Chlorophycean Micro Alga as a Potential Bioremediant: An Investigative Study Using Carbendazima Group C Carcinogenic Fungicide

Agro-pollution caused by persistent pesticides is an increasing environmental concern. The misuse of pesticides resulting in reduced clearance has prompted an urgent need for developing removal methods. In this regard, biosorption using algae is an attractive option. Algal biomass has been an effective demonstrator of heavy metal bioremediation. Carbendazim is a systemic pesticide used in controlling plant diseases. It has been reported to show nematicide effects making it severely toxic to earthworms. It is a classified Group C Human Carcinogen because it causes chromosomal loss and non-disjunction in mammalian reproductive cells. This investigation estimates the biosorption efficiency of lyophilised chlorophycean Chlorella thermophila (Accession number: MN006612) biomass on carbendazim. Bio-adsorption has shown to increase with pH, showing maximum adsorption at pH 10.
Ahmad, A., Bhat, A.H. and A. Buang (2018). Biosorption of transition metals by freely suspended and Ca-alginate immobilised with Chlorella vulgaris: Kinetic and equilibrium modeling. Journal of Cleaner Production. 171: 1361-1375.
Aire, T.A. (2005). Short-term effects of carbendazim on the gross and microscopic features of the testes of Japanese quails (Coturnix japonica). Anatomy and Embryology, 210(1): 43-49.
Aksu, Z. (1998). Biosorption of heavy metals by microalgae in batch and continuous systems. In: Wastewater treatment with algae. Springer, Berlin, Heidelberg. pp. 37-53.
Aksu, Z. and G. Dönmez (2006). Binary biosorption of cadmium (II) and nickel (II) onto dried Chlorella vulgaris: Co-ion effect on mono-component isotherm parameters. Process Biochemistry, 41(4): 860-868.
Albadarin, A.B., Mangwandi, C., Ala’a, H., Walker, G.M., Allen, S.J. and M.N. Ahmad (2012). Kinetic and thermodynamics of chromium ions adsorption onto lowcost dolomite adsorbent. Chemical Engineering Journal, 179: 193-202.
Al-Ebaisat, H. (2011). Determination of some benzimidazole fungicides in tomato puree by high performance liquid chromatography with SampliQ polymer SCX solid phase extraction. Arabian Journal of Chemistry, 4(1): 115-117.
Andersen, R.A. (2005). Algal culturing techniques. Elsevier. Andrade, T.S., Henriques, J.F., Almeida, A.R., Machado, A.L., Koba, O., Giang, P.T. and I. Domingues (2016). Carbendazim exposure induces developmental, biochemical and behavioural disturbance in zebrafish embryos. Aquatic Toxicology, 170: 390-399.
Ardal, E. (2014). Phycoremediation of pesticides using microalgae. Swedish University of Agricultural Sciences.
Bilal, M., Rasheed, T., Ahmed, I., Iqbal, H.M.N. and E.G. Sada (2017). High-value compounds from microalgae with industrial exploitability—A review. Front Biosci., 9: 319-342.
Bilal, M., Rasheed, T., Sosa-Hernández, J.E., Raza, A., Nabeel, F. and H. Iqbal (2018). Biosorption: An interplay between marine algae and potentially toxic elements—A review. Marine Drugs, 16(2): 65.
Bule, M.H., Ahmed, I., Maqbool, F., Bilal, M. and H.M.N. Iqbal (2018). Microalgae as a source of high-value bioactive compounds. Front. Biosci (Sch. Ed.)., 10: 197- 216.
Bulgariu, L and D. Bulgariu (2017). Sustainable utilization of marine algae biomass for environmental bioremediation. In: Prospects and Challenges in Algal Biotechnology. Springer, Singapore. pp. 179-217.
Casserly, D.M., Davis, E.M., Downs, T.D. and R.K. Guthrie (1983). Sorption of organics by Selenastrum capricornutum. Water Research, 17(11): 1591-1594.
Centella, M.H., Arévalo-Gallegos, A., Parra-Saldivar, R. and H.M. Iqbal (2017). Marine-derived bioactive compounds for value-added applications in bio-and non-bio sectors. Journal of Cleaner Production, 168: 1559-1565.
Cerniglia, C.E. (1993). Biodegradation of polycyclic aromatic hydrocarbons. Current Opinion in Biotechnology, 4(3): 331-338.
Dada, A.O., Olalekan, A.P., Olatunya, A.M. and O. Dada (2012). Langmuir, Freundlich, Temkin and Dubinin– Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry, 3(1): 38-44.
Davis, T.A., Volesky, B. and A. Mucci (2003). A review of the biochemistry of heavy metal bio sorption by brown algae. Water Research, 37(18): 4311-4330.
Dönmez, G.Ç., Aksu, Z., Öztürk, A. and T. Kutsal (1999). A comparative study on heavy metal bio sorption characteristics of some algae. Process Biochemistry, 34(9): 885-892.
Gadd, G.M. (2009). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 84(1): 13-28.
Gondar, D., López, R., Antelo, J., Fiol, S. and F. Arce (2013). Effect of organic matter and pH on the adsorption of metalaxyl and penconazole by soils. Journal of Hazardous Materials, 260: 627-633.
Ibrahim, W.M. (2011). Biosorption of heavy metal ions from aqueous solution by red macroalgae. Journal of Hazardous Materials, 192(3): 1827-1835.
Ibrahim, W.M., Hassan, A.F. and Y.A. Azab (2016). Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon. Egyptian Journal of Basic and Applied Sciences, 3(3): 241-249.
International Programme on Chemical Safety (1993). Environmental Health Criteria 149 Carbendazim. IPCS INCHEM DATABASE. [Accessed 14 March 2019]. http:// www.inchem.org/documents/ehc/ehc/ehc149.html.
Jiang, L., Zhou, W., Liu, D., Liu, T. and Z. Wang (2017). Biosorption isotherm study of Cd2+, Pb2+ and Zn2+ bio sorption onto marine bacterium Pseudoalteromonas sp. SCSE709-6 in multiple systems. Journal of Molecular Liquids, 247: 230-237.
Kucuker, M.A., Wieczorek, N., Kuchta, K. and N.K. Copty (2017). Biosorption of neodymium on Chlorella vulgaris in aqueous solution obtained from hard disk drive magnets. PloS One, 12(4): e0175255
Kumar, K., Patavardhan, S., Lobo, S. and R. Gonsalves (2018). Equilibrium study of dried orange peel for its efficiency in removal of cupric ions from water. International Journal of Phytoremediation, 20(6): 593-598.
Kumar, Y.P., King, P. and V.S.R.K. Prasad (2006). Removal of copper from aqueous solution using Ulva fasciata sp.-a marine green alga. Journal of Hazardous Materials, 137(1): 367-373.
Laurella, S.L., Pis Diez, C.M., Lick, I.D., Allegretti, P.E. and M.F. Erben (2015). Evaluation of silica as an adsorbent for carbendazim from aqueous solutions. International Journal of Engineering and Technical Research, 3(2): 96-101.
Massoud, A.H., Derbalah, A.S. and E.S.B. Belal (2008). Microbial detoxification of metalaxyl in aquatic system. Journal of Environmental Sciences, 20(3): 262-267.
Mata, Y.N., Torres, E., Blazquez, M.L., Ballester, A., González, F.M.J.A. and J.A. Munoz (2009). Gold (III) bio sorption and bioreduction with the brown alga Fucus vesiculosus. Journal of Hazardous Materials, 166(2-3): 612-618.
Mehta, S.K. and J.P. Gaur (2005). Use of algae for removing heavy metal ions from wastewater: Progress and prospects. Critical Reviews in Biotechnology, 25(3): 113-152.
Monteiro, C.M., Castro, P.M. and F.X. Malcata (2012). Metal uptake by microalgae: Underlying mechanisms and practical applications. Biotechnology Progress, 28(2): 299-311.
National Research Council (1987). Regulating pesticides in food: The Delaney paradox. National Academies Press.
Naturvårdsverket (2008). Avloppsreningsverkensförmågaatt ta hand om läkemedelsresterochandrafarligaämnen. Report 5794. [ Accessed on 5 April 2020].http://www. naturvardsverket.se/Documents/publikationer/620-5794-7. pdf.
Pohl, P. and W. Schimmack (2006). Adsorption of radionuclides (134 Cs, 85 Sr, 226 Ra, 241 Am) by extracted biomasses of cyanobacteria (Nostoc Carneum, N. Insulare, Oscillatoria Geminata and Spirulina Laxis-Sima) and phaeophyceae (Laminaria Digitata and L. Japonica: Waste products from alginate production) at different pH. Journal of Applied Phycology, 18(2): 135-143.
PPDB (Pesticide Properties Data Base). United Kingdom. [ Accessed on 07 July 2020] https://sitem.herts.ac.uk/ aeru/ppdb/ .
Rath, B. (2012). Microalgal bioremediation: Current practices and perspectives. Journal of Biochemical Technology, 3(3): 299-304.
Romera, E., González, F., Ballester, A., Blázquez, M.L. and J.A. Munoz (2007). Comparative study of bio sorption of heavy metals using different types of algae. Bioresource Technology, 98(17): 3344-3353.
Schilder, A. (2008). Effect of water pH on the stability of pesticides. Michigan State University MSU Extension. [Accessed 10 March 2019]. https://www.canr.msu.edu/ news/effect_of_water_ph_on_the_stability_of_pesticides.
Shanthi, T. and V.M. Selvarajan (2012). Removal of Cr (VI) and Cu (II) ions from aqueous solution by carbon prepared from henna leaves. Journal of Chemistry 2013: 1-6.
Sibi, G. (2014). Biosorption of arsenic by living and dried biomass of fresh water microalgae-potentials and equilibrium studies. Journal of Bioremediation & Biodegredation. 5(6): 1.
Tam, N.F., Chong, A.M.Y. and Y.S. Wong (2002). Removal of tributyltin (TBT) by live and dead microalgal cells. Marine Pollution Bulletin, 45(1-12): 362-371.
Tikoo, V., Shales, S.W. and A.H. Scragg (1996). Effect of pentachlorophenol on the growth of microalgae. Environmental Technology, 17(10): 1139-1144.
Trunnelle, K.J., Bennett, D.H., Ahn, K.C., Schenker, M.B., Tancredi, D.J., Gee, S.J. and B.D. Hammock (2014). Concentrations of the urinary pyrethroid metabolite 3-phenoxybenzoic acid in farm worker families in the MICASA study. Environmental Research, 131: 153-159.
Tsang, C.K., Lau, P.S., Tam, N.F.Y. and Y.S. Wong (1999). Biodegradation capacity of tributyltin by two Chlorella species. Environmental Pollution, 105(3): 289-297.
US EPA (2018). Chemicals Evaluated for Carcinogenic Potential Office of Pesticide Programs: U.S. Environmental Protection Agency Annual Cancer Report 2018. [ Accessed on 07 July 2020]. http://npic.orst.edu/chemicals_evaluated. pdf .
Utomo, H.D., Tan, K.X.D., Choong, Z.Y.D., Yu, J.J., Ong, J.J. and Z.B. Lim (2016). Biosorption of heavy metal by algae biomass in surface water. Journal of Environmental Protection, 7(11): 1547.
Wang, S., Yang, S., Jin, X., Liu, L. and F. Wu (2010). Use of low cost crop biological wastes for the removal of Nitrobenzene from water. Desalination, 264(1-2): 32-36.
Yang, Y., Chun, Y., Sheng, G. and M. Huang (2004). pHdependence of pesticide adsorption by wheat-residuederived black carbon. Langmuir, 20(16): 6736-6741.
Yapar, S., Özbudak, V., Dias, A. and A. Lopes (2005). Effect of adsorbent concentration to the adsorption of phenol on hexadecyl trimethyl ammonium-bentonite. Journal of Hazardous Materials, 121(1-3): 135-139.
Zaini, M.A.A., Amano, Y. and M. Machida (2010). Adsorption of heavy metals onto activated carbons derived from polyacrylonitrile fiber. Journal of hazardous Materials. 180(1-3): 552-560.
Zeraatkar, A.K., Ahmadzadeh, H., Talebi, A.F., Moheimani, N.R. and M.P. McHenry (2016). Potential use of algae for heavy metal bioremediation: A critical review. Journal of Environmental Management, 181: 817-831.