational study on traumatic brain injury epidemiology study protocol: GEO-TBI: Incidence. NIHR Open Res. 2024;3(3):34. doi: 10.3310/nihropenres.13377.1

 

  1. Allen BC, Cummer E, Sarma AK. Traumatic brain injury in select low-and middle-income countries: A narrative review of the literature. J Neurotrauma. 2023;40(7-8):602-619. doi: 10.1089/neu.2022.0068

 

  1. Rosyidi RM, Priyanto B, Wardhana DP, Gunawan K. The epidemiology, management, and outcomes of traumatic brain injury in man-made and natural disasters: A systematic review. Interdiscip Neurosurg. 2023;34(1):101822. doi: 10.1016/j.inat.2023.101822

 

  1. Fang M, Liu W, Tuo J, et al. Advances in understanding the pathogenesis of post-traumatic epilepsy: A literature review. Front Neurol. 2023;14:1141434. doi: 10.3389/fneur.2023.1141434

 

  1. Wu J, Ren R, Chen T, Su LD, Tang T. Neuroimmune and neuroinflammation response for traumatic brain injury. Brain Res Bull. 2024;10(15):111066. doi: 10.1016/j.brainresbull.2024.111066

 

  1. Tang J, Kang Y, Zhou Y, et al. TIMP2 ameliorates blood-brain barrier disruption in traumatic brain injury by inhibiting Src-dependent VE-cadherin internalization. J Clin Invest. 2024;134(3):e164199. doi: 10.1172/JCI164199

 

  1. Magdaleno Roman JY, Chapa González C. Glutamate and excitotoxicity in central nervous system disorders: Ionotropic glutamate receptors as a target for neuroprotection. Neuroprotection. 2024;2:137-150. doi: 10.1002/nep3.46

 

  1. Shi RX, Liu C, Xu YJ, et al. The Role and mechanism of transglutaminase 2 in regulating hippocampal neurogenesis after traumatic brain injury. Cells. 2023;12(4):558. doi: 10.3390/cells12040558

 

  1. Hubbard WB, Vekaria HJ, Velmurugan GV, et al. Mitochondrial dysfunction after repeated mild blast traumatic brain injury is attenuated by a mild mitochondrial uncoupling prodrug. J Neurotrauma. 2023;40(21-22):2396-2409. doi: 10.1089/neu.2023.0102

 

  1. Smolen P, Dash PK, Redell JB. Traumatic brain injury-associated epigenetic changes and the risk for neurodegenerative diseases. Front Neurosci. 2023;17:1259405. doi: 10.3389/fnins.2023.1259405

 

  1. May HG, Tsikonofilos K, Donat CK, et al. EEG hyperexcitability and hyperconnectivity linked to GABAergic inhibitory interneuron loss following traumatic brain injury. Brain Commun. 2024;6(6):fcae385. doi: 10.1093/braincomms/fcae385

 

  1. Flanagan SR, Cantor JB, Ashman TA. Traumatic brain injury: Future assessment tools and treatment prospects. Neuropsychiatr Dis Treat. 2008;4(5):877-892. doi: 10.2147/ndt.s1985

 

  1. Patel B, Srikanthan S, Asani F, Agu E. Machine Learning Prediction of TBI from Mobility, Gait and Balance Patterns. In: 2021 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE). Washington, DC, USA: IEEE; 2021. p. 11-22. doi: 10.1109/CHASE52844.2021.00010

 

  1. Agoston DV. Big data, artificial intelligence, and machine learning in neurotrauma. In: Leveraging Biomedical and Healthcare Data. United States: Academic Press; 2019. p. 53-75. doi: 10.1016/B978-0-12-809556-0.00004-6

 

  1. Lumsden J, Edwards EA, Lawrence NS, Coyle D, Munafò MR. Gamification of cognitive assessment and cognitive training: A systematic review of applications and efficacy. JMIR Serious Games. 2016;4(2):e5888. doi: 10.2196/games.5888

 

  1. Khan NA, Asim M, El-Menyar A, Biswas KH, Rizoli S, Al-Thani H. The evolving role of extracellular vesicles (exosomes) as biomarkers in traumatic brain injury: Clinical perspectives and therapeutic implications. Front Aging Neurosci. 2022;14:933434. doi: 10.3389/fnagi.2022.933434

 

  1. Corti C, Oprandi MC, Chevignard M, et al. Virtual-reality performance-based assessment of cognitive functions in adult patients with acquired brain injury: A scoping review. Neuropsychol Rev. 2022;32(2):352-399. doi: 10.1007/s11065-021-09498-0

 

  1. Harris C, Tang Y, Birnbaum E, Cherian C, Mendhe D, Chen MH. Digital neuropsychology beyond computerized cognitive assessment: Applications of novel digital technologies. Arch Clin Neuropsychol. 2024;39(3):290-304. doi: 10.1093/arclin/acae016

 

  1. Hunter JV, Wilde EA, Tong KA, Holshouser BA. Emerging imaging tools for use with traumatic brain injury research. J Neurotrauma. 2012;29(4):654-671. doi: 10.1089/neu.2011.1906

 

  1. Anand A, Shrivastava A, Singh K, et al. Neuroprotective efficacy and complementary treatment with medicinal herbs: A comprehensive review of recent therapeutic approaches in epilepsy management. CNS Neurol Disord Drug Targets. 2025;24(1):60-73. doi: 10.2174/0118715273332140240724093837

 

  1. Pitkänen A, Immonen R. Epilepsy related to traumatic brain injury. Neurotherapeutics. 2014;11(2):286-296. doi: 10.1007/s13311-014-0260-7

 

  1. Ondruschka B, Schuch S, Pohlers D, Franke H, Dreßler J. Acute phase response after fatal traumatic brain injury. Int J Legal Med. 2018;132(2):531-539. doi: 10.1007/s00414-017-1768-2

 

  1. Algattas H, Huang JH. Traumatic brain injury pathophysiology and treatments: Early, intermediate, and late phases post-injury. Int J Mol Sci. 2013;15(1):309-341. doi: 10.3390/ijms15010309

 

  1. Licastro F, Hrelia S, Porcellini E, et al. Peripheral inflammatory markers and antioxidant response during the post-acute and chronic phase after severe traumatic brain injury. Front Neurol. 2016;11(7):189. doi: 10.3389/fneur.2016.00189

 

  1. Li L, He L, Harris N, Zhou Y, Engel J Jr., Bragin A. Topographical reorganization of brain functional connectivity during an early period of epileptogenesis. Epilepsia. 2021;62(5):1231-1243. doi: 10.1111/epi.16863

 

  1. Dubé C, Boyet S, Marescaux C, Nehlig A. Progressive metabolic changes underlying the chronic reorganization of brain circuits during the silent phase of the lithium-pilocarpine model of epilepsy in the immature and adult rat. Exp Neurol. 2000;162(1):146-157. doi: 10.1006/exnr.2000.7324

 

  1. Christiaen E, Goossens MG, Raedt R, et al. Alterations in the functional brain network in a rat model of epileptogenesis: A longitudinal resting state fMRI study. Neuroimage. 2019;11(202):116144. doi: 10.1016/j.neuroimage.2019.116144

 

  1. Guerrini R, Barba C. Malformations of cortical development and aberrant cortical networks: Epileptogenesis and functional organization. J Clin Neurophysiol. 2010;27(6):372-379. doi: 10.1097/WNP.0b013e3181fe0585

 

  1. Said PZ, Ghosh A, Pal R, Poli N, Moscote-Salazar LR, Agrawal A. Impact of traumatic brain injury on cognitive functions. Arch Ment Health. 2018;19(2):97-101. doi: 10.4103/AMH.AMH_14_18

 

  1. Schretlen DJ, Shapiro AM. A quantitative review of the effects of traumatic brain injury on cognitive functioning. Int Rev Psychiatry. 2003;15(4):341-349. doi: 10.1080/09540260310001606728

 

  1. Gouick J, Gentleman D. The emotional and behavioural consequences of traumatic brain injury. Trauma. 2004;6(4):285-292. doi: 10.1191/1460408604ta323o

 

  1. Milders M. Relationship between social cognition and social behaviour following traumatic brain injury. Brain Inj. 2019;33(1):62-68. doi: 10.1080/02699052.2018.1531301

 

  1. Draper K, Ponsford J. Cognitive functioning ten years following traumatic brain injury and rehabilitation. Neuropsychology. 2008;22(5):618-625. doi: 10.1037/0894-4105.22.5.618

 

  1. Kohler MJ, Hendrickx MD, Powell-Jones A, Bryan- Hancock C. A systematic review of cognitive functioning after traumatic brain injury in individuals aged 10-30 years. Cogn Behav Neurol. 2020;33(4):233-252. doi: 10.1097/WNN.0000000000000236

 

  1. Moran M, Lajeunesse B, Kotzur T, et al. Development of seizures following traumatic brain injury: A retrospective study. J Clin Med. 2024;13(18):5399. doi: 10.3390/jcm13185399

 

  1. Gouveia FV, Warsi NM, Suresh H, Matin R, Ibrahim GM. Neurostimulation treatments for epilepsy: Deep brain stimulation, responsive neurostimulation and vagus nerve stimulation. Neurotherapeutics. 2024;21(3):e00308. doi: 10.1016/j.neurot.2023.e00308

 

  1. Nollet H, Van Ham L, Deprez P, Vanderstraeten G. Transcranial magnetic stimulation: Review of the technique, basic principles and applications. Vet J. 2003;166(1):28-42. doi: 10.1016/s1090-0233(03)00025-x

 

  1. Sung YL, Wang TW, Lin TT, Lin SF. Optogenetics in cardiology: Methodology and future applications. Int J Arrhythm. 2022;23(1):9. doi: 10.1186/s42444-022-00060-4

 

  1. Milovanović JR, Janković SM, Milovanović D, et al. Contemporary surgical management of drug-resistant focal epilepsy. Expert Rev Neurother. 2020;20(1):23-40. doi: 10.1080/14737175.2020.1676733

 

  1. Kochanek PM, Jackson TC, Jha RM, et al. Paths to successful translation of new therapies for severe traumatic brain injury in the golden age of traumatic brain injury research: A Pittsburgh vision. J Neurotrauma. 2020;37(22):2353-2371. doi: 10.1089/neu.2018.6203

 

  1. Simei JL, Souza JD, Pedrazzi JF, et al. Research and clinical practice involving the use of Cannabis products, with emphasis on cannabidiol: A narrative review. Pharmaceuticals (Basel). 2024;17(12):1644. doi: 10.3390/ph17121644

 

  1. Wong JK, Deuschl G, Wolke R, et al. Proceedings of the ninth annual deep brain stimulation think tank: Advances in cutting edge technologies, artificial intelligence, neuromodulation, neuroethics, pain, interventional psychiatry, epilepsy, and traumatic brain injury. Front Hum Neurosci. 2022;16:813387. doi: 10.3389/fnhum.2022.813387

 

  1. Wilde EA, Wanner IB, Kenney K, et al. A framework to advance biomarker development in the diagnosis, outcome prediction, and treatment of traumatic brain injury. J Neurotrauma. 2022;39(7-8):436-457. doi: 10.1089/neu.2021.0099

 

  1. Esteban-Zubero E, García-Muro C, Alatorre-Jiménez MA. Fluid therapy and traumatic brain injury: A narrative review. Med Clín (Barc). 2023;161(1):27-32. doi: 10.1016/j.medcli.2023.03.003

 

  1. Mustafa AG, Alshboul OA. Pathophysiology of traumatic brain injury. Neurosciences (Riyadh). 2013;18(3):222-235.

 

  1. Borgens RB, Liu-Snyder P. Understanding secondary injury. Q Rev Biol. 2012;87(2):89-127. doi: 10.1086/665457

 

  1. Siesjö BK, Siesjö P. Mechanisms of secondary brain injury. Eur J Anaesthesiol. 1996;13(3):247-268.

 

  1. Fehily B, Fitzgerald M. Repeated mild traumatic brain injury: Potential mechanisms of damage. Cell Transplant. 2017;26(7):1131-1155. doi: 10.1177/0963689717714092

 

  1. Bramlett HM, Dietrich WD. Progressive damage after brain and spinal cord injury: Pathomechanisms and treatment strategies. Prog Brain Res. 2007;161:125-141. doi: 10.1016/S0079-6123(06)61009-1

 

  1. Greve MW, Zink BJ. Pathophysiology of traumatic brain injury. Mt Sinai J Med. 2009;76(2):97-104. doi: 10.1002/msj.20104

 

  1. Pischiutta F, Micotti E, Hay JR, et al. Single severe traumatic brain injury produces progressive pathology with ongoing contralateral white matter damage one year after injury. Exp Neurol. 2018;300:167-178. doi: 10.1016/j.expneurol.2017.11.003

 

  1. Ding K, Gupta PK, Diaz-Arrastia R. Epilepsy after traumatic brain injury. In: Laskowitz D, Grant G, editors. Translational Research in Traumatic Brain Injury. Ch. 14. Boca Raton, FL: CRC Press, Taylor and Francis Group; 2016. Available from: https://www.ncbi.nlm.nih.gov/books/NBK326716 [Last accessed on 2024 Nov 01].

 

  1. Crupi R, Cordaro M, Cuzzocrea S, Impellizzeri D. Management of traumatic brain injury: From present to future. Antioxidants (Basel). 2020;9(4):297. doi: 10.3390/antiox9040297

 

  1. Thompson K, Pohlmann‐Eden B, Campbell LA, Abel H. Pharmacological treatments for preventing epilepsy following traumatic head injury. Cochrane Database Syst Rev. 2015;2015(8):CD009900. doi: 10.1002/14651858.CD009900.pub2

 

  1. Neren D, Johnson MD, Legon W, Bachour SP, Ling G, Divani AA. Vagus nerve stimulation and other neuromodulation methods for treatment of traumatic brain injury. Neurocrit Care. 2016;24:308-319. doi: 10.1007/s12028-015-0203-0

 

  1. Shin SS, Dixon CE, Okonkwo DO, Richardson RM. Neurostimulation for traumatic brain injury. J Neurosurg. 2014;121(5):1219-1231. doi: 10.3171/2014.7.JNS131826

 

  1. Ye L, Li W, Tang X, Xu T, Wang G. Emerging neuroprotective strategies: Unraveling the potential of HDAC inhibitors in traumatic brain injury management. Curr Neuropharmacol. 2024;22(14):2298-2313. doi: 10.2174/1570159X22666240128002056

 

  1. Schepici G, Silvestro S, Bramanti P, Mazzon E. Traumatic brain injury and stem cells: An overview of clinical trials, the current treatments and future therapeutic approaches. Medicina (Kaunas). 2020;56(3):137. doi: 10.3390/medicina56030137

 

  1. Pitkänen A, Immonen RJ, Gröhn OH, Kharatishvili I. From traumatic brain injury to posttraumatic epilepsy: What animal models tell us about the process and treatment options. Epilepsia. 2009;50:21-29. doi: 10.1111/j.1528-1167.2008.02007.x

 

  1. Lucke-Wold BP, Nguyen L, Turner RC, et al. Traumatic brain injury and epilepsy: Underlying mechanisms leading to seizure. Seizure. 2015;33:13-23. doi: 10.1016/j.seizure.2015.10.002

 

  1. Galgano M, Toshkezi G, Qiu X, Russell T, Chin L, Zhao LR. Traumatic brain injury: Current treatment strategies and future endeavors. Cell Transplant. 2017;26(7):1118-1130. doi: 10.1177/0963689717714102

 

  1. Guo J, Li Z, Yao Y, Fang L, Yu M, Wang Z. Curcumin in the treatment of inflammation and oxidative stress responses in traumatic brain injury: A systematic review and meta-analysis. Front Neurol. 2024;15:1380353. doi: 10.3389/fneur.2024.1380353

 

  1. Tentu PM, Bazaz MR, Pasam T, et al. Oxyberberine an oxoderivative of berberine confers neuroprotective effects in controlled-cortical impact mouse model of traumatic brain injury. Int J Neurosci. 2025;135(1):80-95. doi: 10.1080/00207454.2023.2286209

 

  1. Portbury SD, Hare DJ, Finkelstein DI, Adlard PA. Trehalose improves traumatic brain injury-induced cognitive impairment. PLoS One. 2017;12(8):e0183683. doi: 10.1371/journal.pone.0183683

 

  1. Chen T, Dai SH, Jiang ZQ, et al. The AMPAR antagonist perampanel attenuates traumatic brain injury through anti-oxidative and anti-inflammatory activity. Cell Mol Neurobiol. 2017;37:43-52. doi: 10.1007/s10571-016-0341-8

 

  1. Cai Y, Zhang X, Qian H, Huang G, Yan T. Uncovering the therapeutic efficacy and mechanisms of quercetin on traumatic brain injury animals: A meta-analysis and network pharmacology analysis. Metab Brain Dis. 2024;40(1):13. doi: 10.1007/s11011-024-01449-x

 

  1. Yang T, Kong B, Gu JW, et al. Anti-apoptotic and anti-oxidative roles of quercetin after traumatic brain injury. Cell Mol Neurobiol. 2014;34:797-804. doi: 10.1007/s10571-014-0070-9

 

  1. Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial properties of green tea catechins. Int J Mol Sci. 2020;21(5):1744. doi: 10.3390/ijms21051744

 

  1. Liu YL, Xu ZM, Yang DX, et al. Sesamin alleviates blood-brain barrier disruption in mice with experimental traumatic brain injury. Acta Pharmacol Sin. 2017;38(11):1445-1455. doi: 10.1038/aps.2017.103

 

  1. Wang H, Wang H, Liao Z, et al. Intravenous administration of Honokiol provides neuroprotection and improves functional recovery after traumatic brain injury through cell cycle inhibition. Neuropharmacology. 2014;86:9-21. doi: 10.1016/j.neuropharm.2014.06.018

 

  1. Yulug B, Kilic E, Altunay S, et al. Cinnamon polyphenol extract exerts neuroprotective activity in traumatic brain injury in male mice. CNS Neurol Disord Drug Targets. 2018;17(6):439-447. doi: 10.2174/1871527317666180501110918

 

  1. Lin CJ, Chen TH, Yang LY, Shih CM. Resveratrol protects astrocytes against traumatic brain injury through inhibiting apoptotic and autophagic cell death. Cell Death Dis. 2014;5(3):e1147. doi: 10.1038/cddis.2014.123

 

  1. Sucher NJ, Carles MC. A pharmacological basis of herbal medicines for epilepsy. Epilepsy Behav. 2015;52:308-318. doi: 10.1016/j.yebeh.2015.05.012

 

  1. Nandhini S, Narayanan KB, Ilango K. Valeriana officinalis: A review of its traditional uses, phytochemistry and pharmacology. Asian J Pharm Clin Res. 2018;11(1):36-41. doi: 10.22159/ajpcr.2018.v11i1.22588

 

  1. Mathew J, Paul J, Nandhu MS, Paulose CS. Bacopa monnieri and bacoside-A for ameliorating epilepsy associated behavioral deficits. Fitoterapia. 2010;81(5):315-322. doi: 10.1016/j.fitote.2009.11.005

 

  1. Syed AA, Reza MI, Singh P, Thombre GK, Gayen JR. Withania Somnifera in neurological disorders: Ethnopharmacological evidence, mechanism of action and its progress in delivery systems. Curr Drug Metab. 2021;22(7):561-571. doi: 10.2174/1389200222666210203182716

 

  1. Ali D, Verma S, Malviya R, Mishra S, Sundram S. Implications of herbal components in the treatment of neurological disorders. Curr Nutr Food Sci. 2024;20(6):677-686. doi: 10.2174/1573401319666230821102546

 

  1. Durai Pandian J, Toor G, Arora R, et al. Complementary and alternative medicine treatments among stroke patients in India. Top Stroke Rehabil. 2012;19(5):384-394. doi: 10.1310/tsr1905-384

 

  1. Kumar D, Kumar S, Narasimha MKH. Ayurvedic formulations for the management of epileptic disorders. Int Res J Pharm. 2012;3(6):17-20.

 

  1. Spinella M. Herbal medicines and epilepsy: The potential for benefit and adverse effects. Epilepsy Behav. 2001;2(6):524-532. doi: 10.1006/ebeh.2001.0281

 

  1. Asadi-Pooya AA, Brigo F, Lattanzi S, et al. Complementary and alternative medicine in epilepsy: A global survey of physicians’ opinions. Epilepsy Behav. 2022;117:107835. doi: 10.1016/j.yebeh.2021.107835

 

  1. McElroy-Cox C. Alternative approaches to epilepsy treatment. Curr Neurol Neurosci Rep. 2009;9(4):313-318. doi: 10.1007/s11910-009-0047-0

 

  1. Stafstrom CE. Dietary approaches to epilepsy treatment: Old and new options on the menu. Epilepsy Curr. 2004;4(6):215-222. doi: 10.1111/j.1535-7597.2004.46001.x

 

  1. Auditeau E, Chassagne F, Bourdy G, et al. Herbal medicine for epilepsy seizures in Asia, Africa and Latin America: A systematic review. J Ethnopharmacol. 2019;234:119-153. doi: 10.1016/j.jep.2018.12.049

 

  1. Liu TT, Guo QQ, An K, et al. The optimal acupoint for acupuncture stimulation as a complementary therapy in pediatric epilepsy. Epilepsy Behav. 2014;31:387-389. doi: 10.1016/j.yebeh.2013.10.015

 

  1. Danesi MA, Adetunji JB. Use of alternative medicine by patients with epilepsy: A survey of 265 epileptic patients in a developing country. Epilepsia. 1994;35(2):344-351. doi: 10.1111/j.1528-1157.1994.tb02442.x
Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing