AccScience Publishing / AJWEP / Volume 19 / Issue 2 / DOI: 10.3233/AJW220026
RESEARCH ARTICLE

Analysis of the Performance of Cutting Tools of Tunnel  Boring Machine (TBM) in Silty-Sand Soils Using Artificial Neural Network (ANN) – Case Study: Tabriz  Metro Line 2 Project

Shahab Bazargan1 Hamid Chakeri1* Mohammad Sharghi1 Daniel Dias2,3
Show Less
1 Department of Mining Engineering, Sahand University of Technology, Tabriz, Iran
2 University of Grenoble Alpes, CNRS, Grenoble INP, 3SR, F-38000 Grenoble, France
3 Antea Group, Antony, France
AJWEP 2022, 19(2), 71–78; https://doi.org/10.3233/AJW220026
Received: 10 October 2020 | Revised: 25 October 2021 | Accepted: 25 October 2021 | Published online: 25 October 2021
© 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The choice of cutting tools for soil excavation has a significant impact on the performance of tunnel  boring machines. In this study, the data of two excavated sections of the Tabriz metro line 2 project have been  used, and the crossed soils were sandy silts. Two sections have investigated the performance of two kinds of cutting  tools (disk cutters and rippers). The cutting tools used in the first section of the drilling route are disc cutters,  while in the second section, rippers have been used. To predict and evaluate the performance of the two types of  cutting tools in silty-clay soils, artificial neuron networks were used, and the Levenberg-Marquardt algorithm was  chosen for training the ANNs. Three important TBM parameters (torque, thrust force, and speed) were considered  as input parameters, and the TBM penetration rate is chosen as the output variable in the developed artificial  neuron network models. The obtained results showed that the best-predicted value obtained from the ANN was  obtained with one hidden layer that contains four neurons. Finally, considering the performance parameter observed  in silty soils, the ripper’s performance is better compared to the disc cutter one.

Keywords
Tunneling
cutting tools
disc cutter
ripper
artificial neural network.
References

Afradi, A., Ebrahimabadi, A. and T. Hallajan (2019).  Prediction of the penetration rate and number of  consumed disc cutters of tunnel boring machines (TBMs)  using artificial neural network (ANN) and support  vector machine (SVM)- case study: Beheshtabad water conveyance tunnel in Iran. Asian Journal of Water,  Environment and Pollution, 16(1): 49-57. http://doi. org/10.3233/AJW190006

Abu Bakar, M.Z., Leslie, S.G. and J. Rostami (2015).  Evaluation of fragments from disc cutting of dry  and saturated sandstone. Rock Mechanics and Rock  Engineering, 47(5): 1891-1903. http://doi.org/10.1007/ s00603-013-0482-8

Ates, U., Bilgin, N. and H. Copur (2014). Estimating torque,  thrust and other design parameters of different type TBMs  with some criticism to TBMs used in Turkish tunneling  projects. Tunnelling and Underground Space Technology,  40: 46-63. http://doi.org/10.1016/j.tust.2013.09.004

Avunduk, E. and H. Copur (2018). Empirical modeling  for predicting excavation performance of EPB TBM  based on soil properties. Tunnelling and Underground  Space Technology, 71: 340-353. http://doi.org/10.1016/j. tust.2017.09.016

Bilgin, N. and M. Algan (2012). The performance of a TBM  in a squeezing ground at Uluabat, Turkey. Tunnelling and  Underground Space Technology, 32: 58-65. http://doi. org/10.1016/j.tust.2012.05.004

Cheng, Y., Zhong, J., Mei, Y.B. and Y.M. Xia (2017). Rock  fragmentation under different installation polar angles of  TBM disc cutters. Journal of Central South University,  24(10): 2306-2313. http://doi.org/10.1007/s11771-017- 3642-2

Copur, H., Aydin, H., Bilgin, N., Balci, C., Tumac, D. and C.  Dayanc (2014). Predicting performance of EPB TBMs by  using a stochastic model implemented into a deterministic  model. Tunnelling and Underground Space Technology,  42: 1-14. http://doi.org/10.1016/j.tust.2014.01.006

Gao, L. and X.B. Li (2015). Utilizing partial least square  and support vector machine for TBM penetration rate  prediction in hard rock conditions. Journal of Central South University, 22(1): 290-295. http://doi.org/10.1007/ s11771-015-2520-z

Kaastra, I. and M. Boyd (1996). Designing a neural  network for forecasting financial and economic time  series. Neurocomputing, 10(3): 215-236. http://doi. org/10.1016/0925-2312(95)00039-9

Kanellopoulos, I. and G. Wilkinson (1997). Strategies and  best practice for neural network image classification.  International Journal of Remote Sensing, 18(4): 711-725.  http://doi.org/10.1080/014311697218719

Kasper, T. and G. Meschke (2004). A 3D finite element  simulation model for TBM tunnelling in soft ground.  International Journal for Numerical and Analytical  Methods in Geomechanics, 28(14): 1441-1460. http://doi. org/10.1002/nag.395

Lambrughi, A., Rodriguez, L.E. and R. Castellanza (2012).  Development and validation of a 3D numerical model  for TBM–EPB mechanised excavations. Computers  and Geotechnics, 40: 97-113. http://doi.org/10.1016/j. compgeo.2011.10.004

Masters, T. (1993). Practical Neural Network Recipes in C++,  Morgan Kaufmann.

Maynar, M.J. and L.E. Rodriguez (2005). Discrete numerical  model for analysis of Earth pressure balance tunnel  excavation. Journal of Geotechnical and Geoenvironmental  Engineering, 131(10): 1234-1242. http://doi.org/10.1061/ (ASCE)1090-0241(2005)131:10(1234)

Paola, J. (1994). Neural Network Classification of  Multispectral Imagery. Master Thesis, The University of  Arizona, USA.

Qi, G., Zhengying, W., Jun, D. and T. Yiping (2013). A Cutter  Layout Optimization Method for Full-Face Rock Tunnel  Boring Machine. International Conference on Intelligent  Robotics and Applications, ICIRA 2013: Intelligent Robotics and Applications, Berlin, Heidelberg.

Robert, H. and O.E. Nielse (1989). Kolmogorov’s Mapping  Neural Network Existence Theorem, Proceedings of the  International Joint Conference in Neural Networks, pp.  11-14.

Ripley, B.D. (1993). Statistical aspects of neural networks.  Networks and Chaos—Statistical and Probabilistic  Aspects, 50: 40-123.

Sun, H.Y., Guo, W., Liu, J.Q., Song, L.W. and X.Q. Liu  (2018). Layout design for disc cutters based on analysis  of TBM cutter-head structure. Journal of Central South  University, 25(4): 812-830. http://doi.org/10.1007/s11771- 018-3786-8

Wang, C. (1994). A Theory of Generalization in Learning  Machines with Neural Network Applications.

Wang, L., Kang, Y., Zhao, X. and Q. Zhang (2015). Disc  cutter wear prediction for a hard rock TBM cutterhead  based on energy analysis. Tunnelling and Underground  Space Technology, 50: 324-333. http://doi.org/10.1016/j. tust.2015.08.003

Wu, L. and F.Z. Qu (2009). Discrete element simulation of  mechanical characteristic of conditioned sands in earth  pressure balance shield tunneling. Journal of Central  South University of Technology, 16(6): 1028. http://doi. org/10.1007/s11771-009-0170-8

Zhang, Q., Kang, Y., Zheng, Z. and L. Wang (2013). Inverse  analysis and modeling for tunneling thrust on shield  machine. Mathematical Problems in Engineering. 2013:  975703. http://doi.org/10.1155/2013/975703

Zhang, Q., Su, C., Qin, Q., Cai, Z., Hou, Zh. and Y. Kang  (2016). Modeling and prediction for the thrust on EPB  TBMs under different geological conditions by considering  mechanical decoupling. Science China Technological  Sciences, 59(9): 1428-1434. http://doi.org/10.1007/s11431- 016-6096-0

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing