Microstructure evolution and mechanical properties of nuclear zircaloy-4 alloy fabricated by laser powder bed fusion at varying laser energy densities

Zircaloy-4 (Zr-4) is widely used in reactor fuel assemblies due to its low thermal neutron absorption properties, superior mechanical properties, and excellent corrosion resistance. Laser powder bed fusion (LPBF) technique provides potential solutions to meet the requirements of fuel assemblies, balancing complex structures with outstanding performance. Therefore, it is of great significance to investigate the microstructural characteristics and mechanical properties of Zr-4 alloy processed using LPBF through a complex solidification process. In this work, the microstructure evolution and mechanical properties of Zr-4 alloy processed under different laser volumetric energy densities (Ev) were investigated, based on an optimized process window for high relative densities of as-built parts. The LPBF-processed Zr-4 alloy exhibited a microstructure of epitaxial columnar β-grains containing highly dislocated α-laths, forming Widmanstätten and basketweave structures. As Ev increased, the width of prior β-grains and α-laths increased by 21.7% and 14.3%, respectively, while the kernel average misorientation and low-angle grain boundary fractions decreased by 40.3% and 46.8%, respectively, indicating a reduction in substructural dislocation density due to lower cooling rates. The medium-Ev specimen demonstrated superior metallurgical quality, featuring approximately 1% higher content of ~57° twin boundaries, along with grain refinement and dislocation strengthening, achieving the highest ultimate tensile strength (725.5 MPa) – approximately 70% higher than the American Society for Testing and Materials’ standard. Nevertheless, limited slip system activation in the hexagonal close-packed structure, deformation constraints from basketweave morphology, and process-induced defects, such as unmelted powder in low-Ev specimens and pores in high-Ev specimens, resulted in reduced ductility. This work provides guidance for tailoring the microstructure and achieving high mechanical properties in LPBF-processed zirconium fuel assemblies.

- Zinkle SJ, Was GS. Materials challenges in nuclear energy. Acta Mater. 2013;61(3):735-758. doi: 10.1016/j.actamat.2012.11.004
- Motta AT, Couet A, Comstock RJ. Corrosion of zirconium alloys used for nuclear fuel cladding. Annu Rev Mater Res. 2015;45(1):311-343. doi: 10.1146/annurev-matsci-070214-020951
- Nagano H, Kajimura H, Yamanaka K. Corrosion resistance of zirconium and zirconium-titanium alloy in hot nitric acid. Mater Sci Eng A. 1995;198(1-2):127-134. doi: 10.1016/0921-5093(95)80067-5
- Massih AR, Dahlback V, Limback M, Andersson T, Lehtinen B. Effect of beta-to-alpha phase transition rate on corrosion behaviour of zircaloy. Corros Sci. 2006;48(5):1154-1181. doi: 10.1016/j.corsci.2005.05.010
- Parga CJ, Van Rooyen IJ, Coryell BD, et al. Room temperature mechanical properties of electron beam welded Zircaloy-4 sheet. J Mater Process Technol. 2017;241:73-85. doi: 10.1016/j.jmatprotec.2016.11.001
- He W, Chen X, Liu N, et al. Cryo-rolling enhanced inhomogeneous deformation and recrystallization grain growth of a zirconium alloy. J Alloys Compd. 2017;699:160-169. doi: 10.1016/j.jallcom.2016.12.300
- Gu D, Shi X, Poprawe R, Bourell DL, Setchi R, Zhu J. Material-structure-performance integrated laser-metal additive manufacturing. Science. 2021;372(6545):eabg1487. doi: 10.1126/science.abg1487
- Yao B, Kang N, Li X, et al. Toward understanding the microstructure characteristics, phase selection and magnetic properties of laser additive manufactured Nd-Fe-B permanent magnets. Int J Extreme Manuf. 2023;6(1):015002. doi: 10.1088/2631-7990/ad0472
- Rochus P, Plesseria JY, Van Elsen M, Kruth JP, Carrus R, Dormal T. New applications of rapid prototyping and rapid manufacturing (RP/RM) technologies for space instrumentation. Acta Astronaut. 2007;61(1-6):352-359. doi: 10.1016/j.actaastro.2007.01.004
- Liu Y, Padmanabhan J, Cheung B, et al. Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses. Sci Rep. 2016;6:26950. doi: 10.1038/srep26950
- Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos Part B Eng. 2018;143:172-196. doi: 10.1016/j.compositesb.2018.02.012
- Qu Z, Zhang Z, Liu R, et al. High fatigue resistance in a titanium alloy via near-void-free3D printing. Nature. 2024;626(8001):999-1004. doi: 10.1038/s41586-024-07048-1
- Sing SL, Yeong WY. Laser powder bed fusion for metal additive manufacturing: Perspectives on recent developments. Virtual Phys Prototy. 2020;15(3):359-370. doi: 10.1080/17452759.2020.1779999
- Feng Z, Wang G, Hao Z, et al. Influence of scale effect on surface morphology in laser powder bed fusion technology. Virtual Phys Prototy. 2024;19(1):e2336157. doi: 10.1080/17452759.2024.2336157
- Song C, Zou Z, Yan Z, et al. Microstructural and mechanical property evolution of a nuclear Zirconium-4 alloy fabricated via laser powder bed fusion and annealing heat treatment. Virtual Phys Prototy. 2023;18(1):e2189597. doi: 10.1080/17452759.2023.2189597
- Liu H, Yu H, Guo C, et al. Review on fatigue of additive manufactured metallic alloys: Microstructure, performance, enhancement, and assessment methods. Adv Mater. 2023;36(17):2306570. doi: 10.1002/adma.202306570
- Tan C, Weng F, Sui S, Chew Y, Bi G. Progress and perspectives in laser additive manufacturing of key aeroengine materials. Int J Mach Tool Manuf. 2021;170:103804. doi: 10.1016/j.ijmachtools.2021.103804
- Sun X, Liu D, Zhou W, Nomura N, Tsutsumi Y, Hanawa T. Effects of process parameters on the mechanical properties of additively manufactured Zr-1Mo alloy builds. J Mech Behav Biomed Mater. 2020;104:103655. doi: 10.1016/j.jmbbm.2020.103655
- Torun G, Momose T, Sun X, et al. Microstructure and mechanical properties of MRI-compatible Zr-9Nb-3Sn alloy fabricated by a laser powder bed fusion process. Addit Manuf. 2022;52:102647. doi: 10.1016/j.addma.2022.102647
- Kondo R, Nomura N, Suyalatu, Tsutsumi Y, Doi H, Hanawa T. Microstructure and mechanical properties of as-castZr-Nb alloys. Acta Biomater. 2011;7(12):4278-4284. doi: 10.1016/j.actbio.2011.07.020
- Slotwinski JA, Garboczi EJ. Metrology needs for metal additive manufacturing powders. JOM. 2015;67(3):538-543. doi: 10.1007/s11837-014-1290-7
- Strondl A, Lyckfeldt O, Brodin H, Ackelid U. Characterization and control of powder properties for additive manufacturing. JOM. 2015;67(3):549-554. doi: 10.1007/s11837-015-1304-0
- ASTM. Standard Test Methods for Tension Testing of Metallic Materials. United States: ASTM International, West Conshohocken, PA; 2024.
- Chai L, Chen B, Wang S, Zhang Z, Murty KL. Microstructural, textural and hardness evolution of commercially pure Zr surface-treated by high current pulsed electron beam. Appl Surf Sci. 2016;390:430-434. doi: 10.1016/j.apsusc.2016.08.128
- Yue M, Liu Y, He G, Lian L. Microstructure and mechanical performance of zirconium, manufactured by selective laser melting. Mater Sci Eng A. 2022;840:142900. doi: 10.1016/j.msea.2022.142900
- Yang J, Yu H, Yin J, Gao M, Wang Z, Zeng X. Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting. Mater Des. 2016;108:308-318. doi: 10.1016/j.matdes.2016.06.117
- Li S, Lan X, Wang Z, Mei S. Microstructure and mechanical properties of Ti-6.5Al-2Zr-Mo-V alloy processed by laser powder bed fusion and subsequent heat treatments. Addit Manuf. 2021;48:102382. doi: 10.1016/j.addma.2021.102382
- Chai L, Chen B, Zhou Z, Murty KL, Ma Y, Huang W. A special twin relationship or a common Burgers misorientation between α plates after β quenching in Zr alloy? Mater Charact. 2015;104:61-65. doi: 10.1016/j.matchar.2015.04.008
- Chao Q, Hodgson PD, Beladi H. Ultrafine grain formation in a Ti-6Al-4V alloy by thermomechanical processing of a martensitic microstructure. Metall Mater Trans A. 2014;45(5):2659-2671. doi: 10.1007/s11661-014-2205-5
- Yang J, Yu H, Wang Z, Zeng X. Effect of crystallographic orientation on mechanical anisotropy of selective laser melted Ti-6Al-4V alloy. Mater Charact. 2017;127:137-145. doi: 10.1016/j.matchar.2017.01.014
- Rui SS, Han QN, Wang X, et al. Correlations between two EBSD-based metrics kernel average misorientation and image quality on indicating dislocations of near-failure low alloy steels induced by tensile and cyclic deformations. Mater Today Commun. 2021;27:102445. doi: 10.1016/j.mtcomm.2021.102445
- Liao Z, Luan B, Zhang X, Liu R, Murty KL, Liu Q. The effects of increasing deformation strain on the microstructural evolution of a metastable β-Zr alloy. J Alloys Compd. 2019;800:208-218. doi: 10.1016/j.jallcom.2019.05.334
- Woo OT, Griffiths M. The role of Fe on the solubility of Nb in α-Zr. J Nucl Mater. 2009;384(1):77-80. doi:10.1016/j.jnucmat.2008.10.004
- Thuvander M, Andrén HO. Methods of quantitative matrix analysis of Zircaloy-2. Ultramicroscopy. 2011;111(6):711-714. doi: 10.1016/j.ultramic.2010.12.008
- Okamoto H. Sn-Zr (tin-zirconium). J Phase Equilib Diffus. 2010;31(4):411-412. doi: 10.1007/s11669-010-9734-4
- Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification. Acta Metall. 1986;34(5):823-830. doi: 10.1016/0001-6160(86)90056-8
- Tan C, Zou J, Wang D, Ma W, Zhou K. Duplex strengthening via SiC addition and in-situ precipitation in additively manufactured composite materials. Compos Part B Eng. 2022;236:109820. doi: 10.1016/j.compositesb.2022.109820
- Wang H, Chao Q, Yang L, et al. Introducing transformation twins in titanium alloys: An evolution of α-variants during additive manufacturing. Mater Res Lett. 2020;9(3):119-126. doi: 10.1080/21663831.2020.1850536
- Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science. 2009;324(5925):349-352. doi: 10.1126/science.1159610
- Yan Q, Chen B, Kang N, et al. Comparison study on microstructure and mechanical properties of Ti-6Al-4V alloys fabricated by powder-based selective-laser-melting and sintering methods. Mater Charact. 2020;164:110358. doi: 10.1016/j.matchar.2020.110358
- Yang T, Liu T, Liao W, et al. Laser powder bed fusion of AlSi10Mg: Influence of energy intensities on spatter and porosity evolution, microstructure and mechanical properties. J Alloys Compd. 2020;849:156300. doi: 10.1016/j.jallcom.2020.156300
- Hutchinson WB, Barnett MR. Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals. Scrip Mater. 2010;63(7):737-740. doi: 10.1016/j.scriptamat.2010.05.047