Implications of accurate pseudomonad identification for patient care, antimicrobial stewardship, and outbreak investigations
In low-resource clinical microbiology laboratories, the identification of non-fermenting, oxidase-positive Gram-negative bacilli remains a significant challenge. Due to limited diagnostic capabilities, there is a pervasive tendency to report all such organisms simply as Pseudomonas species, often implicitly considered Pseudomonas aeruginosa. This practice overlooks the vast diversity within the Pseudomonadaceae family, which includes numerous genera such as Burkholderia, Stenotrophomonas, Achromobacter, Ochrobactrum, Ralstonia, and many non-aeruginosa Pseudomonas spp. This misidentification poses serious clinical consequences, as intrinsic antibiotic resistance profiles vary dramatically across these species, leading to inappropriate therapy and treatment failure. Furthermore, it curtails effective epidemiological surveillance and source investigation during outbreaks. This paper delineates the scope of this problem, its impact on patient care and public health, and proposes a multifaceted, feasible way forward for laboratories constrained by resources. With this, the author calls for the adoption of stratified, algorithmic approaches using basic biochemical tests and enhanced training, as well as the strategic development of affordable, context-specific diagnostic solutions.

- Lewandowska W, Mahillon J, Drewnowska JM, Swiecicka I. Insight into the phylogeny and antibiotic resistance of Pseudomonas spp. Originating from soil of the Białowieża National Park in Northeastern Poland. Front Microbiol. 2025;16:1454510. doi: 10.3389/fmicb.2025.1454510
- Bahrami M, Bostanghadiri N, Goudarzi M, Khodaei N, Hashemi A. Antibiotic resistance and virulence factors in clinical isolates of Stenotrophomonas maltophilia from hospitalized patients in Tehran, Iran. Int J Microbiol. 2024;2024(1):8224242. doi: 10.1155/2024/8224242
- Sfeir MM. Burkholderia cepacia complex infections: More complex than the bacterium name suggest. J Infect. 2018;77(3):166-170. doi: 10.1016/j.jinf.2018.07.006
- Shaw T, Assig K, Tellapragada C, et al. Environmental factors associated with soil prevalence of the melioidosis pathogen Burkholderia pseudomallei: A longitudinal seasonal study from South West India. Front Microbiol. 2022;13:902996. doi: 10.3389/fmicb.2022.902996
- Klimkaitė L, Drevinskaitė R, Krinickis K, Sužiedėlienė E, Armalytė J. Stenotrophomonas maltophilia of clinical origin display higher temperature tolerance comparing with environmental isolates. Virulence. 2025;16(1):2498669. doi: 10.1080/21505594.2025.2498669
- Qin S, Xiao W, Zhou C, et al. Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther. 2022;7(1):199. doi: 10.1038/s41392-022-01056-1
- Farhan SM, Raafat M, Abourehab MA, et al. Effect of imipenem and amikacin combination against multi-drug resistant Pseudomonas aeruginosa. Antibiotics (Basel). 2021;10(11):1429. doi: 10.3390/antibiotics10111429
- Gibb J, Wong DW. Antimicrobial treatment strategies for Stenotrophomonas maltophilia: A focus on novel therapies. Antibiotics (Basel). 2021;10(10):1226. doi: 10.3390/antibiotics10101226
- Petkar HM, Caseres-Chiuco I, Al-Shaddad A, et al. Outbreak of Pseudomonas aeruginosa on a neonatal intensive care unit: Lessons from a Qatari setting. J Infect Prev. 2024;25(4):103-109. doi: 10.1177/17571774241236248
- Bilgin H, Altınkanat Gelmez G, Bayrakdar F, et al. An outbreak investigation of Burkholderia cepacia infections related with contaminated chlorhexidine mouthwash solution in a tertiary care center in Turkey. Antimicrob Resist Infect Control. 2021;10(1):143. doi: 10.1186/s13756-021-01004-8
- Yung CF, Maiwald M, Loo LH, et al. Elizabethkingia anophelis and association with Tap Water and handwashing, Singapore. Emerg Infect Dis. 2018;24(9):1730-1733. doi: 10.3201/eid2409.171843
- Gupta A. Diagnostic stewardship in LMICs: The way forward. J Antimicrob Steward Pract Infect Dis. 2024;2(2):5-8. doi: 10.62541/jaspi036
- Whistler T, Sangwichian O, Jorakate P, et al. Identification of Gram negative non-fermentative bacteria: How hard can it be? PLoS Negl Trop Dis. 2019;13(9):e0007729. doi: 10.1371/journal.pntd.0007729
- Cercenado E. Rapid techniques for therapeutic optimization. Diagnostic stewardship. Rev Esp Quimioter. 2022;35(Suppl 3):80-83. doi: 10.37201/req/s03.17.2022
- Zakhour J, Haddad SF, Kerbage A, et al. Diagnostic stewardship in infectious diseases: A continuum of antimicrobial stewardship in the fight against antimicrobial resistance. Int J Antimicrob Agents. 2023;62(1):106816. doi: 10.1016/j.ijantimicag.2023.106816
- Virieux-Petit M, Ferreira J, Masnou A, et al. Assessing the role of environment in Pseudomonas aeruginosa healthcare-associated bloodstream infections: A one-year prospective survey. J Hosp Infect. 2025;156:26-33. doi: 10.1016/j.jhin.2024.11.009
- Julia L, Vilankar K, Kang H, Brown DE, Mathers A, Barnes LE. Environmental reservoirs of nosocomial infection: Imputation methods for linking clinical and environmental microbiological data to understand infection transmission. AMIA Annu Symp Proc. 2017;2017:1120-1129.
- Pham TM, Büchler AC, Voor In ’t Holt AF, et al. Routes of transmission of VIM-positive Pseudomonas aeruginosa in the adult intensive care unit-analysis of 9 years of surveillance at a university hospital using a mathematical model. Antimicrob Resist Infect Control. 2022;11(1):55. doi: 10.1186/s13756-022-01095-x
- Shempela DM, Mudenda S, Kasanga M, et al. A situation analysis of the capacity of laboratories in faith-based hospitals in Zambia to conduct surveillance of antimicrobial resistance: Opportunities to improve diagnostic stewardship. Microorganisms. 2024;12(8):1697. doi: 10.3390/microorganisms12081697
