AccScience Publishing / MSAM / Volume 4 / Issue 4 / DOI: 10.36922/MSAM025220037
ORIGINAL RESEARCH ARTICLE

3D-printing advanced ZIF-67@aluminum phosphate/Al2O3 ceramic catalyst by aluminum phosphate-assisted surface bonding

Yuxiong Guo1,2† Shengcai Wu2,3† Peiqing La1* Dekai Zhou4 Zhongying Ji2* Xiaolong Wang2,3
Show Less
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metal, Lanzhou University of Technology, Lanzhou, Gansu, China
2 State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
3 School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, China
4 State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, Heilongjiang, China
†These authors contributed equally to this work.
MSAM 2025, 4(4), 025220037 https://doi.org/10.36922/MSAM025220037
Received: 27 May 2025 | Revised: 30 June 2025 | Accepted: 4 July 2025 | Published online: 21 August 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The 3D-printed ceramic catalyst has a broad range of application prospects. Notably, the ZIF-67-loaded 3D-printed ceramic catalyst demonstrates exceptional catalytic performance and a high degree of structural design flexibility. However, the ceramics prepared by the direct loading of ZIF-67 onto ceramic substrates during 3D printing show insufficient catalytic stability. In this study, aluminum phosphate (AP) was used as a binder to enhance the adhesion between ZIF-67 and the Al2O3 ceramic support surface, thereby reducing ZIF-67 shedding and preventing the degradation of the catalytic performance of the 3D-printed ceramic catalyst. Consequently, after six cycles, the conversion rate of 4-nitrophenol with ZIF-67/Al2O3 decreased by 31%, whereas that with ZIF-67@AP/Al2O3 decreased by only 5.4%. The reasons for the high catalytic stability of ZIF-67@AP/Al2O3 were comprehensively and meticulously investigated. The proposed synthesis strategy, which utilizes AP to facilitate the bonding of ZIF-67 to the Al2O3 ceramic scaffold, offers a novel approach for enhancing the catalytic stability of 3D-printed ceramic catalysts loaded with active species through self-growth methods. This approach is expected to guide future research on efficient catalytic systems for various applications.

Graphical abstract
Keywords
Direct ink writing
Ceramic catalyst
ZIF-67
3D printing
Funding
The authors gratefully acknowledge the financial support from the National Key Research and Development Program of China (2023YFE0209900), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0470303), the National Key Research and Development Program of China (2022YFB4600101), the Central Government to Guide Local Technology Development Program (23ZYQA315), and the Oasis Scholar of Shihezi University.
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
  1. Panda S, Maity T, Sarkar S, Manna AK, Mondal J, Haldar R. Diffusion-programmed catalysis in nanoporous material. Nat Commun. 2025;16(1):1231. doi: 10.1038/s41467-025-56575-6

 

  1. Johnston W, Godakawela J, Gatti C, Keshavanarayana S, Sharma B. Fibro-porous materials: 3D-printed hybrid porous materials for multifunctional applications. Addit Manuf. 2024;94:104470. doi: 10.1016/j.addma.2024.104470

 

  1. Devi S, Sahoo N, Muthukumar P. Impact of porous materials on the performance of a biogas porous burner. Biomass Convers Biorefine. 2025;15(3):3691-3705. doi: 10.1007/s13399-023-05240-3

 

  1. Uvarov VI, Kapustin RD, Kirillov AO. Nanoporous high-temperature filters based on Ti–Al ceramic SHS materials. Ceram Int. 2020;46(14):23180-23185. doi: 10.1016/j.ceramint.2020.06.098

 

  1. Omerašević M, Pavkov V, Rosić M, et al. Fabrication of porous anorthite ceramic insulation using solid wastes. Materials. 2024;17:1478. doi: 10.3390/ma17071478

 

  1. Wang H, Liu X, Niu P, Wang S, Shi J, Li L. Porous two-dimensional materials for photocatalytic and electrocatalytic applications. Matter. 2020;2(6):1377-1413. doi: 10.1016/j.matt.2020.04.002

 

  1. Prakash MO, Raghavendra G, Ojha S, Panchal M, Gara DK. Investigation of tribological properties of biomass developed porous nano activated carbon composites. Wear. 2021;466-467:203523. doi: 10.1016/j.wear.2020.203523

 

  1. Schneider M, Rodríguez-Castellón E, Guerrero-Pérez MO, Hotza D, De Noni Junior A, Muniz Moreira RFB. Hierarchically porous composites containing mining tailings-based geopolymer and zeolite 13X: Application for carbon dioxide sequestration. Adsorption. 2024;31(1):21. doi: 10.1007/s10450-024-00569-1

 

  1. Dassouki K, Dasgupta S, Dumas E, Steunou N. Interfacing metal organic frameworks with polymers or carbon-based materials: From simple to hierarchical porous and nanostructured composites. Chem Sci. 2023;14(45):12898-12925. doi: 10.1039/D3SC03659F

 

  1. Woignier T, Duffours L, Primera J. Porous glasses from aerogels: From organic liquid to mineral materials. J Sol-Gel Sci Technol. 2022;102(3):589-595. doi: 10.1007/s10971-022-05772-6

 

  1. Chen MJ, Chang GG, Chen LY, et al. Multifunctional Pd/MOFs@MOFs confined core-shell catalysts with wrinkled surface for selective satalysis. Chem Asian J. 2021;16(22):3743-3747. doi: 10.1002/asia.202100922

 

  1. Luo H, Gu Y, Liu D, Sun Y. Advances in oxidative desulfurization of fuel oils over MOFs-based heterogeneous catalysts. Catalysts. 2021;11:1557. doi: 10.3390/catal11121557

 

  1. Zhang S, Fu H, Liu H, et al. Synergetic catalysis of ligand connecting MOFs@MOFs composites in electrochemical detection of P-Chlorophenols. Micropor Mesopor Mater. 2023;360:112726. doi: 10.1016/j.micromeso.2023.112726.

 

  1. Tong H, Zhu A, Chen G, Tong Z, Wang J. Review on the synthesis, construction and photocatalytic applications of double-ligand MOFs. Chem Eng J. 2025;508:161068. doi: 10.1016/j.cej.2025.161068

 

  1. Natarajan S, Manna K. Bifunctional MOFs in heterogeneous catalysis. ACS Organ Inorgan Au. 2024;4(1):59-90. doi: 10.1021/acsorginorgau.3c00033

 

  1. Wang Y, Peng C, Jiang T, Li X. Research progress of defect-engineered UiO-66(Zr) MOFs for photocatalytic hydrogen production. Front Energy. 2021;15(3):656-666. doi: 10.1007/s11708-021-0765-9

 

  1. Qian Y, Zhang F, Pang H. A review of MOFs and their composites-based photocatalysts: Synthesis and applications. Adv Funct Mater. 2021;31(37):2104231. doi: 10.1002/adfm.202104231

 

  1. Zhang W, Huang W, Wu B, Yang J, Jin J, Zhang S. Excitonic effect in MOFs-mediated photocatalysis: Phenomenon, characterization techniques and regulation strategies. Coordinat Chem Rev. 2023;491:215235. doi: 10.1016/j.ccr.2023.215235

 

  1. Li Y, Wang Y, Fan W, Sun D. Flexible metal-organic frameworks for gas storage and separation. Dalton Trans. 2022;51(12):4608-4618. doi: 10.1039/D1DT03842G

 

  1. De D, Sahoo P. The impact of MOFs in pH-dependent drug delivery systems: Progress in the last decade. Dalton Trans. 2022;51(26):9950-9965. doi: 10.1039/D2DT00994C

 

  1. Chandio I, Ai Y, Wu L, Liang Q. Recent progress in MOFs-based nanozymes for biosensing. Nano Res. 2024;17(1):39-64. doi: 10.1007/s12274-023-5770-3

 

  1. Xu J, Zhong M, Chen X, Wang C, Lu X. One-dimensional MOFs-based and their-derived fascinating electrocatalysts for water electrolysis. Sep Purif Technol. 2023;320:124184. doi: 10.1016/j.seppur.2023.124184

 

  1. Sun D, Jang S, Yim SJ, Ye L, Kim DP. Metal doped core-shell metal-organic frameworks@covalent organic frameworks (MOFs@COFs) hybrids as a novel photocatalytic platform. Adv Funct Mater. 2018;28(13):1707110. doi: 10.1002/adfm.201707110

 

  1. Jiang T, Wang X, Zhang J, Mai Y, Chen J. Highly efficient MnOx catalysts derived from Mn-MOFs for chlorobenzene oxidation: The influence of MOFs precursors, oxidant and doping of Ce metal. Mol Catal. 2023;551:113653. doi: 10.1016/j.mcat.2023.113653

 

  1. Zhao X, He X, Chen B, Yin F, Li G. MOFs derived metallic cobalt-zinc oxide@nitrogen-doped carbon/carbon nanotubes as a highly-efficient electrocatalyst for oxygen reduction reaction. Appl Surf Sci. 2019;487:1049-1057. doi: 10.1016/j.apsusc.2019.05.182

 

  1. Hu L, Xu W, Jiang Q, et al., Recent progress on CO2 cycloaddition with epoxide catalyzed by ZIFs and ZIFs-based materials. J CO2 Utiliz. 2024;81:102726. doi: 10.1016/j.jcou.2024.102726

 

  1. Xu W, Wang J, Zhang P, et al. Hierarchical ZIFs@Al2O3 composite materials as effective heterogeneous catalysts. Micropor Mesopor Mater. 2020;297:110009. doi: 10.1016/j.micromeso.2020.110009

 

  1. Li X, Yuan L, Li M, et al. Ag-doped hollow ZIFs-derived Si@C composite based on waste silicon for lithium-ion battery anodes. J Am Ceram Soc. 2025;108:e20568. doi: 10.1111/jace.20568

 

  1. Cheng N, Ren L, Xu X, Du Y, Dou SX. Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts. Adv Energy Mater. 2018;8(25):1801257. doi: 10.1002/aenm.201801257

 

  1. Packirisamy V, Arularasu MV. Efficient synthesis of cobalt tungstate/ZIF-67 nanocomposites for enhanced energy storage application. Ionics. 2024;30(12):8727-8739. doi: 10.1007/s11581-024-05885-8

 

  1. Sarker T, Tahmid I, Sarker RK, et al. ZIF-67-based materials as adsorbent for liquid phase adsorption-a review. Polyhedron. 2024;260:117069. doi: 10.1016/j.poly.2024.117069

 

  1. Weiler JP. A review of magnesium die-castings for closure applications. J Magnes Alloys. 2019;7(2):297-304. doi: 10.1016/j.jma.2019.02.005

 

  1. Novák P. Advanced powder metallurgy technologies. Materials. 2020;13:1742. doi: 10.3390/ma13071742

 

  1. Zhu C, Gemeda HB, Duoss EB, Spadaccini CM. Toward multiscale, multimaterial 3D printing. Adv Mater. 2024;36(34):2314204. doi: 10.1002/adma.202314204

 

  1. Ji Z, Xu B, Su Z, et al, Advanced vat photopolymerization 3D printing of silicone rubber with high precision and superior stability. Int J Extrem Manuf. 2025;7:025001. doi: 10.1088/2631-7990/ad9dc0

 

  1. Yang L, Zeng X, Ditta A, Feng B, Su L, Zhang Y. Preliminary 3D printing of large inclined-shaped alumina ceramic parts by direct ink writing. J Adv Ceram. 2020;9(3):312-319. doi: 10.1007/s40145-020-0369-6

 

  1. Xu X, Zhang J, Jiang P, et al. Direct ink writing of aluminum-phosphate-bonded Al2O3 ceramic with ultra-low dimensional shrinkage. Ceram Int. 2022;48(1):864-871.doi: 10.1016/j.ceramint.2021.09.168

 

  1. Ying Y, Browne MP, Pumera M. Metal-organic-frameworks on 3D-printed electrodes: in situ electrochemical transformation towards the oxygen evolution reaction. Sustain Energy Fuels. 2020;4(7):3732-3738. doi: 10.1039/D0SE00503G

 

  1. Ju Y, Zhang J, Cai Q, et al. Rotary-angle 3D printing multilayer membrane dead-end filtration for rapid and highly efficient water treatment. Chem Eng J. 2023;453:139969. doi: 10.1016/j.cej.2022.139969

 

  1. Choe D, Patil K, Kim SW, et al. ZIF-67 nanostructures anchored on 3D graphene sheets: A non-noble electrocatalyst for efficient oxygen evolution reaction. ACS Appl Energy Mater. 2024;7(15):6499-6506. doi: 10.1021/acsaem.4c01181

 

  1. Li Y, Chen L, Hong L, Ran K, Zhan Y, Chen Q. Fabrication of porous silicon carbide ceramics at low temperature using aluminum dihydrogen phosphate as binder. J Alloys Comp. 2019;785:838-845. doi: 10.1016/j.jallcom.2019.01.114

 

  1. Qian J, Sun F, Qin L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater Lett. 2012;82:220-223. doi: 10.1016/j.matlet.2012.05.077

 

  1. Wei X, Li N, Zhang X. Co/CoO/C@B three-phase composite derived from ZIF67 modified with NaBH4 solution as the electrocatalyst for efficient oxygen evolution. Electrochim Acta. 2018;264:36-45. doi: 10.1016/j.electacta.2018.01.006
Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing