3D-printing advanced ZIF-67@aluminum phosphate/Al2O3 ceramic catalyst by aluminum phosphate-assisted surface bonding

The 3D-printed ceramic catalyst has a broad range of application prospects. Notably, the ZIF-67-loaded 3D-printed ceramic catalyst demonstrates exceptional catalytic performance and a high degree of structural design flexibility. However, the ceramics prepared by the direct loading of ZIF-67 onto ceramic substrates during 3D printing show insufficient catalytic stability. In this study, aluminum phosphate (AP) was used as a binder to enhance the adhesion between ZIF-67 and the Al2O3 ceramic support surface, thereby reducing ZIF-67 shedding and preventing the degradation of the catalytic performance of the 3D-printed ceramic catalyst. Consequently, after six cycles, the conversion rate of 4-nitrophenol with ZIF-67/Al2O3 decreased by 31%, whereas that with ZIF-67@AP/Al2O3 decreased by only 5.4%. The reasons for the high catalytic stability of ZIF-67@AP/Al2O3 were comprehensively and meticulously investigated. The proposed synthesis strategy, which utilizes AP to facilitate the bonding of ZIF-67 to the Al2O3 ceramic scaffold, offers a novel approach for enhancing the catalytic stability of 3D-printed ceramic catalysts loaded with active species through self-growth methods. This approach is expected to guide future research on efficient catalytic systems for various applications.

- Panda S, Maity T, Sarkar S, Manna AK, Mondal J, Haldar R. Diffusion-programmed catalysis in nanoporous material. Nat Commun. 2025;16(1):1231. doi: 10.1038/s41467-025-56575-6
- Johnston W, Godakawela J, Gatti C, Keshavanarayana S, Sharma B. Fibro-porous materials: 3D-printed hybrid porous materials for multifunctional applications. Addit Manuf. 2024;94:104470. doi: 10.1016/j.addma.2024.104470
- Devi S, Sahoo N, Muthukumar P. Impact of porous materials on the performance of a biogas porous burner. Biomass Convers Biorefine. 2025;15(3):3691-3705. doi: 10.1007/s13399-023-05240-3
- Uvarov VI, Kapustin RD, Kirillov AO. Nanoporous high-temperature filters based on Ti–Al ceramic SHS materials. Ceram Int. 2020;46(14):23180-23185. doi: 10.1016/j.ceramint.2020.06.098
- Omerašević M, Pavkov V, Rosić M, et al. Fabrication of porous anorthite ceramic insulation using solid wastes. Materials. 2024;17:1478. doi: 10.3390/ma17071478
- Wang H, Liu X, Niu P, Wang S, Shi J, Li L. Porous two-dimensional materials for photocatalytic and electrocatalytic applications. Matter. 2020;2(6):1377-1413. doi: 10.1016/j.matt.2020.04.002
- Prakash MO, Raghavendra G, Ojha S, Panchal M, Gara DK. Investigation of tribological properties of biomass developed porous nano activated carbon composites. Wear. 2021;466-467:203523. doi: 10.1016/j.wear.2020.203523
- Schneider M, Rodríguez-Castellón E, Guerrero-Pérez MO, Hotza D, De Noni Junior A, Muniz Moreira RFB. Hierarchically porous composites containing mining tailings-based geopolymer and zeolite 13X: Application for carbon dioxide sequestration. Adsorption. 2024;31(1):21. doi: 10.1007/s10450-024-00569-1
- Dassouki K, Dasgupta S, Dumas E, Steunou N. Interfacing metal organic frameworks with polymers or carbon-based materials: From simple to hierarchical porous and nanostructured composites. Chem Sci. 2023;14(45):12898-12925. doi: 10.1039/D3SC03659F
- Woignier T, Duffours L, Primera J. Porous glasses from aerogels: From organic liquid to mineral materials. J Sol-Gel Sci Technol. 2022;102(3):589-595. doi: 10.1007/s10971-022-05772-6
- Chen MJ, Chang GG, Chen LY, et al. Multifunctional Pd/MOFs@MOFs confined core-shell catalysts with wrinkled surface for selective satalysis. Chem Asian J. 2021;16(22):3743-3747. doi: 10.1002/asia.202100922
- Luo H, Gu Y, Liu D, Sun Y. Advances in oxidative desulfurization of fuel oils over MOFs-based heterogeneous catalysts. Catalysts. 2021;11:1557. doi: 10.3390/catal11121557
- Zhang S, Fu H, Liu H, et al. Synergetic catalysis of ligand connecting MOFs@MOFs composites in electrochemical detection of P-Chlorophenols. Micropor Mesopor Mater. 2023;360:112726. doi: 10.1016/j.micromeso.2023.112726.
- Tong H, Zhu A, Chen G, Tong Z, Wang J. Review on the synthesis, construction and photocatalytic applications of double-ligand MOFs. Chem Eng J. 2025;508:161068. doi: 10.1016/j.cej.2025.161068
- Natarajan S, Manna K. Bifunctional MOFs in heterogeneous catalysis. ACS Organ Inorgan Au. 2024;4(1):59-90. doi: 10.1021/acsorginorgau.3c00033
- Wang Y, Peng C, Jiang T, Li X. Research progress of defect-engineered UiO-66(Zr) MOFs for photocatalytic hydrogen production. Front Energy. 2021;15(3):656-666. doi: 10.1007/s11708-021-0765-9
- Qian Y, Zhang F, Pang H. A review of MOFs and their composites-based photocatalysts: Synthesis and applications. Adv Funct Mater. 2021;31(37):2104231. doi: 10.1002/adfm.202104231
- Zhang W, Huang W, Wu B, Yang J, Jin J, Zhang S. Excitonic effect in MOFs-mediated photocatalysis: Phenomenon, characterization techniques and regulation strategies. Coordinat Chem Rev. 2023;491:215235. doi: 10.1016/j.ccr.2023.215235
- Li Y, Wang Y, Fan W, Sun D. Flexible metal-organic frameworks for gas storage and separation. Dalton Trans. 2022;51(12):4608-4618. doi: 10.1039/D1DT03842G
- De D, Sahoo P. The impact of MOFs in pH-dependent drug delivery systems: Progress in the last decade. Dalton Trans. 2022;51(26):9950-9965. doi: 10.1039/D2DT00994C
- Chandio I, Ai Y, Wu L, Liang Q. Recent progress in MOFs-based nanozymes for biosensing. Nano Res. 2024;17(1):39-64. doi: 10.1007/s12274-023-5770-3
- Xu J, Zhong M, Chen X, Wang C, Lu X. One-dimensional MOFs-based and their-derived fascinating electrocatalysts for water electrolysis. Sep Purif Technol. 2023;320:124184. doi: 10.1016/j.seppur.2023.124184
- Sun D, Jang S, Yim SJ, Ye L, Kim DP. Metal doped core-shell metal-organic frameworks@covalent organic frameworks (MOFs@COFs) hybrids as a novel photocatalytic platform. Adv Funct Mater. 2018;28(13):1707110. doi: 10.1002/adfm.201707110
- Jiang T, Wang X, Zhang J, Mai Y, Chen J. Highly efficient MnOx catalysts derived from Mn-MOFs for chlorobenzene oxidation: The influence of MOFs precursors, oxidant and doping of Ce metal. Mol Catal. 2023;551:113653. doi: 10.1016/j.mcat.2023.113653
- Zhao X, He X, Chen B, Yin F, Li G. MOFs derived metallic cobalt-zinc oxide@nitrogen-doped carbon/carbon nanotubes as a highly-efficient electrocatalyst for oxygen reduction reaction. Appl Surf Sci. 2019;487:1049-1057. doi: 10.1016/j.apsusc.2019.05.182
- Hu L, Xu W, Jiang Q, et al., Recent progress on CO2 cycloaddition with epoxide catalyzed by ZIFs and ZIFs-based materials. J CO2 Utiliz. 2024;81:102726. doi: 10.1016/j.jcou.2024.102726
- Xu W, Wang J, Zhang P, et al. Hierarchical ZIFs@Al2O3 composite materials as effective heterogeneous catalysts. Micropor Mesopor Mater. 2020;297:110009. doi: 10.1016/j.micromeso.2020.110009
- Li X, Yuan L, Li M, et al. Ag-doped hollow ZIFs-derived Si@C composite based on waste silicon for lithium-ion battery anodes. J Am Ceram Soc. 2025;108:e20568. doi: 10.1111/jace.20568
- Cheng N, Ren L, Xu X, Du Y, Dou SX. Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts. Adv Energy Mater. 2018;8(25):1801257. doi: 10.1002/aenm.201801257
- Packirisamy V, Arularasu MV. Efficient synthesis of cobalt tungstate/ZIF-67 nanocomposites for enhanced energy storage application. Ionics. 2024;30(12):8727-8739. doi: 10.1007/s11581-024-05885-8
- Sarker T, Tahmid I, Sarker RK, et al. ZIF-67-based materials as adsorbent for liquid phase adsorption-a review. Polyhedron. 2024;260:117069. doi: 10.1016/j.poly.2024.117069
- Weiler JP. A review of magnesium die-castings for closure applications. J Magnes Alloys. 2019;7(2):297-304. doi: 10.1016/j.jma.2019.02.005
- Novák P. Advanced powder metallurgy technologies. Materials. 2020;13:1742. doi: 10.3390/ma13071742
- Zhu C, Gemeda HB, Duoss EB, Spadaccini CM. Toward multiscale, multimaterial 3D printing. Adv Mater. 2024;36(34):2314204. doi: 10.1002/adma.202314204
- Ji Z, Xu B, Su Z, et al, Advanced vat photopolymerization 3D printing of silicone rubber with high precision and superior stability. Int J Extrem Manuf. 2025;7:025001. doi: 10.1088/2631-7990/ad9dc0
- Yang L, Zeng X, Ditta A, Feng B, Su L, Zhang Y. Preliminary 3D printing of large inclined-shaped alumina ceramic parts by direct ink writing. J Adv Ceram. 2020;9(3):312-319. doi: 10.1007/s40145-020-0369-6
- Xu X, Zhang J, Jiang P, et al. Direct ink writing of aluminum-phosphate-bonded Al2O3 ceramic with ultra-low dimensional shrinkage. Ceram Int. 2022;48(1):864-871.doi: 10.1016/j.ceramint.2021.09.168
- Ying Y, Browne MP, Pumera M. Metal-organic-frameworks on 3D-printed electrodes: in situ electrochemical transformation towards the oxygen evolution reaction. Sustain Energy Fuels. 2020;4(7):3732-3738. doi: 10.1039/D0SE00503G
- Ju Y, Zhang J, Cai Q, et al. Rotary-angle 3D printing multilayer membrane dead-end filtration for rapid and highly efficient water treatment. Chem Eng J. 2023;453:139969. doi: 10.1016/j.cej.2022.139969
- Choe D, Patil K, Kim SW, et al. ZIF-67 nanostructures anchored on 3D graphene sheets: A non-noble electrocatalyst for efficient oxygen evolution reaction. ACS Appl Energy Mater. 2024;7(15):6499-6506. doi: 10.1021/acsaem.4c01181
- Li Y, Chen L, Hong L, Ran K, Zhan Y, Chen Q. Fabrication of porous silicon carbide ceramics at low temperature using aluminum dihydrogen phosphate as binder. J Alloys Comp. 2019;785:838-845. doi: 10.1016/j.jallcom.2019.01.114
- Qian J, Sun F, Qin L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater Lett. 2012;82:220-223. doi: 10.1016/j.matlet.2012.05.077
- Wei X, Li N, Zhang X. Co/CoO/C@B three-phase composite derived from ZIF67 modified with NaBH4 solution as the electrocatalyst for efficient oxygen evolution. Electrochim Acta. 2018;264:36-45. doi: 10.1016/j.electacta.2018.01.006