Potential therapeutic targets and medications for arteriovenous malformations of the central nervous system

Arteriovenous malformations (AVMs) of the central nervous system are high-flow arteriovenous shunts that lead to considerable risks of hemorrhagic stroke and neurological deficits in young patients. Due to the complex angioarchitecture and their close anatomical relationship with the brain and spinal cord, the management of brain and spinal AVMs is challenging. Conventional invasive treatments, including microsurgery, endovascular embolization, and stereotactic radiosurgery, are associated with considerable risks and unsatisfactory efficacy. In addition, the lack of medications for AVMs represents an unmet clinical need. In recent years, the pathogenesis of AVMs has been progressively explored. The increased understanding of the mechanisms of the formation, progression, and rupture of AVMs has opened up several potential directions for AVM pharmacotherapy. In recent years, some promising drugs targeting angiogenesis, inflammation, vessel wall integrity, and the mitogen-activated protein kinase (MAPK)-extracellular receptor kinase (ERK) signaling pathway have been tested in a series of clinical investigations. In this review, we summarize the potential mechanisms, preliminary efficacy, and side effects of the candidate medications, including bevacizumab, minocycline or doxycycline, thalidomide, and trametinib, in the treatment of brain and spinal AVMs.
Leblanc GG, Golanov E, Awad IA, et al., 2009, Biology of vascular malformations of the brain NINDS workshop collaborators. Biology of vascular malformations of the brain. Stroke, 40(12): 694-702. https://doi.org/10.1161/STROKEAHA.109.563692
Gomes MM, Bernatz PE, 1970, Arteriovenous fistulas: A review and ten-year experience at the Mayo clinic. Mayo Clin Proc, 45(2): 81-102.
Eerola I, Boon LM, Mulliken JB, et al., 2003, Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am J Hum Genet, 73(6): 1240-1249. https://doi.org/10.1086/379793
Gallione CJ, Repetto GM, Legius E, et al., 2004, A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet, 363(9412): 852-859.https://doi.org/10.1016/S0140-6736(04)15732-2
Cogen P, Stein BM, 1983, Spinal cord arteriovenous malformations with significant intramedullary components. J Neurosurg, 59(3): 471-478. https://doi.org/10.3171/jns.1983.59.3.0471
Mohr JP, Parides MK, Stapf C, et al., 2014, Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): A multicentre, non-blinded, randomised trial. Lancet, 383(9917): 614-621. https://doi.org/10.1016/S0140-6736(13)62302-8
Brown RD, Wiebers DO, Forbes G, et al., 1988, The natural history of unruptured intracranial arteriovenous malformations. J Neurosurg, 68(3): 352-357. https://doi.org/10.3171/jns.1988.68.3.0352
Derdeyn CP, Zipfel GJ, Albuquerque FC, et al., 2017, Management of brain arteriovenous malformations: A scientific statement for healthcare professionals from the American heart association/American stroke association. Stroke, 48(8): 200-224. https://doi.org/10.1161/STR.0000000000000134
Al-Shahi R, 2001, A systematic review of the frequency and prognosis of arteriovenous malformations of the brain in adults. Brain, 124(10): 1900-1926. https://doi.org/10.1093/brain/124.10.1900
Hernesniemi JA, Dashti R, Juvela S, et al., 2008, Natural history of brain arteriovenous malformations: A long-term follow-up study of risk of hemorrhage in 238 patients. Neurosurgery, 63(5): 823-831. https://doi.org/10.1227/01.NEU.0000330401.82582.5E
Kim H, Al-Shahi Salman R, McCulloch CE, et al., 2014, For the MARS coinvestigators. untreated brain arteriovenous malformation: Patient-level meta-analysis of hemorrhage predictors. Neurology, 83(7):590-597. https://doi.org/10.1212/WNL.0000000000000688
Hofmeister C, Stapf C, Hartmann A, et al., 2000, Demographic, morphological, and clinical characteristics of 1289 patients with brain arteriovenous malformation. Stroke, 31(6): 1307-1310. https://doi.org/10.1161/01.STR.31.6.1307
Yu JX, Hong T, Krings T, et al., 2019, Natural history of spinal cord arteriovenous shunts: An observational study. Brain, 142(8): 2265-2275. https://doi.org/10.1093/brain/awz153
Solomon RA, Connolly ES, 2017, Arteriovenous Malformations of the Brain. N Engl J Med, 376(19): 859- 1866. https://doi.org/10.1056/NEJMra1607407
Taylor CL, Dutton K, Rappard G, et al., 2004, Complications of preoperative embolization of cerebral arteriovenous malformations. J Neurosurg, 100(5): 810-812. https://doi.org/10.3171/jns.2004.100.5.0810
Cho WS, Kim KJ, Kwon OK, et al., 2013, Clinical features and treatment outcomes of the spinal arteriovenous fistulas and malformations: Clinical article. J Neurosurg Spine, 19(2): 207-216. https://doi.org/10.3171/2013.4.spine12732
Lee YJ, Terbrugge KG, Saliou G, et al., 2014, Clinical features and outcomes of spinal cord arteriovenous malformations: Comparison between nidus and fistulous types. Stroke, 45(9): 2606-2612. https://doi.org/10.1161/STROKEAHA.114.006087
Lawton MT, Rutledge WC, Kim H, et al., 2015, Brain arteriovenous malformations. Nat Rev Dis Primers, 1(1): 15008. https://doi.org/10.1038/nrdp.2015.8
Sturiale CL, Puca A, Sebastiani P, et al., 2013, Single nucleotide polymorphisms associated with sporadic brain arteriovenous malformations: Where do we stand? Brain, 136(Pt 2): 665-681. https://doi.org/10.1093/brain/aws180
Holash J, Maisonpierre PC, Compton D, et al., 1999, Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science, 284(5422): 1994-1998. https://doi.org/10.1126/science.284.5422.1994
Jayson GC, Kerbel R, Ellis LM, et al., 2016, Antiangiogenic therapy in oncology: current status and future directions. Lancet, 388(10043): 518-529. https://doi.org/10.1016/S0140-6736(15)01088-0
Hashimoto T, Wu Y, Lawton MT, et al., 2005, Coexpression of angiogenic factors in brain arteriovenous malformations. Neurosurgery, 56(5): 1058-1065; discussion 1058-1065.
Sandalcioglu IE, Wende D, Eggert A, et al., 2006, Vascular endothelial growth factor plasma levels are significantly elevated in patients with cerebral arteriovenous malformations. Cerebrovasc Dis, 21(3): 154-158. https://doi.org/10.1159/000090526
Yildirim O, Bicer A, Ozkan A, et al., 2010, Expression of platelet-derived growth factor ligand and receptor in cerebral arteriovenous and cavernous malformations. J Clin Neurosci, 17(12): 1557-1562. https://doi.org/10.1016/j.jocn.2010.04.028
Larrivée B, Prahst C, Gordon E, et al., 2012, ALK1 signaling inhibits angiogenesis by cooperating with the notch pathway. Dev Cell, 22(3): 489-500. https://doi.org/10.1016/j.devcel.2012.02.005
Del Toro R, Prahst C, Mathivet T, et al., 2010, Identification and functional analysis of endothelial tip cell-enriched genes. Blood, 116(19): 4025-4033. https://doi.org/10.1182/blood-2010-02-270819
Wang Y, Fei D, Vanderlaan M, et al., 2004, Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis, 7(4): 335-345. https://doi.org/10.1007/s10456-004-8272-2
Jubb AM, Harris AL, 2010, Biomarkers to predict the clinical efficacy of bevacizumab in cancer. Lancet Oncol, 11(12): 1172-1183. https://doi.org/10.1016/S1470-2045(10)70232-1
Karnezis TT, Davidson TM, 2012, Treatment of hereditary hemorrhagic telangiectasia with submucosal and topical bevacizumab therapy. Laryngoscope, 122(3): 495-497. https://doi.org/10.1002/lary.22501
Simonds J, Miller F, Mandel J, et al., 2009, The effect of bevacizumab (avastin) treatment on epistaxis in hereditary hemorrhagic telangiectasia. Laryngoscope, 119(5): 988-992. https://doi.org/10.1002/lary.20159
Dupuis-Girod S, Ambrun A, Decullier E, et al., 2014, ELLIPSE study: A phase 1 study evaluating the tolerance of bevacizumab nasal spray in the treatment of epistaxis in hereditary hemorrhagic telangiectasia. MAbs, 6(3): 793-798. https://doi.org/10.4161/mabs.28025
Dupuis-Girod S, Ambrun A, Decullier E, et al., 2016, Effect of bevacizumab nasal spray on epistaxis duration in hereditary hemorrhagic telangectasia: A randomized clinical trial. JAMA, 316(9): 934-942. https://doi.org/10.1001/jama.2016.11387
Olsen LB, Kjeldsen AD, Poulsen MK, et al., 2020, High output cardiac failure in 3 patients with hereditary hemorrhagic telangiectasia and hepatic vascular malformations, evaluation of treatment. Orphanet J Rare Dis, 15(1): 334. https://doi.org/10.1186/s13023-020-01583-6
Walker EJ, Su H, Shen F, et al., 2012, Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain. Stroke, 43(7): 1925-1930. https://doi.org/10.1161/STROKEAHA.111.647982
Faughnan ME, Gossage JR, Chakinala MM, et al., 2019, Pazopanib may reduce bleeding in hereditary hemorrhagic telangiectasia. Angiogenesis, 22(1): 145-155. https://doi.org/10.1007/s10456-018-9646-1
Muster R, Ko N, Smith W, et al., 2021, Proof-of-concept single-arm trial of bevacizumab therapy for brain arteriovenous malformation. BMJ Neurol Open, 3(1): e000114. https://doi.org/10.1136/bmjno-2020-000114
Williams BJ, Park DM, Sheehan JP, 2012, Bevacizumab used for the treatment of severe, refractory perilesional edema due to an arteriovenous malformation treated with stereotactic radiosurgery. J Neurosurg. 116(5): 972-977. https://doi.org/10.3171/2012.1.JNS111627
Tanvetyanon T, Murtagh R, Bepler G, 2009, Rupture of a cerebral arteriovenous malformation in a patient treated with bevacizumab. J Thorac Oncol, 4(2):268-269. https://doi.org/10.1097/JTO.0b013e318195a642
Mouchtouris N, Jabbour PM, Starke RM, et al., 2015, Biology of cerebral arteriovenous malformations with a focus on inflammation. J Cereb Blood Flow Metab, 35(2): 167-175. https://doi.org/10.1038/jcbfm.2014.179
Winkler EA, Kim CN, Ross JM, et al., 2022, A single-cell atlas of the normal and malformed human brain vasculature. Science, 375(6584): eabi7377. https://doi.org/10.1126/science.abi7377
Spinale FG, 2002, Matrix metalloproteinases: Regulation and dysregulation in the failing heart. Circ Res, 90(5): 520-530. https://doi.org/10.1161/01.RES.0000013290.12884.A3
Galis ZS, Khatri JJ, 2002, Matrix metalloproteinases in vascular remodeling and atherogenesis: The good, the bad, and the ugly. Circ Res, 90(3):251-262. https://doi.org/10.1161/res.90.3.251
Lindeman JH, Abdul-Hussien H, van Bockel JH, et al., 2009, Clinical trial of doxycycline for matrix metalloproteinase-9 Inhibition in patients with an abdominal aneurysm: Doxycycline selectively depletes aortic wall neutrophils and cytotoxic T cells. Circulation, 119(16): 2209-2216. https://doi.org/10.1161/CIRCULATIONAHA.108.806505
Hashimoto T, Wen G, Lawton MT, et al., 2003, Abnormal expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in brain arteriovenous malformations. Stroke, 34(4): 925-931. https://doi.org/10.1161/01.STR.0000061888.71524.DF
Hashimoto T, Matsumoto MM, Li JF, et al., 2005, Suppression of MMP-9 by doxycycline in brain arteriovenous malformations. BMC Neurol, 5(1):1. https://doi.org/10.1186/1471-2377-5-1
Frenzel T, Lee CZ, Kim H, et al., 2008, Feasibility of minocycline and doxycycline use as potential vasculostatic therapy for brain vascular malformations: Pilot study of adverse events and tolerance. Cerebrovasc Dis, 25(1-2): 157-163. https://doi.org/10.1159/000113733
Burrows PE, Mulliken JB, Fishman SJ, et al., 2009, Pharmacological treatment of a diffuse arteriovenous malformation of the upper extremity in a child. J Craniofac Surg, 20 Suppl 1: 597-602. https://doi.org/10.1097/SCS.0b013e3181927f1e
Meng J, Okeda R, 2001, Histopathological structure of the pial arteriovenous malformation in adults: Observation by reconstruction of serial sections of four surgical specimens. Acta Neuropathol, 102(1):63-68. https://doi.org/10.1007/s004010000351
Chen W, Guo Y, Walker EJ, et al., 2013, Reduced mural cell coverage and impaired vessel integrity after angiogenic stimulation in the Alk1-deficient brain. Arterioscler Thromb Vasc Biol, 33(2): 305-310. https://doi.org/10.1161/ATVBAHA.112.300485
Baeyens N, Larrivée B, Ola R, et al., 2016, Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia. J Cell Biol, 214(7): 807-816. https://doi.org/10.1083/jcb.201603106
Winkler EA, Birk H, Burkhardt JK, et al., 2018, Reductions in brain pericytes are associated with arteriovenous malformation vascular instability. J Neurosurg, 129(6): 1464-1474. https://doi.org/10.3171/2017.6.JNS17860
Lebrin F, Srun S, Raymond K, et al., 2010, Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia. Nat Med, 16(4): 420-428. https://doi.org/10.1038/nm.2131
Invernizzi R, Quaglia F, Klersy C, et al., 2015, Efficacy and safety of thalidomide for the treatment of severe recurrent epistaxis in hereditary haemorrhagic telangiectasia: Results of a non-randomised, single-centre, phase 2 study. Lancet Haematol, 2(11):e465-e473. https://doi.org/10.1016/S2352-3026(15)00195-7
Ge Z, Chen H, Gao Y, et al., 2011, Efficacy of thalidomide for refractory gastrointestinal bleeding from vascular malformation. Gastroenterology, 141(5): 1629-1637.e1-4. https://doi.org/10.1053/j.gastro.2011.07.018
Tseng S, Pak G, Washenik K, et al., 1996, Rediscovering thalidomide: A review of its mechanism of action, side effects, and potential uses. J Am Acad Dermatol, 35(6):969-979. https://doi.org/10.1016/S0190-9622(96)90122-X
Couto JA, Huang AY, Konczyk DJ, et al., 2017, Somatic MAP2K1 mutations are associated with extracranial arteriovenous malformation. Am J Hum Genet, 100(3):546-554. https://doi.org/10.1016/j.ajhg.2017.01.018
Morita H, Komuro I, 2018, Somatic activating KRAS mutations in arteriovenous malformations of the brain. N Engl J Med, 378(16): 1561-1562. https://doi.org/10.1056/NEJMc1802190
Hong T, Yan Y, Li J, et al., 2019, High prevalence of KRAS/BRAF somatic mutations in brain and spinal cord arteriovenous malformations. Brain, 142(1): 23-34. https://doi.org/10.1093/brain/awy307
Fish JE, Suarez CP, Boudreau E, et al., 2020, Somatic gain of kras function in the endothelium is sufficient to cause vascular malformations that require MEK but not PI3K signaling. Circ Res, 127(6): 727-743. https://doi.org/10.1161/CIRCRESAHA.119.316500
Park ES, Kim S, Huang S, et al., 2021, Selective endothelial hyperactivation of oncogenic KRAS induces brain arteriovenous malformations in mice. Ann Neurol, 89(5): 926-941. https://doi.org/10.1002/ana.26059
Edwards EA, Phelps AS, Cooke D, et al., 2020, Monitoring arteriovenous malformation response to genotype-targeted therapy. Pediatrics, 146(3):e20193206. https://doi.org/10.1542/peds.2019-3206
Nicholson CL, Flanagan S, Murati M, et al., 2022, Successful management of an arteriovenous malformation with trametinib in a patient with capillary-malformation arteriovenous malformation syndrome and cardiac compromise. Pediatr Dermatol, 39(2): 316-319. https://doi.org/10.1111/pde.14912
Lekwuttikarn R, Lim YH, Admani S, et al., 2019, Genotype-guided medical treatment of an arteriovenous malformation in a child. JAMA Dermatol, 155(2): 256-257. https://doi.org/10.1001/jamadermatol.2018.4653
Al‐Samkari H, Eng W, 2022, A precision medicine approach to hereditary hemorrhagic telangiectasia and complex vascular anomalies. J Thromb Haemost, 20(5): 1077-1088. https://doi.org/10.1111/jth.15715
Winkler E, Wu D, Gil E, et al., 2022, Endoluminal biopsy for molecular profiling of human brain vascular malformations. Neurology, 98(16):e1637-e1647. https://doi.org/10.1212/WNL.0000000000200109
Nguyen HL, Boon LM, Vikkula M, 2022, Trametinib as a promising therapeutic option in alleviating vascular defects in an endothelial KRAS-induced mouse model. Hum Mol Genet, ddac169. https://doi.org/10.1093/hmg/ddac169
Liu AS, Mulliken JB, Zurakowski D, et al., 2010, Extracranial arteriovenous malformations: Natural progression and recurrence after treatment. Plast Reconstr Surg, 125(4): 1185-1194. https://doi.org/10.1097/PRS.0b013e3181d18070
Murphy PA, Kim TN, Lu G, et al., 2012, Notch4 normalization reduces blood vessel size in arteriovenous malformations. Sci Transl Med, 4(117): 117ra8.https://doi.org/10.1126/scitranslmed.3002670
ZhuGe Q, Zhong M, Zheng W, et al., 2009, Notch-1 signalling is activated in brain arteriovenous malformations in humans. Brain, 132(Pt 12): 3231-3241. https://doi.org/10.1093/brain/awp246
Carmeliet P, Jain RK, 2011, Molecular mechanisms and clinical applications of angiogenesis. Nature, 473(7347): 298-307. https://doi.org/10.1038/nature10144
Wälchli T, Wacker A, Frei K, et al., 2015, Wiring the vascular network with neural cues: A CNS perspective. Neuron, 87(2): 271-296. https://doi.org/10.1016/j.neuron.2015.06.038
Gustafsson MV, Zheng X, Pereira T, et al, 2005, Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell, 9(5): 617-628. https://doi.org/10.1016/j.devcel.2005.09.010
Lim CS, Kiriakidis S, Sandison A, et al., 2013, Hypoxia-inducible factor pathway and diseases of the vascular wall. J Vasc Surg, 58(1): 219-230. https://doi.org/10.1016/j.jvs.2013.02.240
Benedito R, Hellström M, 2013, Notch as a hub for signaling in angiogenesis. Exp Cell Res, 319(9): 1281-1288. https://doi.org/10.1016/j.yexcr.2013.01.010
Caliceti C, Nigro P, Rizzo P, et al., 2014, ROS, notch, and Wnt signaling pathways: crosstalk between three major regulators of cardiovascular biology. Biomed Res Int, 2014:318714. https://doi.org/10.1155/2014/318714
Davis RB, Pahl K, Datto NC, et al., 2018, Notch signaling pathway is a potential therapeutic target for extracranial vascular malformations. Sci Rep, 8(1):17987. https://doi.org/10.1038/s41598-018-36628-1
Crist AM, Zhou X, Garai J, et al., 2019, Angiopoietin-2 inhibition rescues arteriovenous malformation in a Smad4 hereditary hemorrhagic telangiectasia mouse model. Circulation, 139(17): 2049-2063. https://doi.org/10.1161/CIRCULATIONAHA.118.036952