AccScience Publishing / AJWEP / Volume 19 / Issue 2 / DOI: 10.3233/AJW220025
RESEARCH ARTICLE

Chlorophycean Micro Alga as a Potential Bioremediant:  An Investigative Study Using Carbendazima Group C Carcinogenic Fungicide

Sulakshana Karkala1,2 Michelle Rodrigues3 Sachin Patavardhan2 Leo D’Souza2 Shashi Kiran2*
Show Less
1 Department of Biotechnology, Mangalore University, Mangalore, India
2 Laboratory of Applied Biology, St. Aloysius College, Mangalore, Karnataka, India
3 Department of Biological Sciences, University of Toronto, Toronto, Canada
AJWEP 2022, 19(2), 63–69; https://doi.org/10.3233/AJW220025
Received: 6 February 2021 | Revised: 17 September 2021 | Accepted: 17 September 2021 | Published online: 17 September 2021
© 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Agro-pollution caused by persistent pesticides is an increasing environmental concern. The misuse  of pesticides resulting in reduced clearance has prompted an urgent need for developing removal methods. In  this regard, biosorption using algae is an attractive option. Algal biomass has been an effective demonstrator of  heavy metal bioremediation. Carbendazim is a systemic pesticide used in controlling plant diseases. It has been  reported to show nematicide effects making it severely toxic to earthworms. It is a classified Group C Human  Carcinogen because it causes chromosomal loss and non-disjunction in mammalian reproductive cells. This  investigation estimates the biosorption efficiency of lyophilised chlorophycean Chlorella thermophila (Accession  number: MN006612) biomass on carbendazim. Bio-adsorption has shown to increase with pH, showing maximum  adsorption at pH 10.

Keywords
Carbendazim
chlorophycean
biosorption
carcinogen
bioremediant.
References

Ahmad, A., Bhat, A.H. and A. Buang (2018). Biosorption  of transition metals by freely suspended and Ca-alginate  immobilised with Chlorella vulgaris: Kinetic and  equilibrium modeling. Journal of Cleaner Production. 171: 1361-1375.

Aire, T.A. (2005). Short-term effects of carbendazim on the  gross and microscopic features of the testes of Japanese  quails (Coturnix japonica). Anatomy and Embryology,  210(1): 43-49.

Aksu, Z. (1998). Biosorption of heavy metals by microalgae  in batch and continuous systems. In: Wastewater treatment  with algae. Springer, Berlin, Heidelberg. pp. 37-53.

Aksu, Z. and G. Dönmez (2006). Binary biosorption  of cadmium (II) and nickel (II) onto dried Chlorella  vulgaris: Co-ion effect on mono-component isotherm  parameters. Process Biochemistry, 41(4): 860-868.

Albadarin, A.B., Mangwandi, C., Ala’a, H., Walker,  G.M., Allen, S.J. and M.N. Ahmad (2012). Kinetic and  thermodynamics of chromium ions adsorption onto lowcost dolomite adsorbent. Chemical Engineering Journal,  179: 193-202.

Al-Ebaisat, H. (2011). Determination of some benzimidazole  fungicides in tomato puree by high performance liquid  chromatography with SampliQ polymer SCX solid phase  extraction. Arabian Journal of Chemistry, 4(1): 115-117.

Andersen, R.A. (2005). Algal culturing techniques. Elsevier. Andrade, T.S., Henriques, J.F., Almeida, A.R., Machado,  A.L., Koba, O., Giang, P.T. and I. Domingues (2016).  Carbendazim exposure induces developmental, biochemical  and behavioural disturbance in zebrafish embryos. Aquatic  Toxicology, 170: 390-399.

Ardal, E. (2014). Phycoremediation of pesticides using  microalgae. Swedish University of Agricultural Sciences.

Bilal, M., Rasheed, T., Ahmed, I., Iqbal, H.M.N. and E.G.  Sada (2017). High-value compounds from microalgae  with industrial exploitability—A review. Front Biosci.,  9: 319-342.

Bilal, M., Rasheed, T., Sosa-Hernández, J.E., Raza, A.,  Nabeel, F. and H. Iqbal (2018). Biosorption: An interplay  between marine algae and potentially toxic elements—A  review. Marine Drugs, 16(2): 65.

Bule, M.H., Ahmed, I., Maqbool, F., Bilal, M. and H.M.N.  Iqbal (2018). Microalgae as a source of high-value  bioactive compounds. Front. Biosci (Sch. Ed.)., 10: 197- 216.

Bulgariu, L and D. Bulgariu (2017). Sustainable utilization of  marine algae biomass for environmental bioremediation.  In: Prospects and Challenges in Algal Biotechnology.  Springer, Singapore. pp. 179-217.

Casserly, D.M., Davis, E.M., Downs, T.D. and R.K.  Guthrie (1983). Sorption of organics by Selenastrum  capricornutum. Water Research, 17(11): 1591-1594.

Centella, M.H., Arévalo-Gallegos, A., Parra-Saldivar, R. and  H.M. Iqbal (2017). Marine-derived bioactive compounds  for value-added applications in bio-and non-bio sectors.  Journal of Cleaner Production, 168: 1559-1565.

Cerniglia, C.E. (1993). Biodegradation of polycyclic aromatic  hydrocarbons. Current Opinion in Biotechnology, 4(3): 331-338.

Dada, A.O., Olalekan, A.P., Olatunya, A.M. and O. Dada  (2012). Langmuir, Freundlich, Temkin and Dubinin– Radushkevich isotherms studies of equilibrium sorption  of Zn2+ unto phosphoric acid modified rice husk. IOSR  Journal of Applied Chemistry, 3(1): 38-44.

Davis, T.A., Volesky, B. and A. Mucci (2003). A review of  the biochemistry of heavy metal bio sorption by brown  algae. Water Research, 37(18): 4311-4330.

Dönmez, G.Ç., Aksu, Z., Öztürk, A. and T. Kutsal (1999).  A comparative study on heavy metal bio sorption  characteristics of some algae. Process Biochemistry,  34(9): 885-892.

Gadd, G.M. (2009). Biosorption: critical review of scientific  rationale, environmental importance and significance for  pollution treatment. Journal of Chemical Technology  & Biotechnology: International Research in Process,  Environmental & Clean Technology, 84(1): 13-28.

Gondar, D., López, R., Antelo, J., Fiol, S. and F. Arce (2013).  Effect of organic matter and pH on the adsorption of  metalaxyl and penconazole by soils. Journal of Hazardous  Materials, 260: 627-633.

Ibrahim, W.M. (2011). Biosorption of heavy metal ions from  aqueous solution by red macroalgae. Journal of Hazardous  Materials, 192(3): 1827-1835.

Ibrahim, W.M., Hassan, A.F. and Y.A. Azab (2016).  Biosorption of toxic heavy metals from aqueous solution  by Ulva lactuca activated carbon. Egyptian Journal of  Basic and Applied Sciences, 3(3): 241-249.

International Programme on Chemical Safety (1993).  Environmental Health Criteria 149 Carbendazim. IPCS  INCHEM DATABASE. [Accessed 14 March 2019]. http:// www.inchem.org/documents/ehc/ehc/ehc149.html.

Jiang, L., Zhou, W., Liu, D., Liu, T. and Z. Wang (2017).  Biosorption isotherm study of Cd2+, Pb2+ and Zn2+ bio  sorption onto marine bacterium Pseudoalteromonas sp.  SCSE709-6 in multiple systems. Journal of Molecular  Liquids, 247: 230-237.

Kucuker, M.A., Wieczorek, N., Kuchta, K. and N.K. Copty  (2017). Biosorption of neodymium on Chlorella vulgaris in aqueous solution obtained from hard disk drive magnets.  PloS One, 12(4): e0175255

Kumar, K., Patavardhan, S., Lobo, S. and R. Gonsalves (2018).  Equilibrium study of dried orange peel for its efficiency in removal of cupric ions from water. International Journal  of Phytoremediation, 20(6): 593-598.

Kumar, Y.P., King, P. and V.S.R.K. Prasad (2006). Removal  of copper from aqueous solution using Ulva fasciata  sp.-a marine green alga. Journal of Hazardous Materials,  137(1): 367-373.

Laurella, S.L., Pis Diez, C.M., Lick, I.D., Allegretti, P.E. and  M.F. Erben (2015). Evaluation of silica as an adsorbent  for carbendazim from aqueous solutions. International  Journal of Engineering and Technical Research, 3(2): 96-101.

Massoud, A.H., Derbalah, A.S. and E.S.B. Belal (2008).  Microbial detoxification of metalaxyl in aquatic system.  Journal of Environmental Sciences, 20(3): 262-267.

Mata, Y.N., Torres, E., Blazquez, M.L., Ballester, A.,  González, F.M.J.A. and J.A. Munoz (2009). Gold (III)  bio sorption and bioreduction with the brown alga Fucus  vesiculosus. Journal of Hazardous Materials, 166(2-3):  612-618.

Mehta, S.K. and J.P. Gaur (2005). Use of algae for removing  heavy metal ions from wastewater: Progress and prospects.  Critical Reviews in Biotechnology, 25(3): 113-152.

Monteiro, C.M., Castro, P.M. and F.X. Malcata (2012).  Metal uptake by microalgae: Underlying mechanisms  and practical applications. Biotechnology Progress, 28(2): 299-311.

National Research Council (1987). Regulating pesticides in  food: The Delaney paradox. National Academies Press.

Naturvårdsverket (2008). Avloppsreningsverkensförmågaatt  ta hand om läkemedelsresterochandrafarligaämnen.  Report 5794. [ Accessed on 5 April 2020].http://www. naturvardsverket.se/Documents/publikationer/620-5794-7. pdf.

Pohl, P. and W. Schimmack (2006). Adsorption of  radionuclides (134 Cs, 85 Sr, 226 Ra, 241 Am) by  extracted biomasses of cyanobacteria (Nostoc Carneum, N.  Insulare, Oscillatoria Geminata and Spirulina Laxis-Sima)  and phaeophyceae (Laminaria Digitata and L. Japonica: Waste products from alginate production) at different pH.  Journal of Applied Phycology, 18(2): 135-143.

PPDB (Pesticide Properties Data Base). United Kingdom. [ Accessed on 07 July 2020] https://sitem.herts.ac.uk/ aeru/ppdb/ .

Rath, B. (2012). Microalgal bioremediation: Current practices  and perspectives. Journal of Biochemical Technology,  3(3): 299-304.

Romera, E., González, F., Ballester, A., Blázquez, M.L. and  J.A. Munoz (2007). Comparative study of bio sorption of  heavy metals using different types of algae. Bioresource  Technology, 98(17): 3344-3353.

Schilder, A. (2008). Effect of water pH on the stability of  pesticides. Michigan State University MSU Extension.  [Accessed 10 March 2019]. https://www.canr.msu.edu/ news/effect_of_water_ph_on_the_stability_of_pesticides.

Shanthi, T. and V.M. Selvarajan (2012). Removal of Cr (VI)  and Cu (II) ions from aqueous solution by carbon prepared  from henna leaves. Journal of Chemistry 2013: 1-6.

Sibi, G. (2014). Biosorption of arsenic by living and  dried biomass of fresh water microalgae-potentials  and equilibrium studies. Journal of Bioremediation &  Biodegredation. 5(6): 1.

Tam, N.F., Chong, A.M.Y. and Y.S. Wong (2002). Removal  of tributyltin (TBT) by live and dead microalgal cells.  Marine Pollution Bulletin, 45(1-12): 362-371.

Tikoo, V., Shales, S.W. and A.H. Scragg (1996). Effect  of pentachlorophenol on the growth of microalgae.  Environmental Technology, 17(10): 1139-1144.

Trunnelle, K.J., Bennett, D.H., Ahn, K.C., Schenker, M.B.,  Tancredi, D.J., Gee, S.J. and B.D. Hammock (2014).  Concentrations of the urinary pyrethroid metabolite  3-phenoxybenzoic acid in farm worker families in the  MICASA study. Environmental Research, 131: 153-159.

Tsang, C.K., Lau, P.S., Tam, N.F.Y. and Y.S. Wong (1999).  Biodegradation capacity of tributyltin by two Chlorella  species. Environmental Pollution, 105(3): 289-297.

US EPA (2018). Chemicals Evaluated for Carcinogenic  Potential Office of Pesticide Programs: U.S. Environmental  Protection Agency Annual Cancer Report 2018. [ Accessed  on 07 July 2020]. http://npic.orst.edu/chemicals_evaluated. pdf .

Utomo, H.D., Tan, K.X.D., Choong, Z.Y.D., Yu, J.J., Ong,  J.J. and Z.B. Lim (2016). Biosorption of heavy metal by  algae biomass in surface water. Journal of Environmental  Protection, 7(11): 1547.

Wang, S., Yang, S., Jin, X., Liu, L. and F. Wu (2010). Use  of low cost crop biological wastes for the removal of  Nitrobenzene from water. Desalination, 264(1-2): 32-36.

Yang, Y., Chun, Y., Sheng, G. and M. Huang (2004). pHdependence of pesticide adsorption by wheat-residuederived black carbon. Langmuir, 20(16): 6736-6741.

Yapar, S., Özbudak, V., Dias, A. and A. Lopes (2005). Effect  of adsorbent concentration to the adsorption of phenol  on hexadecyl trimethyl ammonium-bentonite. Journal of  Hazardous Materials, 121(1-3): 135-139.

Zaini, M.A.A., Amano, Y. and M. Machida (2010). Adsorption  of heavy metals onto activated carbons derived from  polyacrylonitrile fiber. Journal of hazardous Materials. 180(1-3): 552-560.

Zeraatkar, A.K., Ahmadzadeh, H., Talebi, A.F., Moheimani,  N.R. and M.P. McHenry (2016). Potential use of algae for  heavy metal bioremediation: A critical review. Journal of  Environmental Management, 181: 817-831.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing