AccScience Publishing / MI / Online First / DOI: 10.36922/MI025310069
REVIEW ARTICLE

Microbiota–gut–brain axis: Modulation of gut microbiota in the management of Alzheimer’s disease

Hui Jiang1,2 Manman Chen1,3 Siew C. Ng1,3 Zhilu Xu1,3* Allen Ting Chun Lee2*
Show Less
1 Microbiota I-Center, Hong Kong SAR, China
2 Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
3 Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
Received: 31 July 2025 | Revised: 28 August 2025 | Accepted: 9 September 2025 | Published online: 22 October 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Insights into the role of the gut microbiota are advancing our understanding of Alzheimer’s disease (AD), which is the most common cause of dementia and a condition characterized by progressive cognitive decline and pathological hallmarks such as amyloid beta (Aβ) plaques and neurofibrillary tangles. The gut microbiota, composed of diverse microorganisms, influences brain health through the microbiota–gut–brain axis. This review outlines how alterations in gut microbial composition and metabolites occur across different stages of cognitive decline. The microbiota–gut–brain axis mediates interactions between the gut and brain, influencing neuroinflammation, Aβ accumulation, tau pathology, and oxidative stress. Therapeutic strategies targeting gut microbiota, including diet modulation, probiotics, prebiotics, synbiotics, microbial metabolites, and fecal microbiota transplantation, have shown potential in improving cognitive function in clinical and animal studies. Despite these advances, challenges remain in addressing individual variability, standardization, and long-term safety. Personalized microbiota-based interventions may provide promising tools for the diagnosis, prevention, and treatment of AD.

Keywords
Alzheimer’s disease
Gut microbiota
Microbiota–gut–brain axis
Therapeutic strategies
Funding
None.
Conflict of interest
Zhilu Xu is Scientist (Diagnostics) of GenieBiome Ltd. Siew C. Ng has served as an advisory board member for Pfizer, Ferring, Janssen and Abbvie and received honoraria as a speaker for Ferring, Tillotts, Menarini, Janssen, Abbvie and Takeda; has received research grants through her affiliated institutions from Olympus, Ferring and Abbvie; is a founder member, non-executive director, non-executive scientific advisor and shareholder of GenieBiome Ltd which is non-remunerative; is a shareholder of MicroSigX Diagnostic Holding Limited; is a founder member, non-executive Board Director, and non-executive scientific advisor of MicroSigX Biotech Diagnostic Limited, which is non-remunerative; and receives patent royalties through her affiliated institutions; is a named inventor of patent applications held by The Chinese University of Hong Kong and MagIC that cover the therapeutic and diagnostic use of the microbiome. All other authors declare that they have no conflicts of interest.
References
  1. Evans-Lacko S, Aguzzoli E, Read S, Comas-Herrera A, Farina N. World Alzheimer Report 2024: Global Changes in Attitudes to Dementia. London, UK: Alzheimer’s Disease International; 2024. Available from: https://www.alzint.org/resource/world-alzheimer-report-2024 [Last accessed on 2025 Oct 12].

 

  1. Arvanitakis Z, Shah RC, Bennett DA. Diagnosis and management of dementia: Review. JAMA. 2019;322(16):1589-1599. doi: 10.1001/jama.2019.4782

 

  1. 2024 Alzheimer’s disease facts and figures. Alzheimers Dement. 2024;20(5):3708-3821. doi: 10.1002/alz.13809

 

  1. 2025 Alzheimer’s disease facts and figures. Alzheimers Dement. 2025;21(4):e70235. doi: 10.1002/alz.70235

 

  1. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: Clinical characterization and outcome. Arch Neurol. 1999;56(3):303-308. doi: 10.1001/archneur.56.3.303

 

  1. Zhang T, Gao G, Kwok LY, Sun Z. Gut microbiome-targeted therapies for Alzheimer’s disease. Gut Microbes. 2023;15(2):2271613. doi: 10.1080/19490976.2023.2271613

 

  1. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220-30. doi: 10.1038/nature11550

 

  1. Susmitha G, Kumar R. Role of microbial dysbiosis in the pathogenesis of Alzheimer’s disease. Neuropharmacology. 2023;229:109478. doi: 10.1016/j.neuropharm.2023.109478

 

  1. Sochocka M, Donskow-Łysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease-a critical review. Mol Neurobiol. 2019;56(3):1841-1851. doi: 10.1007/s12035-018-1188-4

 

  1. Montagne A, Barnes SR, Sweeney MD, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015;85(2):296-302. doi: 10.1016/j.neuron.2014.12.032

 

  1. Lee J, d’Aigle J, Atadja L, et al. Gut microbiota-derived short-chain fatty acids promote poststroke recovery in aged mice. Circ Res. 2020;127(4):453-465. doi: 10.1161/circresaha.119.316448

 

  1. Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging. 2017;49:60-68. doi: 10.1016/j.neurobiolaging.2016.08.019

 

  1. Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep. 2017;7(1):13537. doi: 10.1038/s41598-017-13601-y

 

  1. Zhuang ZQ, Shen LL, Li WW, et al. Gut microbiota is altered in patients with Alzheimer’s disease. J Alzheimers Dis. 2018;63(4):1337-1346. doi: 10.3233/jad-180176

 

  1. Haran JP, Bhattarai SK, Foley SE, et al. Alzheimer’s disease microbiome is associated with dysregulation of the anti-inflammatory P-glycoprotein pathway. mBio. 2019;10(3):00632-19. doi: 10.1128/mBio.00632-19

 

  1. Li B, He Y, Ma J, et al. Mild cognitive impairment has similar alterations as Alzheimer’s disease in gut microbiota. Alzheimers Dement. 2019;15(10):1357-1366. doi: 10.1016/j.jalz.2019.07.002

 

  1. Liu P, Wu L, Peng G, et al. Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav Immun. 2019;80:633-643. doi: 10.1016/j.bbi.2019.05.008

 

  1. Saji N, Murotani K, Hisada T, et al. The relationship between the gut microbiome and mild cognitive impairment in patients without dementia: A cross-sectional study conducted in Japan. Sci Rep. 2019;9(1):19227. doi: 10.1038/s41598-019-55851-y

 

  1. Ling Z, Zhu M, Yan X, et al. Structural and functional dysbiosis of fecal microbiota in Chinese patients with Alzheimer’s disease. Front Cell Dev Biol. 2020;8:634069. doi: 10.3389/fcell.2020.634069

 

  1. Zhou Y, Wang Y, Quan M, Zhao H, Jia J. Gut microbiota changes and their correlation with cognitive and neuropsychiatric symptoms in Alzheimer’s disease. J Alzheimers Dis. 2021;81(2):583-595. doi: 10.3233/jad-201497

 

  1. Zhang X, Wang Y, Liu W, et al. Diet quality, gut microbiota, and micrornas associated with mild cognitive impairment in middle-aged and elderly Chinese population. Am J Clin Nutr. 2021;114(2):429-440. doi: 10.1093/ajcn/nqab078

 

  1. Guo M, Peng J, Huang X, Xiao L, Huang F, Zuo Z. Gut microbiome features of Chinese patients newly diagnosed with Alzheimer’s disease or mild cognitive impairment. J Alzheimers Dis. 2021;80(1):299-310. doi: 10.3233/jad-201040

 

  1. Pan Q, Li YQ, Guo K, et al. Elderly patients with mild cognitive impairment exhibit altered gut microbiota profiles. J Immunol Res. 2021;2021:5578958. doi: 10.1155/2021/5578958

 

  1. Liu P, Jia XZ, Chen Y, et al. Gut microbiota interacts with intrinsic brain activity of patients with amnestic mild cognitive impairment. CNS Neurosci Ther. 2021;27(2):163-173. doi: 10.1111/cns.13451 25. Jung JH, Kim G, Byun MS, et al. Gut microbiome alterations in preclinical Alzheimer’s disease. PLoS One. 2022;17(11):e0278276. doi: 10.1371/journal.pone.0278276

 

  1. Zhu Z, Ma X, Wu J, et al. Altered gut microbiota and its clinical relevance in mild cognitive impairment and Alzheimer’s disease: Shanghai aging study and Shanghai memory study. Nutrients. 2022;14(19):3959. doi: 10.3390/nu14193959

 

  1. Sheng C, Yang K, He B, Du W, Cai Y, Han Y. Combination of gut microbiota and plasma amyloid-Βuas a potential index for identifying preclinical Alzheimer’s disease: A cross-sectional analysis from the silcode study. Alzheimers Res Ther. 2022;14(1):35. doi: 10.1186/s13195-022-00977-x

 

  1. Kaiyrlykyzy A, Kozhakhmetov S, Babenko D, et al. Study of gut microbiota alterations in Alzheimer’s dementia patients from Kazakhstan. Sci Rep. 2022;12(1):15115. doi: 10.1038/s41598-022-19393-0

 

  1. Ferreiro AL, Choi J, Ryou J, et al. Gut microbiome composition may Be an indicator of preclinical Alzheimer’s disease. Sci Transl Med. 2023;15(700):eabo2984. doi: 10.1126/scitranslmed.abo2984

 

  1. He B, Sheng C, Yu X, Zhang L, Chen F, Han Y. Alterations of gut microbiota are associated with brain structural changes in the spectrum of Alzheimer’s disease: The silcode study in Hainan cohort. Front Aging Neurosci. 2023;15:1216509. doi: 10.3389/fnagi.2023.1216509

 

  1. Jia L, Ke Y, Zhao S, et al. Metagenomic analysis characterizes stage-specific gut microbiota in Alzheimer’s disease. Mol Psychiatry. 2025;30:3951-3962. doi: 10.1038/s41380-025-02973-7

 

  1. Fan KC, Lin CC, Chiu YL, Koh SH, Liu YC, Chuang YF. Compositional and functional gut microbiota alterations in mild cognitive impairment: Links to Alzheimer’s disease pathology. Alzheimers Res Ther. 2025;17(1):122. doi: 10.1186/s13195-025-01769-9

 

  1. Ma C, Li Y, Mei Z, et al. Association between bowel movement pattern and cognitive function: Prospective cohort study and a metagenomic analysis of the gut microbiome. Neurology. 2023;101(20):e2014-e2025. doi: 10.1212/wnl.0000000000207849

 

  1. Vogt NM, Romano KA, Darst BF, et al. The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease. Alzheimers Res Ther. 2018;10(1):124. doi: 10.1186/s13195-018-0451-2

 

  1. Zhan X, Stamova B, Sharp FR. Lipopolysaccharide associates with amyloid plaques, neurons and oligodendrocytes in Alzheimer’s disease brain: A review. Front Aging Neurosci. 2018;10:42. doi: 10.3389/fnagi.2018.00042

 

  1. Huang Y, Wang YF, Miao J, Zheng RF, Li JY. Short-chain fatty acids: Important components of the gut-brain axis against Ad. Biomed Pharmacother. 2024;175:116601. doi: 10.1016/j.biopha.2024.116601

 

  1. Shen L, Liu L, Ji HF. Alzheimer’s disease histological and behavioral manifestations in transgenic mice correlate with specific gut microbiome state. J Alzheimers Dis. 2017;56(1):385-390. doi: 10.3233/jad-160884

 

  1. Zhang L, Wang Y, Xiayu X, et al. Altered gut microbiota in a mouse model of Alzheimer’s disease. J Alzheimers Dis. 2017;60(4):1241-1257. doi: 10.3233/jad-170020

 

  1. Brandscheid C, Schuck F, Reinhardt S, et al. Altered gut microbiome composition and tryptic activity of the 5XFAD Alzheimer’s mouse model. J Alzheimers Dis. 2017;56(2):775-788. doi: 10.3233/jad-160926

 

  1. Bäuerl C, Collado MC, Diaz Cuevas A, Viña J, P& iña Juevas A92688sition agut microbiota composition in an APP/PSS1 transgenic mouse model of Alzheimer’s disease during lifespan. Lett Appl Microbiol. 2018;66(6):464-471. doi: 10.1111/lam.12882

 

  1. Sun BL, Li WW, Wang J, et al. Gut microbiota alteration and its time course in a tauopathy mouse model. J Alzheimers Dis. 2019;70(2):399-412. doi: 10.3233/jad-181220

 

  1. Wang X, Sun G, Feng T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 2019;29(10):787-803. doi: 10.1038/s41422-019-0216-x

 

  1. Chen Y, Fang L, Chen S, et al. Gut microbiome alterations precede cerebral amyloidosis and microglial pathology in a mouse model of Alzheimer’s disease. Biomed Res Int. 2020;2020:8456596. doi: 10.1155/2020/8456596

 

  1. Tan FHP, Liu G, Lau SA, et al. Lactobacillus probiotics improved the gut microbiota profile of a Drosophila melanogaster Alzheimer’s disease model and alleviated neurodegeneration in the eye. Benef Microbes. 2020;11(1):79-89. doi: 10.3920/bm2019.0086

 

  1. Gu X, Zhou J, Zhou Y, et al. Huanglian jiedu decoction remodels the periphery microenvironment to inhibit Alzheimer’s disease progression based on the “brain-gut” axis through multiple integrated omics. Alzheimers Res Ther. 2021;13(1):44. doi: 10.1186/s13195-021-00779-7

 

  1. Bello-Medina PC, HernMedina P-021-0, PernMedina P-02, et al. Spatial memory and gut microbiota alterations are already present in early adulthood in a pre-clinical transgenic model of Alzheimer’s disease. Front Neurosci. 2021;15:595583. doi: 10.3389/fnins.2021.595583

 

  1. Jiang H, Ling Z, Zhang Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015;48:186-94. doi: 10.1016/j.bbi.2015.03.016

 

  1. Kunze WA, Mao YK, Wang B, et al. Lactobacillus reuteri enhances excitability of colonic Ah Neurons by inhibiting calcium-dependent potassium channel opening. J Cell Mol Med. 2009;13(8b):2261-2270. doi: 10.1111/j.1582-4934.2009.00686.x

 

  1. Fock E, Parnova R. Mechanisms of blood-brain barrier protection by microbiota-derived short-chain fatty acids. Cells. 2023;12(4):657. doi: 10.3390/cells12040657

 

  1. Sathyasaikumar KV, Blanco-Ayala T, Zheng Y, et al. The tryptophan metabolite indole-3-propionic acid raises kynurenic acid levels in the rat brain in vivo. Int J Tryptophan Res. 2024;17:11786469241262876. doi: 10.1177/11786469241262876

 

  1. Hwang YK, Oh JS. Interaction of the vagus nerve and serotonin in the gut-brain axis. Int J Mol Sci. 2025;26(3):1160. doi: 10.3390/ijms26031160

 

  1. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science. 2002;297(5580):353-356. doi: 10.1126/science.1072994

 

  1. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007;8(2):101-112. doi: 10.1038/nrm2101

 

  1. Marizzoni M, Cattaneo A, Mirabelli P, et al. Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer’s disease. J Alzheimers Dis. 2020;78(2):683-697. doi: 10.3233/jad-200306

 

  1. Fernando W, Martins IJ, Morici M, et al. Sodium butyrate reduces brain amyloid-utlevels and improves cognitive memory performance in an Alzheimer’s disease transgenic mouse model at an early disease stage. J Alzheimers Dis. 2020;74(1):91-99. doi: 10.3233/jad-190120

 

  1. Ho L, Ono K, Tsuji M, Mazzola P, Singh R, Pasinetti GM. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother. 2018;18(1):83-90. doi: 10.1080/14737175.2018.1400909

 

  1. Fisher JR, Wallace CE, Tripoli DL, Sheline YI, Cirrito JR. Redundant Gs-coupled serotonin receptors regulate amyloid-edmetabolism in vivo. Mol Neurodegener. 2016;11(1):45. doi: 10.1186/s13024-016-0112-5

 

  1. Philippens IH, Ormel PR, Baarends G, Johansson M, Remarque EJ, Doverskog M. Acceleration of amyloidosis by inflammation in the amyloid-beta marmoset monkey model of Alzheimer’s disease. J Alzheimers Dis. 2017;55(1):101-113. doi: 10.3233/jad-160673

 

  1. Coquenlorge S, Duchalais E, Chevalier J, Cossais F, Rolli-Derkinderen M, Neunlist M. Modulation of lipopolysaccharide-induced neuronal response by activation of the enteric nervous system. J Neuroinflammation. 2014;11:202. doi: 10.1186/s12974-014-0202-7

 

  1. Prieto GA, Tong L, Smith ED, Cotman CW. Tnfn C129IL- 1L-Tnfn C129L-18 suppresses hippocampal long-term potentiation directly at the synapse. Neurochem Res. 2019;44(1):49-60. doi: 10.1007/s11064-018-2517-8

 

  1. Hill JM, Lukiw WJ. Microbial-generated amyloids and Alzheimer’s disease (Ad). Front Aging Neurosci. 2015;7:9. doi: 10.3389/fnagi.2015.00009

 

  1. Wang C, Lau CY, Ma F, Zheng C. Genome-wide screen identifies curli amyloid fibril as a bacterial component promoting host neurodegeneration. Proc Natl Acad Sci U S A. 2021;118(34):e2106504118. doi: 10.1073/pnas.2106504118

 

  1. Friedland RP, Chapman MR. The role of microbial amyloid in neurodegeneration. PLoS Pathog. 2017;13(12):e1006654. doi: 10.1371/journal.ppat.1006654

 

  1. Dumitrescu L, Popescu-Olaru I, Cozma L, et al. Oxidative stress and the microbiota-gut-brain axis. Oxid Med Cell Longev. 2018;2018:2406594. doi: 10.1155/2018/2406594

 

  1. Wu J, Jiang Z, Zhang H, et al. Sodium butyrate attenuates diabetes-induced aortic endothelial dysfunction via P300- mediated transcriptional activation of NRF2. Free Radic Biol Med. 2018;124:454-465. doi: 10.1016/j.freeradbiomed.2018.06.034

 

  1. Hoyles L, Snelling T, Umlai UK, et al. Microbiome-host systems interactions: Protective effects of propionate upon the blood-brain barrier. Microbiome. 2018;6(1):55. doi: 10.1186/s40168-018-0439-y

 

  1. Yang S, Wang L, Liang X, et al. Radix hedysari polysaccharides modulate the gut-brain axis and improve cognitive impairment in SAMP8 mice. Int J Biol Macromol. 2025;306(Pt 4):141715. doi: 10.1016/j.ijbiomac.2025.141715

 

  1. Flynn CM, Yuan Q. Probiotic supplement as a promising strategy in early tau pathology prevention: Focusing on GSK-3Β? Front Neurosci. 2023;17:1159314. doi: 10.3389/fnins.2023.1159314

 

  1. Seo DO, O’Donnell D, Jain N, et al. Apoe isoform- and microbiota-dependent progression of neurodegeneration in a mouse model of tauopathy. Science. 2023;379(6628):eadd1236. doi: 10.1126/science.add1236

 

  1. Harach T, Marungruang N, Duthilleul N, et al. Reduction of abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep. 2017;7:41802. doi: 10.1038/srep41802

 

  1. Kennedy MS, Freiburger A, Cooper M, et al. Diet outperforms microbial transplant to drive microbiome recovery in mice. Nature. 2025;642(8068):747-755. doi: 10.1038/s41586-025-08937-9

 

  1. Nucci D, Sommariva A, Degoni LM, et al. Association between mediterranean diet and dementia and Alzheimer disease: A systematic review with meta-analysis. Aging Clin Exp Res. 2024;36(1):77. doi: 10.1007/s40520-024-02718-6

 

  1. Kimble R, Gouinguenet P, Ashor A, et al. Effects of a mediterranean diet on the gut microbiota and microbial metabolites: A systematic review of randomized controlled trials and observational studies. Crit Rev Food Sci Nutr. 2023;63(27):8698-8719. doi: 10.1080/10408398.2022.2057416

 

  1. Alkhalifa AE, Al-Ghraiybah NF, Kaddoumi A. Extra-virgin olive oil in Alzheimer’s disease: A comprehensive review of cellular, animal, and clinical studies. Int J Mol Sci. 2024;25(3). doi: 10.3390/ijms25031914

 

  1. Kincaid HJ, Nagpal R, Yadav H. Diet-microbiota-brain axis in Alzheimer’s disease. Ann Nutr Metab. 2021;77 Suppl 2(Suppl 2):21-27. doi: 10.1159/000515700

 

  1. McEvoy CT, Jennings A, Steves CJ, Macgregor A, Spector T, Cassidy A. Diet patterns and cognitive performance in a UK female twin registry (Twinsuk). Alzheimers Res Ther. 2024;16(1):17. doi: 10.1186/s13195-024-01387-x

 

  1. Nagpal R, Neth BJ, Wang S, Craft S, Yadav H. Modified mediterranean-ketogenic diet modulates gut microbiome and short-Chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine. 2019;47:529-542. doi: 10.1016/j.ebiom.2019.08.032

 

  1. Wang Q, Zang F, He C, Zhang Z, Xie C. Dyslipidemia induced large-scale network connectivity abnormality facilitates cognitive decline in the Alzheimer’s disease. J Transl Med. 2022;20(1):567. doi: 10.1186/s12967-022-03786-w

 

  1. Makki K, Deehan EC, Walter J, Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe. 2018;23(6):705-715. doi: 10.1016/j.chom.2018.05.012

 

  1. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332-1345. doi: 10.1016/j.cell.2016.05.041

 

  1. Desai MS, Seekatz AM, Koropatkin NM, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(5):1339-1353.e21. doi: 10.1016/j.cell.2016.10.043

 

  1. Zinöcker MK, Lindseth IA. The Western diet-microbiome-host interaction and its role in metabolic disease. Nutrients. 2018;10(3):365. doi: 10.3390/nu10030365

 

  1. Lee ATC, Richards M, Chan WC, Chiu HFK, Lee RSY, Lam LCW. Lower risk of incident dementia among Chinese older adults having three servings of vegetables and two servings of fruits a day. Age Ageing. 2017;46(5):773-779. doi: 10.1093/ageing/afx018

 

  1. Salminen S, Collado MC, Endo A, et al. The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol. 2021;18(9):649-667. doi: 10.1038/s41575-021-00440-6

 

  1. Ni Lochlainn M, Bowyer RCE, Moll JM, et al. Effect of gut microbiome modulation on muscle function and cognition: The promote randomised controlled trial. Nat Commun. 2024;15(1):1859. doi: 10.1038/s41467-024-46116-y

 

  1. Sun J, Liu S, Ling Z, et al. Fructooligosaccharides ameliorating cognitive deficits and neurodegeneration in APP/PS1 transgenic mice through modulating gut microbiota. J Agric Food Chem. 2019;67(10):3006-3017. doi: 10.1021/acs.jafc.8b07313

 

  1. Han D, Li Z, Liu T, et al. Prebiotics regulation of intestinal microbiota attenuates cognitive dysfunction induced by surgery stimulation in APP/PS1 mice. Aging Dis. 2020;11(5):1029-1045. doi: 10.14336/ad.2020.0106

 

  1. Mahaman YAR, Huang F, Salissou MTM, et al. Ferulic acid improves synaptic plasticity and cognitive impairments by alleviating the PP2B/DARPP-32/PP1 axis-mediated step increase and AP1burden in Alzheimer’s disease. Neurotherapeutics. 2023;20(4):1081-1108. doi: 10.1007/s13311-023-01356-6

 

  1. Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491-502. doi: 10.1038/nrgastro.2017.75

 

  1. Fuller R. Probiotics in man and animals. J Appl Bacteriol. 1989;66(5):365-378.

 

  1. Leblhuber F, Steiner K, Schuetz B, Fuchs D, Gostner JM. Probiotic supplementation in patients with Alzheimer’s dementia - an explorative intervention study. Curr Alzheimer Res. 2018;15(12):1106-1113. doi: 10.2174/1389200219666180813144834

 

  1. Zhu LB, Zhang YC, Huang HH, Lin J. Prospects for clinical applications of butyrate-producing bacteria. World J Clin Pediatr. 2021;10(5):84-92. doi: 10.5409/wjcp.v10.i5.84

 

  1. Athari Nik Azm S, Djazayeri A, Safa M, et al. Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in Βiamyloid (1-42) injected rats. Appl Physiol Nutr Metab. 2018;43(7):718-726. doi: 10.1139/apnm-2017-0648

 

  1. Zhu G, Zhao J, Wang G, Chen W. Bifidobacterium breve HNXY26M4 attenuates cognitive deficits and neuroinflammation by regulating the gut-brain axis in APP/PS1 mice. J Agric Food Chem. 2023;71(11):4646-4655. doi: 10.1021/acs.jafc.3c00652

 

  1. Kobayashi Y, Kinoshita T, Matsumoto A, Yoshino K, Saito I, Xiao JZ. Bifidobacterium breve A1 supplementation improved cognitive decline in older adults with mild cognitive impairment: An open-label, single-arm study. J Prev Alzheimers Dis. 2019;6(1):70-75. doi: 10.14283/jpad.2018.32

 

  1. Asaoka D, Xiao J, Takeda T, et al. Effect of probiotic Bifidobacterium breve in improving cognitive function and preventing brain atrophy in older patients with suspected mild cognitive impairment: Results of a 24-week randomized, double-blind, placebo-controlled trial. J Alzheimers Dis. 2022;88(1):75-95. doi: 10.3233/jad-220148

 

  1. Arora K, Green M, Prakash S. The microbiome and Alzheimer’s disease: Potential and limitations of prebiotic, synbiotic, and probiotic formulations. Front Bioeng Biotechnol. 2020;8:537847. doi: 10.3389/fbioe.2020.537847

 

  1. Deng SM, Chen CJ, Lin HL, Cheng IH. The beneficial effect of synbiotics consumption on Alzheimer’s disease mouse model via reducing local and systemic inflammation. IUBMB Life. 2022;74(8):748-753. doi: 10.1002/iub.2589

 

  1. Westfall S, Lomis N, Prakash S. A novel synbiotic delays Alzheimer’s disease onset via combinatorial gut-brain-axis signaling in Drosophila melanogaster. PLoS One. 2019;14(4):e0214985. doi: 10.1371/journal.pone.0214985

 

  1. Tong Y, Lu G, Guo J, et al. A new intestinal supplement “synbiotics” therapeutically regulates gut microbiota and activates PPARs pathway to inhibit Alzheimer’s disease progression in mouse models. New Microbiol. 2024;47(1):68-79.

 

  1. Zhang J, Zhao X, Xu H, et al. NMN synbiotics intervention modulates gut microbiota and metabolism in APP/PS1Alzheimer’s disease mouse models. Biochem Biophys Res Commun. 2024;726:150274. doi: 10.1016/j.bbrc.2024.150274

 

  1. Chandra S, Vassar RJ. Gut microbiome-derived metabolites in Alzheimer’s disease: Regulation of immunity and potential for therapeutics. Immunol Rev. 2024;327:33-42. doi: 10.1111/imr.13412

 

  1. Kern L, Mastandrea I, Melekhova A, Elinav E. Mechanisms by which microbiome-derived metabolites exert their impacts on neurodegeneration. Cell Chem Biol. 2025;32:25-45. doi: 10.1016/j.chembiol.2024.08.014

 

  1. Connell E, Le Gall G, Pontifex MG, et al. Microbial-derived metabolites as a risk factor of age-related cognitive decline and dementia. Mol Neurodegener. 2022;17(1):43. doi: 10.1186/s13024-022-00548-6

 

  1. Licciardi PV, Ververis K, Karagiannis TC. Histone deacetylase inhibition and dietary short-chain fatty acids. ISRN Allergy. 2011;2011:869647. doi: 10.5402/2011/869647

 

  1. Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 2015;7(4):2839-2849. doi: 10.3390/nu7042839

 

  1. Wang J, Yu JT, Tan MS, Jiang T, Tan L. Epigenetic mechanisms in Alzheimer’s disease: Implications for pathogenesis and therapy. Ageing Res Rev. 2013;12(4):1024-1041. doi: 10.1016/j.arr.2013.05.003

 

  1. Fischer A. Targeting histone-modifications in Alzheimer’s disease. What is the evidence that this is a promising therapeutic avenue? Neuropharmacology. 2014;80:95-102. doi: 10.1016/j.neuropharm.2014.01.038

 

  1. Yang SS, Zhang R, Wang G, Zhang YF. The development prospection of hdac inhibitors as a potential therapeutic direction in Alzheimer’s disease. Transl Neurodegener. 2017;6:19. doi: 10.1186/s40035-017-0089-1

 

  1. Tang XL, Wang Y, Li DL, Luo J, Liu MY. Orphan G protein-coupled receptors (GPCRS): Biological functions and potential drug targets. Acta Pharmacol Sin. 2012;33(3):363-371. doi: 10.1038/aps.2011.210

 

  1. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019;16(8):461-478. doi: 10.1038/s41575-019-0157-3

 

  1. Layden BT, Angueira AR, Brodsky M, Durai V, Lowe WL Jr. Short chain fatty acids and their receptors: New metabolic targets. Transl Res. 2013;161(3):131-140. doi: 10.1016/j.trsl.2012.10.007

 

  1. Jiang Y, Li K, Li X, Xu L, Yang Z. Sodium butyrate ameliorates the impairment of synaptic plasticity by inhibiting the neuroinflammation in 5XFAD mice. Chem Biol Interact. 2021;341:109452. doi: 10.1016/j.cbi.2021.109452

 

  1. Gold A, Kaye S, Gao J, Zhu J. Propionate decreases microglial activation but impairs phagocytic capacity in response to aggregated fibrillar amyloid beta protein. ACS Chem Neurosci. 2024;15(21):4010-4020. doi: 10.1021/acschemneuro.4c00370

 

  1. Colombo AV, Sadler RK, Llovera G, et al. Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition. Elife. 2021;10:e59826. doi: 10.7554/eLife.59826

 

  1. Wu M, Tian T, Mao Q, et al. Associations between disordered gut microbiota and changes of neurotransmitters and short-chain fatty acids in depressed mice. Transl Psychiatry. 2020;10(1):350. doi: 10.1038/s41398-020-01038-3

 

  1. Mhanna A, Martini N, Hmaydoosh G, et al. The correlation between gut microbiota and both neurotransmitters and mental disorders: A narrative review. Medicine (Baltimore). 2024;103(5):e37114. doi: 10.1097/md.0000000000037114

 

  1. Lang W, Li X, Wang Y, et al. Sodium propionate improves cognitive and memory function in mouse models of Alzheimer’s disease. Neurosci Lett. 2022;791:136887. doi: 10.1016/j.neulet.2022.136887

 

  1. Lo AC, Callaerts-Vegh Z, Nunes AF, Rodrigues CM, D’Hooge R. Tauroursodeoxycholic acid (Tudca) supplementation prevents cognitive impairment and amyloid deposition in APP/PS1 mice. Neurobiol Dis. 2013;50:21-29. doi: 10.1016/j.nbd.2012.09.003

 

  1. Erny D, Dokalis N, Mezö C, et al. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metab. 2021;33(11):2260-2276.e7. doi: 10.1016/j.cmet.2021.10.010

 

  1. Zarbock KR, Han JH, Singh AP, et al. Trimethylamine N-oxide reduces neurite density and plaque intensity in a murine model of Alzheimer’s disease. J Alzheimers Dis. 2022;90(2):585-597. doi: 10.3233/jad-220413

 

  1. Ooijevaar RE, Terveer EM, Verspaget HW, Kuijper EJ, Keller JJ. Clinical application and potential of fecal microbiota transplantation. Annu Rev Med. 2019;70:335-351. doi: 10.1146/annurev-med-111717-122956

 

  1. Allegretti JR, Mullish BH, Kelly C, Fischer M. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet. 2019;394(10196):420-431. doi: 10.1016/s0140-6736(19)31266-8

 

  1. D’Amato A, Di Cesare Mannelli L, Lucarini E, et al. Faecal microbiota transplant from aged donor mice affects spatial learning and memory via modulating hippocampal synaptic plasticity- and neurotransmission-related proteins in young recipients. Microbiome. 2020;8(1):140. doi: 10.1186/s40168-020-00914-w

 

  1. Sun J, Xu J, Ling Y, et al. Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiatry. 2019;9(1):189. doi: 10.1038/s41398-019-0525-3

 

  1. Kim MS, Kim Y, Choi H, et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut. 2020;69(2):283-294. doi: 10.1136/gutjnl-2018-317431

 

  1. Jiang X, Zheng Y, Sun H, et al. Fecal microbiota transplantation improves cognitive function of a mouse model of Alzheimer’s disease. CNS Neurosci Ther. 2025;31(2):e70259. doi: 10.1111/cns.70259

 

  1. Hazan S. Rapid improvement in Alzheimer’s disease symptoms following fecal microbiota transplantation: A case report. J Int Med Res. 2020;48(6):300060520925930. doi: 10.1177/0300060520925930

 

  1. Park SH, Lee JH, Shin J, et al. Cognitive function improvement after fecal microbiota transplantation in Alzheimer’s dementia patient: A case report. Curr Med Res Opin. 2021;37(10):1739-1744. doi: 10.1080/03007995.2021.1957807

 

  1. Nicolas S, Dohm-Hansen S, Lavelle A, et al. Exercise mitigates a gut microbiota-mediated reduction in adult hippocampal neurogenesis and associated behaviours in Rats. Transl Psychiatry. 2024;14(1):195. doi: 10.1038/s41398-024-02904-0

 

  1. Raket LL, Cummings J, Moscoso A, Villain N, Schöll M. Scenarios for the long-term efficacy of amyloid-targeting therapies in the context of the natural history of Alzheimer’s disease. Alzheimers Dement. 2024;20(9):6374-6383. doi: 10.1002/alz.14134
Share
Back to top
Microbes & Immunity, Electronic ISSN: 3029-2883 Print ISSN: 3041-0886, Published by AccScience Publishing