Forming quality control of Laser Powder Bed Fusion GH3536 alloy: Surface quality, defects, and microstructure

This study investigates the influence of volume energy density (VED) on surface quality, density, defects, and microstructure of laser powder bed fusion (L-PBF) GH3536 alloy. Specimens fabricated below 80 J/mm3 exhibit lack-of-fusion pores on surfaces and internally, with pore density decreasing but crack initiation occurring as VED increases. Density consistently exceeds 99.5%, peaking at 99.85% (VED = 167 J/mm3). Excessive VED (208 J/mm3) induces surface warping, reduces cracking, but increases pore size/quantity, causing marginal density reduction. Lack-of-fusion defects nucleate microcracks distributed in layer bands; cracks propagate along high-angle grain boundaries following grain growth directions with significant localized stress. Higher VED increases melt pool overlap rate (70.49% at 208 J/mm3) and aspect ratio (width/depth = 6.9), while reducing cooling rates to 1.2 × 105 K/s.

- Gudivada G, Pandey AK. Recent developments in nickel-based superalloys for gas turbine applications. Rev J Alloys Compds. 2023;963:171128. doi: 10.1016/j.jallcom.2023.171128
- McCoy HE, Strizak JP, King JF. Hastelloy-X for high temperature gas-cooled reactor applications. Nucl Technol. 1984;66:161. doi: 10.13182/NT84-A33464
- Montero-Sistiaga ML, Pourbabak S, Van Humbeeck J, Schryvers D, Vanmeensel K. Microstructure and mechanical properties of Hastelloy X produced by HP-SLM (high power selective laser melting). Mater Des. 2019;165:107598. doi: 10.1016/j.matdes.2019.107598
- DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components – Process, structure and properties. Prog Mater Sci. 2018;92:112-224. doi: 10.1016/j.pmatsci.2017.10.001
- Korkmaz ME, Waqar S, Garcia-Collado A, Gupta MK, Krolczyk GM. A technical overview of metallic parts in hybrid additive manufacturing industry. J Mater Res Technol. 2022;18:384-395. doi: 10.1016/j.jmrt.2022.02.085
- Li S, Fu G, Li H, et al. Effect of layer thickness on the melt pool behavior and pore defects evolution of selective laser melting CuCrZr alloy. J Alloys Compds. 2023;967:171778. doi: 10.1016/j.jallcom.2023.171778
- Su J, Li Q, Teng J, et al. Programmable mechanical properties of additively manufactured novel steel. Int J Extrem Manuf. 2025;7:015001. doi: 10.1088/2631-7990/ad88bc
- Tan C, Li R, Su J, et al. Review on field assisted metal additive manufacturing. Int J Mach Tools Manuf. 2023;189:104032. doi: 10.1016/j.ijmachtools.2023.104032
- Yang Y, Jiang R, Han C, et al. Frontiers in laser additive manufacturing technology. Addit Manuf Front. 2024;2024:200160. doi: 10.1016/j.amf.2024.200160
- Harrison NJ, Todd I, Mumtaz K. Reduction of micro-cracking in nickel superalloys processed by selective laser melting: A fundamental alloy design approach. Acta Mater. 2015;94:59-68. doi: 10.1016/j.actamat.2015.04.035
- Fayazfar H, Salarian M, Rogalsky A, et al. A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties. Mater Des. 2018;144:98-128. doi: 10.1016/j.matdes.2018.02.018
- Chen N, Zheng D, Niu P, Li R, Yuan T. Laser powder bed fusion of GH3536 nickel-based superalloys: Processing parameters, microstructure and mechanical properties. Mater Character. 2023;202:113018. doi: 10.1016/j.matchar.2023.113018
- Xuan Z, Anping D, Dafan DU, et al. Effect of SLM process parameters on microscopic defects and surface quality of GH3536 superalloy. J Aeronautical Mater. 2022;42:71-80. doi: 10.11868/j.issn.1005-5053.2020.000176
- Han Q, Gu Y, Soe S, Lacan F, Setchi R Effect of hot cracking on the mechanical properties of Hastelloy X superalloy fabricated by laser powder bed fusion additive manufacturing. Optics Laser Technol. 2020;124:105984. doi: 10.1016/j.optlastec.2019.105984
- Hu J, Hu Y, Lan C, et al. Cracking mechanism and control of Hastelloy X prepared by laser powder bed fusion. J Mater Res Technol. 2022;21:3526-3547. doi: 10.1016/j.jmrt.2022.10.164
- Khairallah SA, Anderson AT, Rubenchik A, King WE. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter and denudation zones. Acta Mater. 2016;108:36-45. doi: 10.1016/j.actamat.2016.02.014
- Gu D, Shen Y. Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Mater Des. 2009;30:2903-2910. doi: 10.1016/j.matdes.2009.01.013
- Kruth JP, Levy G, Klocke F, Childs THC. Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. 2007;56:730-759. doi: 10.1016/j.cirp.2007.10.004
- Chu F, Li E, Shen H, et al. Influence of powder size on defect generation in laser powder bed fusion of AlSi10Mg alloy. J Manuf Process. 2023;94:183-195. doi: 10.1016/j.jmapro.2023.03.046
- Qin L, Wang K, Li X, Zhou S, Yang G. Review of the formation mechanisms and control methods of geometrical defects in laser deposition manufacturing. Chin J Mechan Eng Addit Manuf Front. 2022;1:100052. doi: 10.1016/j.cjmeam.2022.100052
- Laleh M, Hughes AE, Yang S, et al. A critical insight into lack-of-fusion pore structures in additively manufactured stainless steel. Addit Manuf. 2021;38:101762. doi: 10.1016/j.addma.2020.101762
- Quality Control: Internal Defects Formation Mechanism of Selective Laser Melting Based on Laser-powder-melt Pool Interaction: A Review Request PDF. London: ResearchGate; 2025. doi: 10.1016/j.cjmeam.2022.100037
- Experimental Studies on Selective Laser Melting of metallic parts. Request. London: ResearchGate; n.d. doi: 10.1002/mawe.200800327
- Zhang W, Liu F, Liu F, et al. Microstructural evolution and cracking behavior of Hastelloy X superalloy fabricated by laser directed energy deposition. J Alloys Compds. 2022;905:164179. doi: 10.1016/j.jallcom.2022.164179
- Tomus D, Rometsch PA, Heilmaier M, Wu X. Effect of minor alloying elements on crack-formation characteristics of Hastelloy-X manufactured by selective laser melting. Addit Manuf. 2017;16:65-72. doi: 10.1016/j.addma.2017.05.006
- Marchese G, Basile G, Bassini E, et al. Study of the microstructure and cracking mechanisms of hastelloy X produced by laser powder bed fusion. Materials. 2018;11:106. doi: 10.3390/ma11010106
- Aucott L, Huang D, Dong HB, et al. A three-stage mechanistic model for solidification cracking during welding of steel. Metall Mater Trans A. 2018;49:1674-1682. doi: 10.1007/s11661-018-4529-z
- Han Q, Gu Y, Setchi R, et al. Additive manufacturing of high-strength crack-free Ni-based Hastelloy X superalloy. Addit Manuf. 2019;30:100919. doi: 10.1016/j.addma.2019.100919
- Han Q, Mertens R, Montero-Sistiaga ML, et al. Laser powder bed fusion of Hastelloy X: Effects of hot isostatic pressing and the hot cracking mechanism. Mater Sci Eng A. 2018;732:228-239. doi: 10.1016/j.msea.2018.07.008
- Calcagnotto M, Ponge D, Demir E, Raabe D. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater Sci Eng A. 2010;527:2738-2746. doi: 10.1016/j.msea.2010.01.004
- He X, Wang L, Kong D, et al. Recrystallization effect on surface passivation of Hastelloy X alloy fabricated by laser powder bed fusion. J Mater Sci Technol. 2023;163:245-258. doi: 10.1016/j.jmst.2023.06.003
- Liu F, Lin X, Yang G, Song M, Chen J, Huang W. Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy. Opt Laser Technol. 2011;43:208-213. doi: 10.1016/j.optlastec.2010.06.015
- Xiao H, Xie P, Cheng M, Song L. Enhancing mechanical properties of quasi-continuous-wave laser additive manufactured Inconel 718 through controlling the niobium-rich precipitates. Addit Manuf. 2020;34:101278. doi: 10.1016/j.addma.2020.101278
- Yang G, Xie Y, Zhao S, Qin L, Wang X, Wu B. Quality control: Internal defects formation mechanism of selective laser melting based on laser-powder-melt pool interaction: A review. Chin J Mechan Eng Addit Manuf Front. 2022;1:100037. doi: 10.1016/j.cjmeam.2022.100037
- Xu J, Lin X, Guo P, Dong H. The initiation and propagation mechanism of the overlapping zone cracking during laser solid forming of IN-738LC superalloy. J Alloys Compds. 2018;749:859-870. doi: 10.1016/j.jallcom.2018.03.366
- Davies HA, Shohoji N, Warrington DH. The structures of rapidly quenched nickel-based superalloy ribbons produced by melt spinning. In: Rapid Solidification Processing, Principles and Technologies.--II. Baton Rouge: Claitor’s Publishing Division; 1980. p. 153-164.