In silico docking and pharmacokinetic evaluation of African ethnomedicinal phytochemicals as dual-target inhibitors of multidrug-resistant Gram-negative bacteria
The emergence of multidrug-resistant (MDR) Gram-negative bacteria, including Escherichia coli and Pseudomonas aeruginosa, poses a critical global health challenge, necessitating innovative antimicrobial strategies. Leveraging Africa’s rich phytochemical diversity, this study integrates molecular docking and in silico pharmacokinetic profiling to identify natural compounds with dual-target potential. Ten bioactive phytochemicals from ethnomedicinal plants were screened against four validated bacterial targets: LasR (2UV0), AcrB efflux pump (5NC5), DNA gyrase B (6F86), and TEM-1 β-lactamase (1BTL) with AutoDock Vina implemented in PyRx, and the resulting protein–ligand interactions analyzed in Discovery Studio. Docking identified luteolin as exhibiting the highest binding affinity for LasR (−10.8 kcal/mol) and TEM-1, indicating dual inhibition of quorum sensing and β-lactamase activity. Rutin (−9.2 kcal/mol) exhibited high affinity for AcrB, indicating potential efflux pump inhibition, while ellagic acid (−8.3 kcal/mol) targeted DNA gyrase, potentially impairing bacterial replication. Absorption, distribution, metabolism, excretion, and toxicity analyses, along with ProTox-3 predictions, indicated that luteolin exhibited high gastrointestinal absorption and moderate systemic toxicity. Ellagic acid exhibited excellent biocompatibility, whereas rutin showed favorable drug-likeness but low permeability. Collectively, luteolin, rutin, and ellagic acid emerged as promising computational leads with complementary inhibitory mechanisms. This study highlights the translational potential of African phytochemical scaffolds in rational, computer-aided antimicrobial design and provides a foundation for subsequent in vitro and in vivo validation toward novel anti–MDR therapeutics.

- Ventola CL. The antibiotic resistance crisis: Part 1: Causes and threats. P T. 2015;40(4):277-283.
- Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J Infect Dis. 2008;197(8):1079-1081. doi: 10.1086/533452
- World Health Organization (WHO). Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; 2017. Available from: https://www.who.int/publications/i/item/WHO-EMP-IAU-2017.12
- Theuretzbacher U. Accelerating resistance, inadequate antibacterial drug pipelines and international responses. Int J Antimicrob Agents. 2012;39(4):295-299. doi: 10.1016/j.ijantimicag.2011.12.006
- Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod. 2007;70(3):461-477. doi: 10.1021/np068054v
- Thakur BK, Malaise Y, Choudhury SR, et al. Dietary fibre counters the oncogenic potential of colibactin-producing Escherichia coli in colorectal cancer. Nat Microbiol. 2025;10(4):855-870. doi: 10.1038/s41564-025-01938-4
- Iwu MM, Duncan AR, Okunji CO. New antimicrobials of plant origin. In: Janick J, editor. Perspectives on New Crops and New Uses. Maryland: ASHS Press; 1999. p. 457-462.
- Akinmoladun FO, Akinrinlola BL, Komolafe FO, Farombi EO. African medicinal plants with antimicrobial activities against antibiotic-resistant bacteria: A review. Front Pharmacol. 2020;11:585267. doi: 10.3389/fphar.2020.585267
- Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat Rev Drug Discov. 2004;3(11):935-949. doi: 10.1038/nrd1549
- Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. doi: 10.1038/srep42717
- Nazzaro F, Fratianni F, Coppola R, De Feo V. Essential oils and antifungal activity. Pharmaceuticals (Basel). 2017;10(4):86. doi: 10.3390/ph10040086
- Breland EJ, Eberly AR, Hadjifrangiskou M. An Overview of two-component signal transduction systems implicated in extra-intestinal pathogenic E. coli Infections. Front Cell Infect Microbiol. 2017;7:162. doi: 10.3389/fcimb.2017.00162
- Rutherford ST, Bassler BL. Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med. 2012;2(11):a012427. doi: 10.1101/cshperspect.a012427
- Li YH, Tian X. Quorum sensing and bacterial social interactions in biofilms. Sensors (Basel). 2012;12(3):2519-2538. doi: 10.3390/s120302519
- Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005;26(5):343-356. doi: 10.1016/j.ijantimicag.2005.09.002
- Farhadi K, Khoshbakht T, Hatami M. Inhibitory effects of coumarin derivatives on bacterial DNA gyrase: Molecular docking study. J Mol Graph Model. 2016;66:172-180.
- Guo Y, Sun C, Zhu W, Liu Y. Inhibition of beta-lactamase by plant polyphenols: Potential use in combination with beta-lactam antibiotics. BMC Microbiol. 2014;14:282. doi: 10.1186/s12866-014-0282-3
- Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605-1612. doi: 10.1002/jcc.20084
- AQ4 Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263:243-250. doi: 10.1007/978-1-4939-2269-7_19
- AQ4 Kumar M, Rathore RS. RamPlot: A webserver to draw 2D, 3D and assorted Ramachandran (φ, ψ) maps. J Appl Cryst. 2025;58:630-636. doi: 10.1107/s1600576725001669
- O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform. 2011;3:33. doi: 10.1186/1758-2946-3-33
- Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-461. doi: 10.1002/jcc.21334
- BIOVIA, Dassault Systèmes. Discovery Studio Visualizer. San Diego, CA: Dassault Systèmes; 2021.
- Geng YF, Wang Y, Zhang Y, et al. An innovative role for luteolin as a natural quorum sensing inhibitor in Pseudomonas aeruginosa. Sci Rep. 2021;11(1):12562. doi: 10.1038/s41598-021-91891-2
- Singh G, Hossain MA, Al-Fahad D, et al. An in-silico approach to target multiple proteins involved in anti-microbial resistance using natural compounds produced by wild mushrooms. Biochem Biophys Rep. 2024;40:101854. doi: 10.1016/j.bbrep.2024.101854
- Vargiu AV, Nikaido H. Multidrug binding properties of the AcrB efflux pump characterized by molecular dynamics simulations. Proc Natl Acad Sci U S A. 2012;109(50):20637-20642. doi: 10.1073/pnas.1218348109
- Jamshidi S, Rahman KM, Sutton JM. Mapping the dynamic functions and structural features of AcrB efflux pump transporter using accelerated molecular dynamics simulations. Sci Rep. 2018;8(1):10470. doi: 10.1038/s41598-018-28531-6
- García Hernández LC, Higuera-Piedrahita RI, Rivero- Perez N, et al. Antibacterial activity and molecular docking of lignans isolated from Artemisia cina against multidrug-resistant bacteria. Pharmaceuticals (Basel). 2025;18(6):781. doi: 10.3390/ph18060781
- Alhussaini HAM, Alhussaini M, Alhussaini M. Ellagic acid’s 3D binding modes in DNA gyrase’s ATP active site. J Mol Graph Model. 2024;112:108108.
- Jamshidi S, Sutton JM, Rahman KM. Mapping the dynamic functions and structural features of AcrB efflux pump transporter using accelerated molecular dynamics simulations. Sci Rep. 2018;8(1):10470. doi: 10.1038/s41598-018-28531-6
- Weinder-Wells MA, Altom J, Fernandez J, et al. DNA gyrase inhibitory activity of ellagic acid derivatives. Bioorg Med Chem Lett. 1998;8(1):97-100. doi: 10.1016/s0960-894x(97)10197-4
- Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol. 2014;12(1):35-48. doi: 10.1038/nrmicro3155
- Guo Y, Zhang Y, Wang Y, et al. PknB and STP as potential targets of luteolin in combating Mycobacterium tuberculosis: Computational investigation. Comput Biol Chem. 2025;101:107807. doi: 10.1016/j.compbiolchem.2025.107807
- Bekeir H, Hamad A, Eleiwa NZ, Amin RA. Molecular docking analysis of the antibacterial effect of pomegranate (Punica granatum) fruit molasses bioactive compounds. Benha Vet Med J. 2024;46(2):90-95. doi: 10.21608/bvmj.2024.284813.1816
- Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(W1):W257-W263. doi: 10.1093/nar/gky318
