Review of research and developments in binders for binder jetting additive manufacturing

Binders play a key role in binder jetting additive manufacturing (BJAM), determining the stability of the printing process, geometric accuracy, and properties of the final parts. Analysis of recent research and developments indicates that binders are usually based on water, solvents, or their mixtures in various ratios, with all three types having almost equal significance depending on the specific application. Special emphasis is placed on the rheological characteristics of binders, which determine their printability, as well as on post-processing, which affects the phase composition of the resulting products. The review proposes a classification of binders for BJAM, categorizing them into four types: Liquid organic binders, solid binders, nanoparticle-filled binders, and reactive binders. The evolution of research interest in different binder types over the past 15 years is analyzed, revealing key trends and shifts in scientific focus. Perspectives for future studies are outlined, emphasizing the need for tailored binder development. The advancement of BJAM and the expansion of its applications are directly dependent on research aimed at creating new binder systems that meet the growing demands of the industry. An integrated approach, combining chemical synthesis and materials science analysis, opens up prospects for the development of specialized formulations tailored to specific materials and functional requirements.

- Mirzababaei S, Pasebani S. A review on binder jet additive manufacturing of 316L stainless steel. J Manuf Mater Process. 2019;3(3):82. doi: 10.3390/jmmp3030082
- Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016;117:371-392. doi: 10.1016/j.actamat.2016.07.019
- Mueller B. Additive manufacturing technologies-rapid prototyping to direct digital manufacturing. Assembly Autom. 2012;32(2). doi: 10.1108/aa.2012.03332baa.010
- Guo N, Leu MC. Additive manufacturing: Technology, applications and research needs. Front Mech Eng. 2013;8(3):215-243. doi: 10.1007/s11465-013-0248-8
- Wang Y, Zhao YF. Investigation of sintering shrinkage in binder jetting additive manufacturing process. Procedia Manuf. 2017;10:779-790. doi: 10.1016/j.promfg.2017.07.077
- Sachs EM. Three-Dimensional Printing Techniques. US Patent no 5204055; 1993.
- Sufiiarov V, Borisov A, Popovich A, Erutin D. Effect of TiC particle size on processing, microstructure and mechanical properties of an inconel 718/TiC composite material made by binder jetting additive manufacturing. Metals. 2023;13(7):1271. doi: 10.3390/met13071271
- Lores A, Azurmendi N, Agote I, Zuza E. A review on recent developments in binder jetting metal additive manufacturing: Materials and process characteristics. Powder Metall. 2019;62(5):267-296. doi: 10.1080/00325899.2019.1669299
- Sufiiarov V, Kantyukov A, Popovich A, Sotov A. Synthesis of spherical powder of lead-free BCZT piezoceramics and binder jetting additive manufacturing of triply periodic minimum surface lattice structures. Materials. 2022;15(18):6289. doi: 10.3390/ma15186289
- Mostafaei A, Elliott AM, Barnes JE, et al. Binder jet 3D printing-process parameters, materials, properties, modeling, and challenges. Prog Mater Sci. 2021;119:100707. doi: 10.1016/j.pmatsci.2020.100707
- Borisov A, Shamshurin A, Kovalev M, Popovich A, Sufiiarov V. Binder jetting additive manufacturing of inconel 718/tic metal matrix composites: Influence of TiC content on processing, microstructure, mechanical and tribological properties. Materials. 2024;17(20):5050. doi: 10.3390/ma17205050
- Sachs EM, Haggerty JS, Cima MJ, Williams PA. Three-Dimensional Printing Techniques. US patent no 5204055; 1993.
- Zhao H, Ye C, Fan Z, Wang C. 3D printing of CaO-based ceramic core using nanozirconia suspension as a binder. J Eur Ceram Soc. 2017;37(15):5119-5125. doi: 10.1016/j.jeurceramsoc.2017.06.050
- Zemtsov AE, Golunov AV, Golunova AS. Regulating rheological properties of binding medium for additive technologies using Polyvinylpyrrolidone. AIP Conf Proc. 2017;1876:020013. doi: 10.1063/1.4998833
- Utela B, Storti D, Anderson R, Ganter M. A review of process development steps for new material systems in three dimensional printing (3DP). J Manuf Process. 2008;10(2):96-104. doi: 10.1016/j.jmapro.2009.03.002
- Myers K, Paterson A, Iizuka T, Klein A. The Effect of Print Speed on Surface Roughness and Density Uniformity of Parts Produced using Binder Jet 3D Printing. FABR. In: Proceedings of the 30th Annual International Conference on Mobile Computing and Networking; 2019. p. 122-133. doi: 10.20944/preprints202101.0459.v1
- Liravi F, Vlasea M. Powder bed binder jetting additive manufacturing of silicone structures. Addit Manuf. 2018;21:112-124. doi: 10.1016/j.addma.2018.02.017
- Navascues, G. Liquid surfaces: Theory of surface tension. Rep Prog Phys. 1979;42(7):1131-1186. doi: 10.1088/0034-4885/42/7/002
- Mao Y, Li J, Li W, Cai D, Wei Q. Binder jetting additive manufacturing of 316L stainless-steel green parts with high strength and low binder content: Binder preparation and process optimization. J Mater Process Technol. 2021;291:117020. doi: 10.1016/j.jmatprotec.2020.117020
- Kozakiewicz-Latała M. Binder jetting 3D printing of challenging medicines: From low dose tablets to hydrophobic molecules. Eur J Pharm Biopharm. 2022;170:144-159. doi: 10.1016/j.ejpb.2021.11.001
- Yeates SG, Xu D, Madec MB, Caras-Quintero D, et al. Fluids for Inkjet Printing. In: Hutchings IM, Martin GD, editors. In: Inkjet Technology for Digital Fabrication. New Jersey, US: John Wiley and Sons; 2012. doi: 10.1002/9781118452943.ch4
- Wilts EM, Ma D, Bai Y, Williams CB, Long TE. Comparison of linear and 4-Arm star poly(vinyl pyrrolidone) for aqueous binder jetting additive manufacturing of personalized dosage tablets. ACS Appl Mater Interfaces. 2019;11(27):23938-23947. doi: 10.1021/acsami.9b08116
- Gilmer D, Han L, Hong E, et al. An in-situ crosslinking binder for binder jet additive manufacturing. Addit Manuf. 2020;35:101341. doi: 10.1016/j.addma.2020.101341
- Zhang T, Tan Y, Xu Y, Liu C. A thermal-initiated monomer binder enhancing green strength with low binder saturation for binder jetting additive manufacturing of cemented carbide. Int J Refract Metals Hard Mater. 2024;118:106494. doi: 10.1016/j.ijrmhm.2023.106494
- Masia S, Calvert PD, Rhine WE, Bowen HK. Effect of oxides on binder burnout during ceramics processing. J Mater Sci. 1989;24(6):1907-1912. doi: 10.1007/BF02385397
- Yan H, Cannon WR, Shanefield DJ. Evolution of carbon during burnout and sintering of tape‐cast aluminum nitride. J Am Ceram Soc. 1993;76(1):166-172. doi: 10.1111/j.1151-2916.1993.tb03702.x
- Ziaee M, Crane NB. Binder jetting: A review of process, materials, and methods. Addit Manuf. 2019;28:781-801. doi: 10.1016/j.addma.2019.05.031
- Tan WX, Chiang PJ, Tan LP, et al. Adhesive and alloying properties of dual purpose polyfurfuryl alcohol binder for binder jet additive manufacturing of steel. Addit Manuf. 2024;86:104212. doi: 10.1016/j.addma.2024.104212
- Mao C, Wu JM, Shi ZA, et al. Fabrication of SiCw reinforced SiC ceramics by binder jetting combined with particulate pyrolytic carbon (PyC) encapsulated SiCw modification method. Ceram Int. 2025;51(12):15792-15801. doi: 10.1016/j.ceramint.2025.01.416
- Banerjee S, Joens CJ. Debinding and sintering of metal injection molding (MIM) components. In: Handbook of Metal Injection Molding. Amsterdam: Elsevier; 2019. p. 129-171. doi: 10.1016/B978-0-08-102152-1.00009-X
- Wang L, Zhang Z, Zhang R, Tai Z, Liu Z, Lu B. Non-heat source forming technology of binder jetting metal powder and its post-treatment process. Int J Adv Manuf Technol. 2024;132(3-4):2077-2089. doi: 10.1007/s00170-024-13451-9
- Xiong Y, Qian C, Sun J. Fabrication of porous titanium implants by three-dimensional printing and sintering at different temperatures. Dent Mater J. 2012;31(5):815-820. doi: 10.4012/dmj.2012-065
- Konyashin I, Hlawatschek S, Ries B, et al. On the mechanism of WC coarsening in WC-Co hardmetals with various carbon contents. Int J Refract Met Hard Mater. 2009;27(2):234-243. doi: 10.1016/j.ijrmhm.2008.09.001
- Brittan A, Mahaffey J, Adam D, Anderson M. Mechanical and corrosion response of 316SS in supercritical CO2. Oxid Met. 2021;95(5-6):409-425. doi: 10.1007/s11085-021-10026-x
- Szkliniarz A, Szkliniarz W. Effect of carbon content on the microstructure and properties of Ti-6Al-4V alloy. Arch Metall Mater. 2020;65:1197-1204. doi: 10.24425/amm.2020.133239
- Ogden HR, Jaffee RI. The Effects of Carbon, Oxygen, and Nitrogen on the Mechanical Properties of titanium and Titanium Alloys. Report No 20, Titanium Metallurgical Laboratory, Battelle Memorial Institute Columbus 1, Ohio; 1955. Available from: https://www.osti.gov/servlets/ purl/4370612
- Fleisher A, Zolotaryov D, Kovalevsky A, et al. Reaction bonding of silicon carbides by Binder Jet 3D-Printing, phenolic resin binder impregnation and capillary liquid silicon infiltration. Ceram Int. 2019;45(14):18023-18029. doi: 10.1016/j.ceramint.2019.06.021
- Su Z, Zhao K, Ye Z, et al. Overcoming the penetration-saturation trade-off in binder jet additive manufacturing via rapid in situ curing. Addit Manuf. 2022;59:103157. doi: 10.1016/j.addma.2022.103157
- Dilip JJS, Miyanaji H, Lassell A, Starr TL, Stucker B. A novel method to fabricate TiAl intermetallic alloy 3D parts using additive manufacturing. Def Technol. 2017;13(2):72-76. doi: 10.1016/j.dt.2016.08.001
- Bai Y, Williams CB. An exploration of binder jetting of copper. Rapid Prototyp J. 2015;21(2):177-185. doi: 10.1108/RPJ-12-2014-0180
- Azhari A, Marzbanrad E, Yilman D, Toyserkani E, Pope MA. Binder-jet powder-bed additive manufacturing (3D printing) of thick graphene-based electrodes. Carbon. 2017;119:257-266. doi: 10.1016/j.carbon.2017.04.028
- Tarnita D, Berceanu C, Tarnita C. The three-dimensional printing - a modern technology used for biomedical prototypes. Mater Plastice. 2010;47(3):328-334.
- Barrera J, Morales CA, Álvarez C. New calcium sulphate powder-binder system for 3D printing. Dental Mater. 2016;32(1):34-35.
- Miyanaji H, Yang L. Equilibrium Saturation in Binder Jetting Additive Manufacturing Processes: Theoretical Model vs. Experimental Observeations. Texas: University of Texas at Austin; 2016
- Chen H, Zhao YF. Process parameters optimization for improving surface quality and manufacturing accuracy of binder jetting additive manufacturing process. Rapid Prototyp J. 2016;22(3):527-538. doi: 10.1108/RPJ-11-2014-0149
- Sen K, Mehta T, Sansare S, Sharifi L, Ma AWK, Chaudhuri B. Pharmaceutical applications of powder-based binder jet 3D printing process - a review. Adv Drug Deliv Rev. 2021;177:113943. doi: 10.1016/j.addr.2021.113943
- Shi K, Tan DK, Nokhodchi A, Maniruzzaman M. Drop-on-powder 3d printing of tablets with an anti-cancer drug, 5-fluorouracil. Pharmaceutics. 2019;11(4):150. doi: 10.3390/pharmaceutics11040150
- Sen K, Manchanda A, Mehta T, Ma AWK, Chaudhuri B. Formulation design for inkjet-based 3D printed tablets. Int J Pharm. 2020;584:119430. doi: 10.1016/j.ijpharm.2020.119430
- Norman J, Madurawe RD, Moore CMV, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017;108:39-50. doi: 10.1016/j.addr.2016.03.001
- Lu A, Duggal I, Daihom BA, Zhang Y, Maniruzzaman M. Unraveling the influence of solvent composition on Drop-on-Demand binder jet 3D printed tablets containing calcium sulfate hemihydrate. Int J Pharm. 2024;649:123652. doi: 10.1016/j.ijpharm.2023.123652
- Du W, Ren X, Pei Z, Ma C. Ceramic binder jetting additive manufacturing: A literature review on density. J Manuf Sci Eng. 2020;142(4):040801. doi: 10.1115/1.4046248
- Günther D, Mögele F. Additive manufacturing of casting tools using powder-binder- jetting technology. In: Shishkovsky IV, editor. New Trends in 3D Printing. London: InTech Open; 2016. doi: 10.5772/62532
- ExOne. 3D Materials and Binders. Available from: https:// www.exone.com/en-us/3d-printing-materials-and-binders/ sand
- Bredt JF, Anderson T. Method of Three Dimensional Printing. US Patent no 5902441; 1999.
- Bredt JF, Clark S, Gilchrist G. Three Dimensional Printing Material System and Method. US Patent 7087109; 2006.
- Mancuso E, Alharbi N, Bretcanu OA, et al. Three-dimensional printing of porous load-bearing bioceramic scaffolds. Proc Inst Mech Eng H. 2017;231(6):575-585. doi: 10.1177/0954411916682984
- Alharbi NHJ. Indirect Three Dimensional Printing of Apatite- Wollastonite Structures for Biomedical Applications. PhD Thesis, Newcastle University; 2016. Available from: https:// theses.ncl.ac.uk/jspui/handle/10443/3303
- Zhou Z, Lennon A, Buchanan F, McCarthy HO, Dunne N. Binder jetting additive manufacturing of hydroxyapatite powders: Effects of adhesives on geometrical accuracy and green compressive strength. Addit Manuf. 2020;36:101645. doi: 10.1016/j.addma.2020.101645
- Zhang ZF, Wang L, Zhang LT, Ma PF, Lu BH, Du CW. Binder jetting 3D printing process optimization for rapid casting of green parts with high tensile strength. China Foundry. 2021;18(4):335-343. doi: 10.1007/s41230-021-1057-z
- O’Donnell KP, Woodward WHH. Dielectric spectroscopy for the determination of the glass transition temperature of pharmaceutical solid dispersions. Drug Dev Ind Pharm. 2015;41(6):959-968. doi: 10.3109/03639045.2014.919314
- Carreno-Morelli E, Martinerie S, Bidaux JE. Granules for Three Dimensional Printing. Patent no EP05109045; 2005.
- Carreño-Morelli E, Rodriguez-Arbaizar M, Cardoso K, Nagaram AB, Girard H, Rey-Mermet S. 3D printing of titanium parts from titanium hydride powder by solvent jetting on granule beds. Int J Refract Hard Met. 2020;92:105276. doi: 10.1016/j.ijrmhm.2020.105276
- Carreño-Morelli E. A Comparative Study of Cemented Carbide Parts Produced by Solvent on Granules 3D-Printing (SG-3DP) Versus Press and Sinter. Int J Refract Met Hard Mater. 2021;97:105515.
- Carreño-Morelli E, Meylan L, Rodriguez-Arbaizar M, et al. Solvent-on-Granules 3D-Printing and Material Extrusion of Soft Magnetic Fe-6.5Si Alloy. In: Euro PM2023 Congress Proceedings. EPMA; 2023. doi: 10.59499/EP235762510
- Lehmann M, Kolb CG, Klinger F, Zaeh MF. Preparation, characterization, and monitoring of an aqueous graphite ink for use in binder jetting. Mater Des. 2021;207:109871. doi: 10.1016/j.matdes.2021.109871
- Derby B, Reis N. Inkjet printing of highly loaded particulate suspensions. MRS Bull. 2003;28(11):815-818. doi: 10.1557/mrs2003.230
- Elliott A, AlSalihi S, Merriman AL, Basti MM. Infiltration of nanoparticles into porous binder jet printed parts. Am J Eng Appl Sci. 2016;9(1):128-133. doi: 10.3844/ajeassp.2016.128.133
- Bai Y, Williams CB. The effect of inkjetted nanoparticles on metal part properties in binder jetting additive manufacturing. Nanotechnology. 2018;29(39):395706. doi: 10.1088/1361-6528/aad0bb
- Narra SP. Melt Pool Geometry and Microstructure Control across Alloys in Metal Based Additive Manufacturing Processes. PhD Thesis, Carnegie Mellon University; 2017.
- Tammas-Williams S, Todd I. Design for additive manufacturing with site-specific properties in metals and alloys. Scr Mater. 2017;135:105-110. doi: 10.1016/j.scriptamat.2016.10.030
- Chiang PJ, Davidson KP, Wheeler JM, Ong A, Erickson K, Seita M. Site-specific alloying through binder jet 3D printing. Mater Des. 2023;235:112384. doi: 10.1016/j.matdes.2023.112384
- Oropeza D, Roberts R, Hart AJ. A rapid development workflow for binder inks for additive manufacturing with application to polymer and reactive binder ink formulation. J Manuf Process. 2022;73:471-482. doi: 10.1016/j.jmapro.2021.10.068
- Sachs EM, Hadjiloucas C, Allen S, Yoo HJ. Metal and Ceramic Containing Parts Produced from Powder Using Binders Derived from Salt. US Patent 6508980; 2003.
- Bai Y, Williams CB. Binder jetting additive manufacturing with a particle-free metal ink as a binder precursor. Mater Des. 2018;147:146-156. doi: 10.1016/j.matdes.2018.03.027
- Zhang L, Yang X, Ran S, Zhang L, Hu C, Wang H. Water-soluble sand core made by binder jetting printing with the binder of potassium carbonate solution. Inter Metalcast. 2023;17(3):2286-2297. doi: 10.1007/s40962-022-00940-4