Tracking of transplanted neural stem cells labeled with superparamagnetic iron oxide in ischemic stroke

Clinical treatments for ischemic stroke are limited. At present, neural stem cell (NSC) therapy is considered a promising method for treating ischemic stroke. However, the behavior of transplanted NSCs remains ambiguous. Herein, we report the feasibility of superparamagnetic iron oxide labeling for long-time magnetic resonance imaging to track transplanted NSCs in a transient middle cerebral artery occlusion model. According to our studies, in vivo monitoring of transplanted NSCs during ischemic stroke in the current work may provide another insight into the tracking strategy of transplanted NSCs, thereby advancing NSC-based therapy toward clinical application.
Datta A, Sarmah D, Mounica L, et al., 2020, Cell death pathways in ischemic stroke and targeted pharmacotherapy. Transl Stroke Res, 11(6): 1185–1202. https://doi.org/10.1007/s12975-020-00806-z
Herpich F, Rincon F, 2020, Management of acute ischemic stroke. Crit Care Med, 48(11): 1654–1663. https://doi.org/10.1097/CCM.0000000000004597
Tao T, Liu M, Chen M, et al., 2020, Natural medicine in neuroprotection for ischemic stroke: Challenges and prospective. Pharmacol Ther, 216: 107695. https://doi.org/10.1016/j.pharmthera.2020.107695
Wang F, Tang H, Zhu J, et al., 2018, Transplanting mesenchymal stem cells for treatment of ischemic stroke. Cell Transplant, 27(12): 1825–1834. https://doi.org/10.1177/0963689718795424
Jiang XC, Xiang JJ, Wu HH, et al., 2019, Neural stem cells transfected with reactive oxygen species-responsive polyplexes for effective treatment of ischemic stroke. Adv Mater, 31(10): e1807591. https://doi.org/10.1002/adma.201807591
Wechsler LR, Bates D, Stroemer P, et al., 2018, Cell therapy for chronic stroke. Stroke, 49(5): 1066–1074. https://doi.org/10.1161/STROKEAHA.117.018290
Bai Y, Ren H, Bian L, et al., 2022, Regulation of glial function by noncoding RNA in central nervous system disease. Neurosci Bull. https://doi.org/10.1007/s12264-022-00950-6
Chen J, Venkat P, Zacharek A, et al., 2014, Neurorestorative therapy for stroke. Front Hum Neurosci, 8: 382. https://doi.org/10.3389/fnhum.2014.00382
Hamblin MH, Lee JP, 2021, Neural stem cells for early ischemic stroke. Int J Mol Sci, 22(14): 7703. https://doi.org/10.3390/ijms22147703
Ding DC, Lin CH, Shyu WC, et al., 2013, Neural stem cells and stroke. Cell Transplant, 22(4): 619–630. https://doi.org/10.3727/096368912X655091
Bernstock JD, Peruzzotti-Jametti L, Ye D, et al., 2017, Neural stem cell transplantation in ischemic stroke: A role for preconditioning and cellular engineering. J Cereb Blood Flow Metab, 37(7): 2314–2319. https://doi.org/10.1177/0271678X17700432
Wang G, Han B, Shen L, et al., 2020, Silencing of circular RNA HIPK2 in neural stem cells enhances functional recovery following ischaemic stroke. EBioMedicine, 52: 102660. https://doi.org/10.1016/j.ebiom.2020.102660
Tong L, Zhao M, Zhu S, et al., 2011, Synthesis and application of superparamagnetic iron oxide nanoparticles in targeted therapy and imaging of cancer. Front Med, 5(4): 379–387. https://doi.org/10.1007/s11684-011-0162-6
Kim SJ, Lewis B, Steiner MS, et al., 2016, Superparamagnetic iron oxide nanoparticles for direct labeling of stem cells and in vivo MRI tracking. Contrast Media Mol Imaging, 11(1): 55–64. https://doi.org/10.1002/cmmi.1658
Boese AC, Le QS, Pham D, et al., 2018, Neural stem cell therapy for subacute and chronic ischemic stroke. Stem Cell Res Ther, 9(1): 154. https://doi.org/10.1186/s13287-018-0913-2
Wang P, Ma S, Ning G, et al., 2020, Entry-prohibited effect of kHz pulsed magnetic field upon interaction between SPIO nanoparticles and mesenchymal stem cells. IEEE Trans Biomed Eng, 67(4): 1152–1158. https://doi.org/10.1109/TBME.2019.2931774
Keselman P, Yu EY, Zhou XY, et al., 2017, Tracking short-term biodistribution and long-term clearance of SPIO tracers in magnetic particle imaging. Phys Med Biol, 62(9): 3440–3453. https://doi.org/10.1088/1361-6560/aa5f48
Bashir MR, Bhatti L, Marin D, et al., 2015, Emerging applications for ferumoxytol as a contrast agent in MRI. J Magn Reson Imaging, 41(4): 884–898. https://doi.org/10.1002/jmri.24691
Chen B, Sun J, Fan F, et al., 2018, Ferumoxytol of ultrahigh magnetization produced by hydrocooling and magnetically internal heating co-precipitation. Nanoscale, 10(16): 7369–7376. https://doi.org/10.1039/c8nr00736e
Hu Y, Li D, Wei H, et al., 2021, Neurite extension and orientation of spiral ganglion neurons can be directed by superparamagnetic iron oxide nanoparticles in a magnetic field. Int J Nanomedicine, 16: 4515–4526. https://doi.org/10.2147/IJN.S313673
Wang Z, Xu P, Chen B, et al., 2018, Identifying circRNA-associated-ceRNA networks in the hippocampus of Abeta1- 42-induced Alzheimer’s disease-like rats using microarray analysis. Aging (Albany NY), 10(4): 775–788. https://doi.org/10.18632/aging.101427
Wu F, Han B, Wu S, et al., 2019, Circular RNA TLK1 aggravates neuronal injury and neurological deficits after ischemic stroke via miR-335-3p/TIPARP. J Neurosci, 39(37): 7369–7393. https://doi.org/10.1523/JNEUROSCI.0299-19.2019
Bai Y, Zhang Y, Han B, et al., 2018, Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity. J Neurosci, 38(1): 32–50. https://doi.org/10.1523/JNEUROSCI.1348-17.2017
Shi Y, Zhang L, Pu H, et al., 2016, Rapid endothelial cytoskeletal reorganization enables early blood-brain barrier disruption and long-term ischaemic reperfusion brain injury. Nat Commun, 7: 10523. https://doi.org/10.1038/ncomms10523
Zhao J, Zhang Z, Xue Y, et al., 2018, Anti-tumor macrophages activated by ferumoxytol combined or surface-functionalized with the TLR3 agonist poly (I: C) promote melanoma regression. Theranostics, 8(22): 6307–6321. https://doi.org/10.7150/thno.29746
Zakrzewski W, Dobrzynski M, Szymonowicz M, et al., 2019, Stem cells: Past, present, and future. Stem Cell Res Ther, 10(1): 68. https://doi.org/10.1186/s13287-019-1165-5
Kim HY, Kim TJ, Kang L, et al., 2020, Mesenchymal stem cell-derived magnetic extracellular nanovesicles for targeting and treatment of ischemic stroke. Biomaterials, 243: 119942. https://doi.org/10.1016/j.biomaterials.2020.119942
Sonntag KC, Song B, Lee N, et al., 2018, Pluripotent stem cell-based therapy for Parkinson’s disease: Current status and future prospects. Prog Neurobiol, 168: 1–20. https://doi.org/10.1016/j.pneurobio.2018.04.005
Okano H, Yasuda D, Fujimori K, et al., 2020, Ropinirole, a new ALS drug candidate developed using iPSCs. Trends Pharmacol Sci, 41(2): 99–109.https://doi.org/10.1016/j.tips.2019.12.002
Reya T, Morrison SJ, Clarke MF, et al., 2001, Stem cells, cancer, and cancer stem cells. Nature, 414(6859): 105–111. https://doi.org/10.1038/35102167
Rikhtegar R, Pezeshkian M, Dolati S, et al., 2019, Stem cells as therapy for heart disease: iPSCs, ESCs, CSCs, and skeletal myoblasts. Biomed Pharmacother, 109: 304–313. https://doi.org/10.1016/j.biopha.2018.10.065
Chrostek MR, Fellows EG, Crane AT, et al., 2019, Efficacy of stem cell-based therapies for stroke. Brain Res, 1722: 146362. https://doi.org/10.1016/j.brainres.2019.146362
Hong H, Yang Y, Zhang Y, et al., 2010, Non-invasive cell tracking in cancer and cancer therapy. Curr Top Med Chem, 10(12): 1237–1248. https://doi.org/10.2174/156802610791384234
Kircher MF, Gambhir SS, Grimm J, 2011, Noninvasive cell-tracking methods. Nat Rev Clin Oncol, 8(11): 677–688. https://doi.org/10.1038/nrclinonc.2011.141