AccScience Publishing / MSAM / Volume 4 / Issue 4 / DOI: 10.36922/MSAM025220043
Cite this article
4
Download
91
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ORIGINAL RESEARCH ARTICLE

Effects of titanium diboride nanoparticles on the microstructure and mechanical properties of VZh159 nickel-based superalloy fabricated using selective laser melting

Igor Polozov1* Anton Zolotarev1 Alexey Barabash1 Anna Gracheva1 Victoria Nefyodova1 Anatoly Popovich1
Show Less
1 Institute of Mechanical Engineering, Materials, and Transport, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
MSAM 2025, 4(4), 025220043 https://doi.org/10.36922/MSAM025220043
Received: 30 May 2025 | Accepted: 15 July 2025 | Published online: 10 September 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Additive manufacturing of nickel-based superalloys such as VZh159 using selective laser melting (SLM) enables the fabrication of complex geometries for high-temperature applications, but often leads to anisotropic microstructures, residual stresses, and cracking – prompting interest in ceramic nanoparticle reinforcement. This study investigates the effects of titanium diboride (TiB2) nanoparticle additions (0.5 – 2.0 wt.%) on the microstructure, density, and mechanical properties of VZh159 nickel-based superalloy fabricated using SLM. TiB2 additions effectively refined the dendritic structure from ~1.65 μm to ~0.5 μm and increased microhardness from 290 HV to 349 HV, but drastically reduced ductility from 35.9% to 3 – 5% at room temperature. Post-process heat treatment (solution at 1,100°C + two-stage aging at 800°C/700°C) transformed the dendritic structure into equiaxed grains; however, composites with >0.5% TiB2 exhibited severe grain boundary embrittlement due to boride segregation. Optimal SLM parameters shifted toward higher energy densities (from 85 – 120 to 130 – 160 J/mm3) with increasing TiB2 content. The study reveals that in situ transformation of TiB2 into complex chromium boride phases during SLM, while beneficial for structure refinement, creates a brittle grain boundary network that is detrimental to ductility. These findings provide critical insights for the development of particle-reinforced superalloys for additive manufacturing.

Graphical abstract
Keywords
Selective laser melting
VZh159 superalloy
Titanium diboride nanoparticles
Microstructure refinement
Mechanical properties
Funding
This study was supported by the Russian Science Foundation (grant no. 23-79-30004; https://rscf.ru/ project/23-79-30004/).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components - process, structure and properties. Prog Mater Sci. 2018;92:112-224. doi: 10.1016/j.pmatsci.2017.10.001
  2. Wohlers T, Campbell I, Diegel O, Huff R, Kowen J. Wohlers Report 2023: 3D Printing and Additive Manufacturing Global State of the Industry; 2023.
  3. Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016;117:371-392. doi: 10.1016/j.actamat.2016.07.019
  4. Yap CY, Chua CK, Dong ZL, et al. Review of selective laser melting: Materials and applications. Appl Phys Rev. 2015;2(4):041101. doi: 10.1063/1.4935926
  5. Dahmen T. Additive Manufacturing for Fuel Injectors: Design, Processes and Materials [Thesis]; 2021.
  6. Han P. Additive design and manufacturing of jet engine parts. Engineering. 2017;3(5):648-652.doi: 10.1016/J.ENG.2017.05.017
  7. Kyarimov RR, Statnik ES, Sadykova IA, Frantsuzov AA, Salimon AI, Korsunsky AM. Factorial-experimental investigation of LPBF regimes for VZh159 nickel superalloy grain structure and structural strength optimization. Front Mater. 2024;11:1470651. doi: 10.3389/fmats.2024.1470651
  8. Evgenov AG, Gorbovets MA, Prager SM. Structure and mechanical properties of heat resistant alloys VZh159 and EP648, prepared by selective laser fusing. Aviat Mater Technol. 2016;43(S1):8-15. doi: 10.18577/2071-9140-2016-0-S1-8-15
  9. Solncev SST, Shvagireva VV, Isaeva NV, Solovyeva GA. High temperature coating for protection of high-strength complex alloyed of nickel alloys of high-temperature gas corrosion. Proceed VIAM. 2014;(6):4-4. doi: 10.18577/2307-6046-2014-0-6-4-4
  10. Chen Z, Chen S, Wei Z, et al. Anisotropy of nickel-based superalloy K418 fabricated by selective laser melting. Prog Nat Sci Mater Int. 2018;28(4):496-504. doi: 10.1016/j.pnsc.2018.07.001
  11. Calandri M, Yin S, Aldwell B, Calignano F, Lupoi R, Ugues D. Texture and microstructural features at different length scales in inconel 718 produced by selective laser melting. Materials. 2019;12(8):1293. doi: 10.3390/ma12081293
  12. Mercelis P, Kruth J. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J. 2006;12(5):254-265. doi: 10.1108/13552540610707013
  13. Tucho WM, Cuvillier P, Sjolyst-Kverneland A, Hansen V. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Mater Sci Eng. 2017;689:220-232. doi: 10.1016/j.msea.2017.02.062
  14. Zhang D, Niu W, Cao X, Liu Z. Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy. Mater Sci Eng. 2015;644:32-40. doi: 10.1016/j.msea.2015.06.021
  15. Gu D, Zhang H, Dai D, Xia M, Hong C, Poprawe R. Laser additive manufacturing of nano-TiC reinforced Ni-based nanocomposites with tailored microstructure and performance. Compos B Eng. 2019;163:585-597. doi: 10.1016/j.compositesb.2018.12.146
  16. Ning J, Lan Q, Zhu L, et al. Microstructure and mechanical properties of SiC-reinforced Inconel 718 composites fabricated by laser cladding. Surf Coat Technol. 2023;463:129514. doi: 10.1016/j.surfcoat.2023.129514
  17. Li M, Wang L, Yang H, Zhang S, Lin X, Huang W. Microstructure and mechanical properties of Y2O3 strengthened Inconel 625 alloy fabricated by selective laser melting. Mater Sci Eng A. 2022;854:143813. doi: 10.1016/j.msea.2022.143813
  18. Márquez-Martínez P, Martínez-Franco E, Cuenca-Alvarez R, et al. Processing and characterization of Inconel 718/Al2O3 nanocomposite powder fabricated by different techniques. Powder Technol. 2022;398:117124. doi: 10.1016/j.powtec.2022.117124
  19. Basu B, Raju GB, Suri AK. Processing and properties of monolithic TiB2 based materials. Int Mater Rev. 2006;51(6):352-374. doi: 10.1179/174328006X102529
  20. Zhang B, Bi G, Nai S, Nan-Sun C, Wei J. Microhardness and microstructure evolution of TiB2 reinforced Inconel 625/ TiB2 composite produced by selective laser melting. Opt Laser Technol. 2016;80:186-195. doi: 10.1016/j.optlastec.2016.01.010
  21. McCartney DG. Grain refining of aluminium and its alloys using inoculants. Int Mater Rev. 1989;34(1):247-260. doi: 10.1179/imr.1989.34.1.247
  22. Greer AL, Bunn AM, Tronche A, Evans PV, Bristow DJ. Modelling of inoculation of metallic melts: Application to grain refinement of aluminium by Al-Ti-B. Acta Mater. 2000;48(11):2823-2835. doi: 10.1016/S1359-6454(00)00094-X
  23. Zhang Z, Han Q, Liu Z, et al. Combined effects of heat treatment and TiB2 content on the high-temperature tensile performance of TiB2-modified Ni-based GH3230 alloy processed by laser powder bed fusion. Mater Sci Eng A. 2022;861:144379. doi: 10.1016/j.msea.2022.144379
  24. Bae JS, Tekoglu E, Alrizqi M, et al. Additive manufacturing of strong and ductile In939+TiB2 by laser powder bed fusion. Mater Sci Eng A. 2025;939:148446. doi: 10.1016/j.msea.2025.148446
  25. Kou S. Solidification and liquation cracking issues in welding. JOM. 2003;55(6):37-42. doi: 10.1007/s11837-003-0137-4
  26. Zhang Z, Han Q, Liu Z, et al. Influence of the TiB2 content on the processability, microstructure and high-temperature tensile performance of a Ni-based superalloy by laser powder bed fusion. J Alloys Compd. 2022;908:164656. doi: 10.1016/j.jallcom.2022.164656
  27. Massalski TB, editor. Desk Handbook: Phase Diagrams for Binary Alloys. 2nd ed. United States: ASM International; 2010. Available from: https://ru.scribd.com/ document/381086022/desk-handbook-phase-diagrams-for-binary-alloys-2010 [Last accessed on 2025 May 30].
  28. Kablov EN, Evgenov AG, Mazalov IS, Shurtakov SV, Zaitsev DV, Prager SM. Evolution of the structure and properties of high-chromium heat-resistant VZh159 alloy prepared by selective laser melting: Part II. Inorg Mater Appl Res. 2020;11(1):17-24. doi: 10.1134/S2075113320010165
  29. Kablov EN, Evgenov AG, Mazalov IS, Shurtakov SV, Zaitsev DV, Prager SM. Evolution of the structure and properties of high-chromium heat-resistant VZh159 alloy prepared by selective laser melting: Part I. Inorg Mater Appl Res. 2020;11(1):7-16. doi: 10.1134/S2075113320010153
  30. Carter LN, Wang X, Read N, et al. Process optimisation of selective laser melting using energy density model for nickel based superalloys. Mater Sci Technol. 2016;32(7):657-661. doi: 10.1179/1743284715Y.0000000108
  31. Yan Q, Song B, Shi Y. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting. J Mater Sci Technol. 2020;41:199-208. doi: 10.1016/j.jmst.2019.08.049
  32. Dong BX, Li Q, Wang ZF, et al. Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunable in-situ TiB2 particles with specific spatial distribution. Compos B Eng. 2021;217:108912. doi: 10.1016/j.compositesb.2021.108912
  33. Li X, Yi D, Liu B, et al. Graphene-strengthened inconel 625 alloy fabricated by selective laser melting. Mater Sci Eng A. 2020;798:140099. doi: 10.1016/j.msea.2020.140099
  34. Zheng Y, Liu F, Zhang W, et al. The microstructure evolution and precipitation behavior of TiB2/Inconel 718 composites manufactured by selective laser melting. J Manuf Process. 2022;79:510-519. doi: 10.1016/j.jmapro.2022.04.070
  35. Okamoto H. In: Massalski TB, editor. Desk Handbook: Phase Diagrams for Binary Alloys. 2nd ed. 2010. Available from: https://www.scribd.com/document/381086022/desk-handbook-phase-diagrams-for-binary-alloys-2010 [Last accessed on 2025 May 30].
  36. Zhang Z, Han Q, Liu Z, et al. Cracking behaviour and its suppression mechanisms with TiB2 additions in the laser additive manufacturing of solid-solution-strengthened Ni-based alloys. Compos B Eng. 2023;266:111023. doi: 10.1016/j.compositesb.2023.111023
  37. Chalmers B. Principles of solidification. In: Applied Solid State Physics. Belin, US: Springer; 1970. p. 161-170. doi: 10.1007/978-1-4684-1854-5_5
  38. StJohn DH, Qian M, Easton MA, Cao P. The interdependence theory: The relationship between grain formation and nucleant selection. Acta Mater. 2011;59(12): 4907-4921. doi: 10.1016/j.actamat.2011.04.035
  39. Liu CT, White CL, Horton JA. Effect of boron on grain-boundaries in Ni3Al†. Acta Metallurgica. 1985;33(2): 213-229. doi: 10.1016/0001-6160(85)90139-7
  40. Shigesato G, Fujishiro T, Hara T. Grain boundary segregation behavior of boron in low-alloy steel. Metallurgica Mater Trans A. 2014;45(4):1876-1882. doi: 10.1007/s11661-013-2155-3
  41. Miller MK, Babu SS, Burke MG. Intragranular precipitation in alloy 718. Mater Sci Eng A. 1999;270(1):14-18. doi: 10.1016/S0921-5093(99)00235-X
  42. Chen Y, Lu F, Zhang K, et al. Investigation of dendritic growth and liquation cracking in laser melting deposited Inconel 718 at different laser input angles. Mater Des. 2016;105:133-141. doi: 10.1016/j.matdes.2016.05.034
  43. Kontis P, Chauvet E, Peng Z, et al. Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys. Acta Mater. 2019;177:209-221. doi: 10.1016/j.actamat.2019.07.041
  44. Zhang C, Zhang F, Chen S, Cao W. Computational thermodynamics aided high-entropy alloy design. JOM. 2012;64(7):839-845. doi: 10.1007/s11837-012-0365-6
Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing