Rapid prototyping of microstrip patch antenna design: A review and bibliometric analysis for future research directions

Microstrip patch antennas (MPAs) are widely used and researched due to their compact size and ease of fabrication. This review presents a comparative analysis and bibliometric review of rapid prototyping techniques employed in the fabrication of MPAs, with a focus on identifying emerging trends and proposing a hybrid approach for enhanced scalability and efficiency. Furthermore, the study investigated the application of rapid prototyping technologies, specifically 3D printing and xurography, in the fabrication of MPAs. Using VOSviewer software, a bibliometric analysis was conducted on 2545 research articles published between 2000 and 2021, extracted from the Scopus database. The aim was to analyze the evolution and adoption of additive manufacturing and rapid prototyping techniques—specifically in the context of MPAs—and to evaluate research productivity based on keyword co-occurrence and thematic evolution in the field. The analysis revealed that while 3D printing has gained significant attention in antenna fabrication, xurography remains underutilized in MPA development. From the relevant keywords identified, “microstrip antennas” and “microstrip patch antenna” demonstrated strong co-occurrence, whereas “xurography” displayed limited connectivity, suggesting a gap in research. Xurography, often used in microfluidics, presents a promising approach for low-cost, eco-friendly antenna fabrication. The analysis highlights a significant opportunity for further research to explore xurography’s potential in antenna design and fabrication, addressing current limitations in cost-effectiveness and scalability. Bridging this research gap can advance the development of MPAs for both academic and industrial applications, making them more accessible and sustainable.

- Hamid SHA, Hock GC, Ali MT. Analysis of performance on circular patch antenna based on different feeding techniques. Int J Eng Technol. 2018;7(4.1):81. doi: 10.14419/ijet.v7i4.1.28230
- Hamid SHA, Hock GC, Ferdous N. Verification of performances enhancement by array configuration technique in patch antenna design for energy harvesting applications. Int J Eng Adv Technol. 2019;9(1):3484-3488. doi: 10.35940/ijeat.A2671.109119
- Hamid SHA, Hock GC, Ferdous N, Rahman MNA. Analysis of performance on ultra wideband circular patch for solar cell antenna design. IOP Conf Ser Earth Environ Sci. 2019;268(1):012151. doi: 10.1088/1755-1315/268/1/012151
- Zhang H, Lan Y, Qiu S, et al. Flexible and stretchable microwave electronics: Past, present, and future perspective. Adv Mater Technol. 2021;6(1):2000759. doi: 10.1002/admt.202000759
- Sa’Don SNH, Jamaluddin MH, Kamarudin MR, et al. Characterisation of tunable graphene antenna. AEU Int J Electron Commun. 2020;118:153170. doi: 10.1016/j.aeue.2020.153170
- Colaco J, Cotta J. Design, fabrication and performance analysis of floodlight shaped microstrip antenna for Wi-Fi/IoT applications. Indones J Electr Eng Comput Sci. 2022;27(3):1462-1469. doi: 10.11591/ijeecs.v27.i3.pp1462-1469
- Prakash C, Senthil P, Sathies T. Fused deposition modeling fabricated PLA dielectric substrate for microstrip patch antenna. Mater Today Proc. 2021;39(1):533-537. doi: 10.1016/j.matpr.2020.08.258
- Elsheakh D. Microwave antennas for energy harvesting applications. In: Microwave Systems and Applications. London: IntechOpen; 2017.
- Celik K, Kurt E. Design and simulation of the antenna for RF energy harvesting systems. In: 2018 6th International Istanbul Smart Grids and Cities Congress and Fair (ICSG). Piscataway: IEEE; 2018. p. 148-150.
- Luo Y, Pu L, Wang G, Zhao Y. RF energy harvesting wireless communications: RF environment, device hardware and practical issues. Sensors. 2019;19(13):3010. doi: 10.3390/s19133010
- Bicer MB, Aydin EA. A novel 3D printed curved monopole microstrip antenna design for biomedical applications. Phys Eng Sci Med. 2021;44(4):1175-1186. doi: 10.1007/s13246-021-01053-8
- Ashok Kumar S, Arun Raj M, Shanmuganantham T. Analysis and design of CPW fed antenna at ISM band for biomedical applications. Alex Eng J. 2018;57(2):723-727. doi: 10.1016/j.aej.2017.02.008
- Spinelli G, Lamberti P, Tucci V, et al. Rheological and electrical behaviour of nanocarbon/poly(lactic) acid for 3D printing applications. Compos Part B Eng. 2019;167:467-476. doi: 10.1016/j.compositesb.2019.03.021
- Monne MA, Lan X, Chen MY. Material selection and fabrication processes for flexible conformal antennas. Int J Antennas Propag. 2018;2018:9815631. doi: 10.1155/2018/9815631
- Mohammed ASB, Kamal S, Ain MF, et al. Microstrip patch antenna: A review and the current state of the art. J Adv Res Dyn Control Syst. 2019;11(7):510-524.
- Hasni U, Green R, Filippas AV, Topsakal E. One‐step 3D‐printing process for microwave patch antenna via conductive and dielectric filaments. Microw Opt Technol Lett. 2019;61(3):734-740. doi: 10.1002/mop.31607
- Khan A, Nema R. Analysis of five different dielectric substrates on microstrip patch antenna. Int J Comput Appl. 2012;55(14):40-47. doi: 10.5120/8826-2905
- Kaur A, Saini G. 3-D printed antennas: A review. Int J Eng Sci Comput. 2018;8(3).
- Liu Y, Mo S, Shang S, Wang P, Zhao W, Li L. Handwriting flexible electronics: Tools, materials and emerging applications. J Sci Adv Mater Devices. 2020;5(4):451-467. doi: 10.1016/j.jsamd.2020.09.006
- Bartholomeusz DA, Boutte RW, Andrade JD. Xurography: Rapid prototyping of microstructures using a cutting plotter. J Microelectromech Syst. 2005;14(6):1364-1374. doi: 10.1109/JMEMS.2005.859087
- Agnew M, Creedon AN, OConnell I. Low-cost, rapid prototyping of a microfluidic biosensor cartridge for on-farm diagnostics. IEEE Access. 2020:1-4. doi: 10.1109/iscas45731.2020.9181284
- Vyavahare S, Teraiya S, Panghal D, Kumar S. Fused deposition modelling: A review. Rapid Prototyp J. 2020;26(1):176-201. doi: 10.1108/RPJ-04-2019-0106
- Morishita AM, Moorefield MR, Zhang GB, et al. RECi-P: Rapid, economical circuit prototyping. In: 2019 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS). United States: IEEE; 2019. p. 1-5.
- Martínez-López JI, Mojica M, Rodríguez CA, Siller HR. Xurography as a rapid fabrication alternative for point-of-care devices: Assessment of passive micromixers. Sensors (Basel). 2016;16(5):705. doi: 10.3390/s16050705
- Tehrani BK, Bito J, Hester JG, et al. Advanced antenna fabrication processes (MEMS/LTCC/LCP/printing). In: Handb Antenna Technologies. Berlin: Springer; 2014. p. 1-24.
- Faustino V, Catarino SO, Lima R, Minas G. Biomedical microfluidic devices by using low-cost fabrication techniques: A review. J Biomech. 2016;49(11):2280-2292. doi: 10.1016/j.jbiomech.2015.11.031
- Gale BK, Eddings MA, Sundberg SO, Hatch A, Kim J, Ho T. Low-cost MEMS technologies. In: Comprehensive Microsystems. Vol. 1. Netherlands: Elsevier; 2008. p. 341-378.
- Hu HT, Chen BJ, Chan CH. A transparent proximity-coupled-fed patch antenna with enhanced bandwidth and filtering response. IEEE Access. 2021;9:32774-32780. doi: 10.1109/ACCESS.2021.3061203
- Khaleel HR, Al-Rizzo HM, Abbosh AI. Design, fabrication, and testing of flexible antennas. In: Advancement in Microstrip Antennas with Recent Application. United States: Scitus Academics; 2013. p. 363-382.
- Kirtania SG, Elger AW, Hasan MR, et al. Flexible antennas: A review. Micromachines. 2020;11(9):847. doi: 10.3390/mi11090847
- Goh GL, Zhang H, Chong TH, Yeong WY. 3D printing of multilayered and multimaterial electronics: A review. Adv Electron Mater. 2021;7(10):2100445. doi: 10.1002/aelm.202100445
- Kim Y, Cui Y, Tentzeris MM, Lim S. Additively manufactured electromagnetic based planar pressure sensor using substrate integrated waveguide technology. Addit Manuf. 2020;34:101225. doi: 10.1016/j.addma.2020.101225
- Askari M, Hutchins DA, Thomas PJ, et al. Additive manufacturing of metamaterials: A review. Addit Manuf. 2020;36:101562. doi: 10.1016/j.addma.2020.101562
- Frank M, Joshi SB, Wysk RA. Rapid prototyping as an integrated product/process development tool an overview of issues and economics. J Chin Inst Ind Eng. 2003;20(3):240-246. doi: 10.1080/10170660309509232
- Vayre B, Vignat F, Villeneuve F. Metallic additive manufacturing: State-of-the-art review and prospects. Mech Ind. 2012;13(2):89-96. doi: 10.1051/meca/2012003
- Maurya NK, Rastogi V, Singh P. Feasibility analysis of manufacturing using rapid prototyping: A review. Mater Today Proc. 2021;47:3711-3715. doi: 10.1016/j.matpr.2021.01.799
- Colella R, Chietera FP, Catarinucci L. Analysis of FDM and DLP 3D-printing technologies to prototype electromagnetic devices for RFID applications. Sensors. 2021;21(3):897. doi: 10.3390/s21030897
- Adiono T, Putra RVW, Fathany MY, et al. Rapid prototyping methodology of lightweight electronic drivers for smart home appliances. Int J Electr Comput Eng. 2016;6(5):2114-2124. doi: 10.11591/ijece.v6i5.11279
- Mirzaee M, Noghanian S, Wiest L, Chang I. Developing flexible 3D printed antenna using conductive ABS materials. In: 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Vol. 2015. United States: IEEE; 2015. p. 1308-1309.
- Wang F, Zhou Q, Liu H, Fang P, Jiang K, Li P. Wide-angle broadband metamaterial absorber with carbon black-carbonyl iron/polylactic acid composites fabricated by fused filament fabrication. Mater Sci Addit Manuf. 2024;3(3):4158. doi: 10.36922/msam.4158
- Yasin T, Baktur R, Turpin T, Arellano J. Analysis and design of highly transparent meshed patch antenna backed by a solid ground plane. Prog Electromagn Res M. 2017;56:133-144. doi: 10.2528/PIERM16092708
- Goh GL, Ma J, Chua KLF, Shweta A, Yeong WY, Zhang YP. Inkjet-printed patch antenna emitter for wireless communication application. Virtual Phys Prototyp. 2016;11(4):289-294. doi: 10.1080/17452759.2016.1229802
- Samae M, Ritmetee P, Chirasatitsin S, et al. Precise manufacturing and performance validation of paper-based passive microfluidic micromixers. Int J Precis Eng Manuf. 2020;21(3):499-508. doi: 10.1007/s12541-019-00272-0
- Belen MA. Stacked microstrip patch antenna design for ISM band applications with 3D‐printing technology. Microw Opt Technol Lett. 2019;61:709-712. doi: 10.1002/mop.31603
- Morbioli GG, Speller NC, Stockton AM. A practical guide to rapid-prototyping of PDMS-based microfluidic devices: A tutorial. Anal Chim Acta. 2020;1135:150-174. doi: 10.1016/j.aca.2020.09.013
- Byford JA, Ghazali MIM, Karuppuswami S, Wright BL, Chahal P. Demonstration of RF and microwave passive circuits through 3-D printing and selective metalization. IEEE Trans Components Packag Manuf Technol. 2017;7(3):463-471. doi: 10.1109/TCPMT.2017.2651645
- Mohamadzade B, Hashmi RM, Simorangkir RBVB, Gharaei R, Ur Rehman S, Abbasi QH. Recent advances in fabrication methods for flexible antennas in wearable devices: State of the Art. Sensors. 2019;19(10):2312. doi: 10.3390/s19102312
- Shah SI, Lee D, Tentzeris MM, Lim S. Fabrication of microstrip patch antenna using novel hybrid printing technology. Microw Opt Technol Lett. 2016;58(11):2602-2606. doi: 10.1002/mop.301110
- Li E, Li XJ, Seet BC, Lin X. Ink-printed flexible wideband dipole array antenna for 5G applications. Phys Commun. 2020;43:101193. doi: 10.1016/j.phycom.2020.101193
- Xiao N, Wu R, Huang JJ, Ravi Selvaganapathy P. Development of a xurographically fabricated miniaturized low-cost, high-performance microbial fuel cell and its application for sensing biological oxygen demand. In: 2019 IEEE SENSORS. Vol. 2019. United States: IEEE; 2019. p. 1-4.
- Ali S, Sovuthy C, Imran MA, Socheatra S, Abbasi QH, Abidin ZZ. Recent advances of wearable antennas in materials, fabrication methods, designs, and their applications: State-of-the-Art. Micromachines (Basel). 2020;11(10):888. doi: 10.3390/mi11100888
- Yasin T, Baktur R, Turpin T, Arellano J. Analysis and design of highly transparent meshed patch antenna backed by a solid ground plane. Prog Electromagn Res. 2017;56:133-144.
doi: 10.2528/PIERM16092708
- Žemgulytė J, Sadauskas M, Ragulis P, et al. Effects of different manufacturing techniques on the performance of planar antennas. Sci Rep. 2023;13(1):22510. doi: 10.1038/s41598-023-49726-6
- Savini A, Savini GG. A short history of 3D printing, a technological revolution just started. In: 2015 ICOHTEC/ IEEE International History of High-Technologies and Their Socio-Cultural Contexts Conference (HISTELCON). United States: IEEE; 2015. p. 1-8.
- Clower W, Hartmann MJ, Joffrion JB, Wilson CG. Additive manufactured graphene composite sierpinski gasket tetrahedral antenna for wideband multi-frequency applications. Addit Manuf. 2020;32:101024. doi: 10.1016/j.addma.2019.101024
- Speller NC, Morbioli GG, Cato ME, et al. Cutting edge microfluidics: Xurography and a microwave. Sens Actuators B Chem. 2019;291:250-256. doi: 10.1016/j.snb.2019.04.004
- Tetsuka H, Shin SR. Materials and technical innovations in 3D printing in biomedical applications. J Mater Chem B. 2020;8(15):2930-2950. doi: 10.1039/d0tb00034e
- Peng J, Wang S, Liang B, et al. Review of micro and nano scale 3D printing of electromagnetic metamaterial absorbers: Mechanism, fabrication, and functionality. Virtual Phys Prototyp. 2024;19(1):e2378937. doi: 10.1080/17452759.2024.2378937
- Wang S, Zhu L, Wang J, Wang W, Wu W. 3-D printing and cnc machining technologies for exploration of circularly polarized patch antenna with enhanced gain. IEEE Trans Components Packag Manuf Technol. 2019;9(5):984-990. doi: 10.1109/TCPMT.2019.2890869
- Taheri RA, Goodarzi V, Allahverdi A. Mixing performance of a cost-effective split-and-recombine 3D micromixer fabricated by xurographic method. Micromachines (Basel). 2019;10(11):786. doi: 10.3390/mi10110786
- Ali A, Soni M, Javaid M, Haleem A. A comparative analysis of different rapid prototyping techniques for making intricately shaped structure. J Ind Integr Manag. 2020;5(3):393-407. doi: 10.1142/S2424862219500179
- Cosson S, Aeberli LG, Brandenberg N, Lutolf MP. Ultra-rapid prototyping of flexible, multi-layered microfluidic devices via razor writing. Lab Chip. 2015;15(1):72-76. doi: 10.1039/c4lc00848k
- Kim SW, Kang KN, Min JW, Jang JH. Plotter-assisted integration of wearable all-solid-state micro-supercapacitors. Nano Energy. 2018;50:410-416. doi: 10.1016/j.nanoen.2018.05.051
- Mohammadzadeh A, Robichaud AEF, Selvaganapathy PR. Rapid and inexpensive method for fabrication and integration of electrodes in microfluidic devices. J Microelectromech Syst. 2019;28(4):597-605. doi: 10.1109/JMEMS.2019.2914110
- Ponmozhi J, Moreira JMR, Mergulhão FJ, Campos JBLM, Miranda JM. Fabrication and hydrodynamic characterization of a microfluidic device for cell adhesion tests in polymeric surfaces. Micromachines (Base). 2019;10(5):303. doi: 10.3390/mi10050303
- Stojanović G, Paroški M, Samardžić N, Radovanović M, Krstić D. Microfluidics-based four fundamental electronic circuit elements resistor, inductor, capacitor and memristor. Electronics. 2019;8(9):960. doi: 10.3390/electronics8090960
- Hernández-Rodríguez JF, Rojas D, Escarpa A. Rapid and cost-effective benchtop microfabrication of disposable carbon-based electrochemical microfluidic devices. Sens Actuators B Chem. 2020;324:128679. doi: 10.1016/j.snb.2020.128679
- Zhou L, Miller J, Vezza J, et al. Additive manufacturing: A comprehensive review. Sensors (Basel). 2024;24(9):2668. doi: 10.3390/s24092668
- Moscato S, Bahr R, Le T, et al. Infill-dependent 3-D-printed material based on ninjaflex filament for antenna applications. IEEE Antennas Wirel Propag Lett. 2016;15:1506-1509. doi: 10.1109/LAWP.2016.2516101
- Charmet J, Rodrigues R, Yildirim E, et al. Low-cost microfabrication tool box. Micromachines. 2020;11(2):135. doi: 10.3390/mi11020135
- Roach DJ, Roberts C, Wong J, et al. Surface modification of fused filament fabrication (FFF) 3D printed substrates by inkjet printing polyimide for printed electronics. Addit Manuf. 2020;36:101544. doi: 10.1016/j.addma.2020.101544
- Parsons P, Larimore Z, Muhammed F, Mirotznik M. Fabrication of low dielectric constant composite filaments for use in fused filament fabrication 3D printing. Addit Manuf. 2019;30:100888. doi: 10.1016/j.addma.2019.100888
- Hu K, Zhou Y, Sitaraman SK, Tentzeris MM. Additively manufactured flexible on-package phased array antennas for 5G/mmwave wearable and conformal digital twin and massive MIMO applications. Sci Rep. 2023;13(1):12515. doi: 10.1038/s41598-023-39476-w
- Xu R, Huang Y, Lee P, et al. Low-cost, efficient, photolithography-free fabrication of stretchable electronics systems on a vinyl cutter. Proc IEEE Int Conf Micro Electro Mech Syst. 2019;2019-Janua:343-346. doi: 10.1109/MEMSYS.2019.8870816
- Mahadzir MA, Hassan N, Khirotdin RK, Ngadiron MF. Overview of printing wearable antenna. J Fundam Appl Sci. 2018;10(3S):397-411.
- Jun SY, Elibiary A, Sanz-Izquierdo B, Winchester L, Bird D, McCleland A. 3-D printing of conformal antennas for diversity wrist worn applications. IEEE Trans Components Packag Manuf Technol. 2018;8(12):2227-2235. doi: 10.1109/TCPMT.2018.2874424
- Nötzel D, Eickhoff R, Hanemann T. Fused filament fabrication of small ceramic components. Materials (Basel). 2018;11(8):1463. doi: 10.3390/ma11081463
- Goh GL, Lee S, Cheng SH, et al. Enhancing interlaminar adhesion in multi-material 3D printing: A study of conductive PLA and TPU interfaces through fused filament fabrication. Mater Sci Addit Manuf. 2024;3(1):2672. doi: 10.36922/msam.2672
- Müller M, Wings E. An architecture for hybrid manufacturing combining 3D printing and CNC machining. Int J Manuf Eng. 2016;2016:1-12. doi: 10.1155/2016/8609108
- Lennings L. Selecting either layered manufacturing or CNC machining to build your prototype. SME Tech Pap Rapid Prototyp Assoc. 2000:PE00-171, 1-10.
- Scidà A, Haque S, Treossi E, et al. Application of graphene-based flexible antennas in consumer electronic devices. Mater Today. 2018;21(3):223-230. doi: 10.1016/j.mattod.2018.01.007
- Jun S, Sanz-Izquierdo B, Heirons J, et al. Circular polarised antenna fabricated with low-cost 3D and inkjet printing equipment. Electron Lett. 2017;53(6):370-371. doi: 10.1049/el.2016.4605
- Ram P, Banu NMM, Light RRJ. Multilayer screen printed flexible graphene antenna for ISM band applications and energy harvesting. Mater Today Proc. 2020;45(2):2508-2513. doi: 10.1016/j.matpr.2020.11.123
- Doagou-Rad S, Islam A, Merca TD. An application-oriented roadmap to select polymeric nanocomposites for advanced applications: A review. Polym Compos. 2020;41(4):1153-1189. doi: 10.1002/pc.25461
- Jilani SF, Munoz MO, Abbasi QH, Alomainy A. Millimeter-wave liquid crystal polymer based conformal antenna array for 5G applications. IEEE Antennas Wirel Propag Lett. 2019;18(1):84-88. doi: 10.1109/LAWP.2018.2881303
- Jilani SF, Aziz AK, Abbasi QH, Alomainy A. Ka-band flexible koch fractal antenna with defected ground structure for 5G wearable and conformal applications. IEEE Int Symp Pers Indoor Mob Radio Commun PIMRC. 2018;2018-Septe:361-364. doi: 10.1109/PIMRC.2018.8580692
- Karles AC. The Silver Lining : A Novel, Inkjet-Printed Mesh Coplanar-Slot Antenna for the UHF Band. Virginia: Virginia Commonwealth University; 2018.
- Cho C, Yi X, Wang Y, Tentzeris M, Leon R. Inkjet-Printed RFID Antenna Sensor for Wireless Strain Monitoring. New York, NY: USA; 2013.
- Honeychurch KC. Cheap and disposable gold and silver electrodes: Trends in the application of compact discs and digital versatile discs for electroanalytical chemistry. TrAC Trends Anal Chem. 2017;93:51-66. doi: 10.1016/j.trac.2017.04.013
- Ghaffar FA, Vaseem M, Roy L, Shamim A. Design and fabrication of a frequency and polarization reconfigurablemicrowave antenna on a printed partially magnetized ferrite substrate. IEEE Trans Antennas Propag. 2018;66(9):4866-4871. doi: 10.1109/TAP.2018.2846796
- Paracha KN, Rahim SKA, Chattha HT, Aljaafreh SS, Rehman SU, Lo YC. Low-cost printed flexible antenna by using an office printer for conformal applications. Int J Antennas Propag. 2018;2018:1-7. doi: 10.1155/2018/3241581
- Ghaffar FA, Vaseem M, Shamim A. A magnetic nano-particle ink for tunable microwave applications. 2016 IEEE Middle East Conf Antennas Propagation, MECAP 2016. 2016:1-2. doi: 10.1109/MECAP.2016.7790109
- Hamid SHA, Hock GS. Development of 3.5GHz enhanced graphene patch antenna for 5G applications. Int J Nanoelectron Mater. 2025;18(1):77-85. doi: 10.58915/ijneam.v18i1.1703
- Wang Y, Zhou W, Cao K, Hu X, Gao L, Lu Y. Architectured graphene and its composites: Manufacturing and structural applications. Compos Part A Appl Sci Manuf. 2021;140:106177. doi: 10.1016/j.compositesa.2020.106177
- Peixeiro C. Microstrip patch antennas: An historical perspective of the development. In: 2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011). United States: IEEE; 2011. p. 684-688.
- Su J, Ng WL, An J, Yeong WY, Chua CK, Sing SL. Achieving sustainability by additive manufacturing: A state-of-the-art review and perspectives. Virtual Phys Prototyp. 2024;19(1):e2438899. doi: 10.1080/17452759.2024.2438899
- Aziz M, El Hassan A, Hussein M, Zaneldin E, Al-Marzouqi AH, Ahmed W. Characteristics of antenna fabricated using additive manufacturing technology and the potential applications. Heliyon. 2024;10(6):e27785. doi: 10.1016/j.heliyon.2024.e27785
- Olalere FE, Shuaib AA. Hybridized prototyping process: A contemporary cultural approach to enhance ceramics production. Key Eng Mater. 2016;706:31-35. doi: 10.4028/www.scientific.net/KEM.706.31
- Merklein M, Junker D, Schaub A, Neubauer F. Hybrid additive manufacturing technologies - an analysis regarding potentials and applications. Phys Procedia. 2016;83:549-559. doi: 10.1016/j.phpro.2016.08.057
- Berculescu L, Bălan E, Mohora C, Tudor M. Efficiency analysis of implementing hybrid printing technologies. MATEC Web Conf. 2019;290:02001. doi: 10.1051/matecconf/201929002001
- Rajamani PK, Ageyeva T, Kovács JG. Personalized mass production by hybridization of additive manufacturing and injection molding. Polymers (Basel). 2021;13(2):309. doi: 10.3390/polym13020309
- El Bekkouri H, Al Ibrahmi E, El-Asery M, et al. Bibliometric analysis of the literature on carbon ion therapy using VOSviewer software and dimensions database. Atom Indones. 2024;50(2):183-189. doi: 10.55981/aij.2024.1392
- Febrianto AS, Indriarti R, Faldesiani R, et al. Using vosviewer for a bibliometric computational mapping analysis of publications on communication technology. J Eng Sci Technol. 2023;18(6):2748-2762.
- Saputra H, Fauzan TA, Dharmayanti D. Bibliometric analysis of near field communication technology using vosviewer application with publish or perish. J Eng Sci Technol. 2023;18(6):3155-3166.
- Kojic SP, Stojanovic GM, Radonic V. Novel cost-effective microfluidic chip based on hybrid fabrication and its comprehensive characterization. Sensors (Basel). 2019;19(7):1719. doi: 10.3390/s19071719
- Bakrani Balani S, Chabert F, Nassiet V, Cantarel A. Influence of printing parameters on the stability of deposited beads in fused filament fabrication of poly(lactic) acid. Addit Manuf. 2019;25:112-121. doi: 10.1016/j.addma.2018.10.012