AccScience Publishing / AJWEP / Volume 19 / Issue 4 / DOI: 10.3233/AJW220050
RESEARCH ARTICLE

Fluoride Delineation and Bacterial Diversity of Potable Water in Mandal Parishads of Kurnool District, Andhra Pradesh, India

P. Raghuveer Yadav1 Pindi Pavan Kumar2 *
Show Less
1 Rayalseema University, Kurnool – 518007, Andhra Pradesh, India
2 Department of Microbiology, Palamuru University, Mahabubnagar – 509001, Telangana, India
AJWEP 2022, 19(4), 9–16; https://doi.org/10.3233/AJW220050
Received: 28 September 2020 | Revised: 22 October 2021 | Accepted: 22 October 2021 | Published online: 22 October 2021
© 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

An attempt was made to delineate fluoride and identify bacterial diversity in the drinking water sources of 27 Mandal Parishads of Kurnool district, Andhra Pradesh, India. Fourteen water samples of groundwater and thirteen samples of surface water were collected and analysed for fluoride concentration as well as bacterial diversity. Results revealed that 57.14% of the groundwater samples had a fluoride concentration over the permissible limit, whereas 15.38% of surface water samples crossed the permissible limit. Bacterial species predominantly found in the groundwater samples are Bacillus subtilis whose presence seemed more in Dornipadu (DOR), Pamulapadu (PPU), Nandavaram (NDV) and Kosigi (KOS). Exiguobacterium sp. prevailed much in Chagalamarri (CHA), Midthur (MID), Jupadu Bungalow (JBW) and Gonegandla (GON). Acinetobacter sp. is rich in Allagadda (ALG) and Atmakur (ATK). Chryseobacterium sp. dominated in Orvakal (ORV); Pagidyala (PGA) had more concentrations of Staphylococcus warneri and Kolimigundla (KOL) had reported high levels of Aeromonas punctate. Surface water samples possess predominant bacterial species, Bacillus subtilis dominated in Uyyalawada (UYY), Sanjamala (SAN), Banaganapalle (BPL) and Mantralayam (MAN). Exiguobacterium sp was abundant in Koilkuntla (KOI), Kowthalam (KOW) and Pattikonda (PAT). Bergeyella sp. reported high in Gadivemula (GAD). Pantoea sp. was more in Yemmiganur (YMG); Aspari (ASP) was rich in Kocuria marinaAcinetobacter junii dominant in Devanakonda (DKD). Paracoccus sigandrium prevailed more in Owk.

Keywords
Bacterial diversity
fluoride delineation
groundwater
surface water.
References
  1. Alain, K. and J. Querellou (2009). Cultivating the uncultured:  limits, advances and future challenges. Extremophiles,  13(4): 583-594.
  2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and D.J.  Lipman (1990). Basic local alignment search tool. J Mol  Biol, 215(3): 403-410.
  3. American Public Health Association, American Water Works  Association, Water Pollution Control Federation, & Water  Environment Federation (1920). Standard methods for the  examination of water and wastewater. American Public  Health Association.
  4. Bureau of Indian Standards (BIS) (2012). Bureau of Indian  Standards drinking water specifications. BIS, 10500, 2012.
  5. Eichler, S., Christen, R., Höltje, C., Westphal, P., Bötel,  J., Brettar, I. and M.G. Höfle (2006). Composition and  dynamics of bacterial communities of a drinking water  supply system as assessed by RNA-and DNA-based 16S rRNA gene fingerprinting. Appl Environ Microbiol, 72(3): 1858-1872.
  6. Garg, V.K., Suthar, S., Singh, S., Sheoran, A. and S. Jain  (2009). Drinking water quality in villages of southwestern  Haryana, India: Assessing human health risks associated  with hydrochemistry. Environ Geol, 58(6): 1329-1340.
  7. Haidouti, C. (1991). Fluoride distribution in soils in the  vicinity of a point emission source in Greece. Geoderma,  49(1-2): 129-138.
  8. Jalali, M. (2009). Geochemistry characterization of  groundwater in an agricultural area of Razan, Hamadan,  Iran. Environ Geol, 56(7): 1479-1488.
  9. Jurdi, M., Kambris, M. and S. Basma (2002). Development  of a national potable water quality control programme in  Lebanon: Challenges for sustainability. Environmental  Practice, 4(2): 72-76.
  10. Kormas, K.A., Neofitou, C., Pachiadaki, M. and E.  Koufostathi (2010). Changes of the bacterial assemblages  throughout an urban drinking water distribution system.  Environ. Monit Assess, 165(1-4): 27-38.
  11. Lane, D.J. (1991). 16S/23S rRNA sequencing. In: Nucleic  acid techniques in bacterial systematics, pp. 115-175.
  12. Lautenschlager, K., Boon, N., Wang, Y., Egli, T. and F.  Hammes (2010). Overnight stagnation of drinking water  in household taps induces microbial growth and changes  in community composition. Water Research, 44(17): 4868-4877.
  13. Ljujic, B. and L. Sundac [Council] Directive 98/83/EC [of  3 November 1998] on the quality of water intended for  human consumption: Review and integral translation [from  English into Serbian]]. Voda i sanitarna tehnika (Serbia  and Montenegro).
  14. Lloyd, J.W. and J.A.A. Heathcote (1985). Natural inorganic  hydrochemistry in relation to ground water. United States,  p. 296.
  15. Maiti, S.K. (2004). Handbook of Methods in Environmental  Studies, Volume 1: Water and Wastewater Analysis. ABD  Publishers.
  16. Nescerecka, A., Rubulis, J., Vital, M., Juhna, T. and F.  Hammes (2014). Biological instability in a chlorinated drinking water distribution network. PloS One, 9(5): e96354.
  17. Poitelon, J.B., Joyeux, M., Welté, B., Duguet, J.P., Prestel,  E., Lespinet, O. and M.S. DuBow (2009). Assessment of  phylogenetic diversity of bacterial microflora in drinking  water using serial analysis of ribosomal sequence tags.  Water Research, 43(17): 4197- 4206.
  18. Rao, N.S. and D.J. Devadas (2003). Fluoride incidence in  groundwater in an area of Peninsular India. Environ Geol,  45(2): 243-251.
  19. Reddy, G.S., Aggarwal, R.K., Matsumoto, G.I. and S. Shivaji  (2000). Arthrobacter flavus sp. nov.: A psychrophilic  bacterium isolated from a pond in McMurdo Dry Valley,  Antarctica. Int J Syst Evol Microbiol, 50(4): 1553-1561.
  20. Revetta, R.P., Pemberton, A., Lamendella, R., Iker, B. and  J.W. Santo Domingo (2010). Identification of bacterial  populations in drinking water using 16S rRNA-based  sequence analyses. Water Research, 44(5): 1353-1360.
  21. Robertson, F.N. (1986). Occurrence and solubility controls  of trace elements in groundwater in alluvial basins of  Arizona. In:Regional Aquifer Systems of the United  States, Southwest Alluvial Basins of Arizona. American  Water Resources Association Monograph Series, 7: 69-80. Robinson, W.O. and G. Edgington (1946). Fluorine in soils.  Soil Science, 61(5): 341-354.
  22. Sawyer, C.N. and P.L. MC Carty (1965). Chemistry of  Environmental Engineering. Mc Graw Hill, Book  Company, New York.
  23. Subba Rao, N. (2003). Groundwater quality: focus on fluoride  concentration in rural parts of Guntur district, Andhra  Pradesh, India. Hydrological Sciences Journal, 48(5): 835-847.
  24. Susheela, A.K. (1999). Fluorosis management programme in  India. Curr Sci, 77(10): 1250-1256.
  25. Todd, D.K. (1980). Groundwater hydrology (2nd edn., p.535).  New York: Wiley
  26. Webb, J.S. and H.E. Hawkes (1962). Geochemistry in Mineral  Exploration by HE Hawkes and JS Webb. Harper & Row.
  27. World Health Organization (1993). Guidelines for drinkingwater quality. World Health Organization.
  28. Zuane, J.D. (1990). Drinking water quality: Standards and  controls.
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing